

Sustainable design of sanitation system based on material and value flow analysis for urban slum in Indonesia

著者	Ushijima Ken, Irie Mitsuteru, Sintawardani Neni, Triastuti Jovita, Hamidah Umi, Ishikawa Tadaharu
journal or	Frontiers of Environmental Science &
publication title	Engineering
volume	7
number	1
page range	120-126
year	2013-02
権利	(C) Higher Education Press and Springer-Verlag
	Berlin Heidelberg 2012.
	The original publication is available at
	www.springerlink.com.
URL	http://hdl.handle.net/2241/118618

doi: 10.1007/s11783-012-0460-5

- Front. Environ. Sci. Engin. 1 2 3
- DOI
- Verso: Front. Environ. Sci. Engin.
- 4 Recto:Ken USHIJIMA et al. Sustainable design of material flow for urban slum
- 5 RESEARCH ARTICLE

Sustainable design of sanitation system based on material and 6

value flow analysis for urban slum in Indonesia 7

Ken USHIJIMA $(\boxtimes)^1$, Mitsuteru IRIE², Neni SINTAWARDANI³, Jovita TRIASTUTI³, Umi 8

HAMIDAH³, Tadaharu ISHIKAWA⁴, Naoyuki FUNAMIZU¹ 9

10 1 Environmental Engineering and Science, Hokkaido University, Sapporo-shi, Hokkaido 060-8628, Japan

- 11 2 Alliance for Research on North Africa, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
- 12 3 Research Centre for Physics, Indonesian Institute of Sciences, Bandung 40135, Indonesia
- 13 4 Department of Environment and Technology, Tokyo Institute of Technology, Yokohama 226-8502,
- 14 Japan
- 15
- 16 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2012
- 17

18 Abstract Material flow analysis (MFA) and value flow analysis (VFA) were applied to the sanitation 19 system in an urban slum in Indonesia. Based on the results of the MFA and VFA, garbage and excreta 20 disposal costs were evaluated to be 0.7% and 1.1%, respectively, of per capita income. Such value flows 21 seem reasonable in light of the recognized affordability to pay (ATP) standard. However, current excreta 22 disposal methods create negative impacts on downstream populations. Because such disadvantages do not 23 go back to disposers, but passed to downstream, the current value flow structure does not motivate 24 individual toilet users to install treatment facility. . Based on current material and value flow structures, a 25 resource recycling sanitation system scenario was examined. Based on VFA, an affordable initial cost for 26 such a system was calculated; this was found to be comparable in price to a cheaper composting toilet that 27 is currently available in the market.

28

29 **Keywords** material flow, value flow, resource recycling system, sustainable design, initial cost, urban 30 slum

31

32

Introduction 33 1

34

35 Highly populated urban areas require large material inflows of food for people. Although this incoming 36 materials is consumed, it does not disappears, because waste materials is generated, which needs to be

- 1 disposed of in some manner, mainly as solid waste and as waste water, including toilet waste water. If the
- 2 urban system does not introduce systems to manage these material outflows, unfavorable wastes
- 3 accumulate in the urban area or flow to unfavorable locations, such as into surface and grand water
- 4 reservoirs, both of which are usually important water sources. Such problems can be observed in many
- 5 developing countries [1-3], and although it is recognized that solutions to such problems are needed,
- 6 investment in outflow systems tends to be given lower priority because they do not have clear direct
- 7 benefits, unlike projects such as production, supply, and transportation.
- 8 On the other hand, sustainability has recently been recognized as important factor for societies system. 9 Several types of resource recycling toilets and wastewater treatment systems for reuse have been proposed 10 as sustainable sanitation system technologies [4-6]. Although these technologies have the advantage, that 11 they can create value from unwanted waste, they need to be embedded in system designed suitably to 12 manage equipment outflow. It is therefore important to understand current and future material flows in and 13 around targeted urban areas. Material flow analysis (MFA) or substance flow analysis (SFA) are suitable 14 methodologies for this purpose. The application of the MFA to sanitation systems has been attempted in 15 several studies, some of which considered sanitation systems as a part of material flows [7,8], and some of 16 which focused mainly on sanitation system [9,10]. However these studies describe current material flows
- 17 and only providing the conceptual description of possible improvements.
- In an actual application, the optimization of the material flow design is not sufficient to drive the system.
 Successful material flow programs needs to be designed such that they benefit all stakeholders and
 incorporate well planned value chains. Therefore, it is believed that both material flow and value flow
 should be considered simultaneously. In this study, material flow is attempted to be related with value flow
 for designing sustainable sanitation systems for a slum area in Bandung, Indonesia, which have been
 studied comprehensively.
- 24
- 25
- 26 2 Materials and methods
- 27

28 2.1 Overview of study site

29

Bandung is the fourth largest city in Indonesia, with a population of 2.5 million [11]. It is in the inland part of west Java and is located upstream of the Citarum River, a major source of water for the capital, Jakarta (Fig. 1(a)). Only 16% of the domestic wastewater generated in Bandung City is treated, as the city has only one treatment plant, located in the suburbs [12]. The Kiaracondong sub-district is located near the center of Bandung city, and is known as the city's largest slum. According to 2006 local statistics, Kiaracondong has a population of 116000 living within an area of 6.1 km².

Two types of field surveys were conducted. One was conducted in the Jondol Canal [13], which flows through central Kiaracondong into the Cicadas River, which is a tributary of the Citarum River. In the area surveyed, there were no houses connected to the sewerage system feeding the treatment plant. Figure 1(c)

- 1 shows the measurement locations and catchment of the studied section of the Jondol Canal, with a distance
- 2 of 960 m between the two observation sites. This area of the catchment was measured to be 0.41 km² and,
- 3 as determined by previous investigations and local statistics, has a population of 16240 people and 3585
- 4 households. The other survey was conducted in the Jondol Canal catchment area. In this survey, sixty-two
- 5 families living near the canal were interviewed about their water use, their wastewater disposal, and other
- 6 related matters [13].
- 7

8

Fig. 1 Location of studied area: (a) location of Bandung City; (b) Kiaracondong Sub District; (c) observatories and
 catchment

11

12 2.2 Data sources

13

- 14 The results of field surveys on river water [13], domestic wastewater [13,14], and garbage disposal and
- 15 collection [15], in addition to official statistics for Indonesia [16], were used as the main data.

1 2.3 Methods

				/(%	s against meome)	
I _c 1	water	32000	0	0	+110000	mass, value: average of 3 households in Ushijima[14]. P, N:
					(2.070)	regarded as ignoreable

I _c 2	food	170	1.3	6.0	+ 1400000 (35.9%)	mass, value: Gunawan[<mark>16</mark>], P, N: blackwater + solid waste
I _c 3	electricity	0	0	0	+ 170000 (4.4%)	value: average of 3 households in Ushijima[14], mass, P, N: meaningless
O _c 1	blackwater	14000	1.2	5.9	± 0 (0%)	mass: $I_c1 \times 0.41[14] + O_c11 + O_c12$, P, N: $O_c11 + O_c12$ mass, P, N: Ushijimal 14].
O _c 11	feces	33	0.3	0.9	-13000 (0.3%)	value: water consumption for defecation (water cost × percentage of water use for defecation)
O _c 12	urine	370	0.9	5.0	-32000 (0.8%)	mass, P, N: Ushijima[14], value: water consumption for urination (water cost × percentage of water use for urination)
O _c 2	graywater	19000	1.0	0.0	± 0 (0%)	mass: I_c1-O_c1 , P, N: total wastewater (maximum in Ushijima [14]) - O_c1 mass: Ushijima [14]
O _c 3	solid waste	67	0.1	0.2	-28000 (0.7%)	P, N (unit): Aramaki K Thuy [8], value: collection fee (Ushijima [14])
O _c 31	junk material	(no data)	0	0	+	P, N: non-organic is regarded as 0
O _c 32	solid waste	(no data)	0.1	0.2	-	D3-D31
O _c 33	junk material	(no data)	0	0	+	P, N: non-organic is regarded as 0
O _c 34	accumulation	(no data)	0.1	0.2	-	D32–D33
O _c 4	work force	0	0	0	+ 3900000 (100%)	mass, P, N: meaningless value: average of 3 households in Ushijima[<mark>14</mark>]
R _c 1	river inflow	52000	0.4	1.3	± 0 (0%)	Ushijima[<mark>14</mark>], N: NH ₄ -N + NO ₂ -N + NO ₃ -N P: PO ₄ -P
R _c 2	river outflow	110000	1.2	3.5	± 0 (0%)	Ushijima[<mark>14</mark>], N: NH ₄ -N + NO ₂ -N + NO ₃ -N P: PO ₄ -P
R _c 3	mosque	8300	0	0	± 0 (0%)	Ushijima[<mark>14</mark>]

1

2

3 3 Results

3.1 Current material flow 1

2

3 Figure 2 shows current material flows. Total mass flow, phosphorus mass flow, nitrogen mass flow, and

4 total value flows are summarized in Table 1. Note that several value flows, namely, I_c21, I_c22, I_c23, I_c24 5 and I_c25 were not quantified in this study.

6

9

Material flow of resource recycling sanitation system 10 3.2

11

12 Figure 3 shows material flows under a future scenario in which a resource recycling sanitation system is 13 applied. Total mass flow, phosphorus mass flow, nitrogen mass flow, and total value flows are summarized 14 in Table 2. Note that several mass flows, namely, Ir21, Ir22, Ir23, Ir24, and Ir25 were not quantified in this 15 study.

2

3 Fig. 3 Material flow of resource recycling scenario

4

 Table 2
 Mass, phosphorus, nitrogen and value of each arrow in material flow of resource recycling sanitation system.

		mass/	P /	N/	value/	
ID supplied item		$(kg \cdot (year \cdot capita)^{-1})$			$(\operatorname{Rp}(\operatorname{year}\operatorname{capita})^{-1})$	data source
					(% against income)	
					110000	mass, value: average of 3 households in
$I_r 1$	water	32000	0	0	+ 110000 (2.8%)	Ushijima[<mark>14</mark>].
					(2.8%)	P, N: regarded as ignoreable
I _r 2	food	170	1.3	6.0	+ 1400000	mass, value: Gunawan[16], P, N:
	1000				(35.9%)	blackwater + solid waste
I _r 3		0	0	0	+ 170000	value: average of 3 households in
	electricity				(4.4%)	Ushijima[14],mass, P, N: meaningless
						mass, P, N: Ushijima[14], value: water
O _r 11	feces	33	0.3	0.9	variable	consumption for defecation (water cost
- 1						\times percentage of water use for
						defecation)
						mass, P, N: Ushijima[14], value: water
O _r 12	urine	370	0.9	5.0	variable	consumption for urination (water cost \times
						percentage of water use for urination)
O _r 13	processed feces	variable	0.3	< 0.9	variable	P, N: = $O_r 11$

O _r 14	processed urine	variable	0.9	< 5.0	variable	$P,N: = O_r 12$
O _r 15	collected feces	variable	0.3	< 0.9	variable	P, N: = $O_r 11$
O _r 16	collected urine	variable	0.9	< 0.9	variable	P, N: = $O_r 12$
0.2		10000	1.0	0.0	± 0	mass: Ic1-Oc1, P, N: total wastewater
O _r 2	graywater	19000	1.0	0.0	(0%)	(maximum in Ushijima [<mark>14</mark>]) - O _c 1
					20000	mass: Ushijima[14], P, N: non-organic
O _r 3	solid waste	17	0.0	0.0	-28000	is regarded as 0, value: collection fee
					(0.7%)	(Ushijima[<mark>14</mark>])
O _r 31	junk material	(no data)	0	0	+	P, N: non-organic is regarded as 0
O _r 32	solid waste	(no data)	0.0	0.0	_	D3-D31
O _r 33	junk material	(no data)	0	0	+	P, N: non-organic is regarded as 0
O _r 34	accumulation	(no data)	0.0	0.0	_	D32–D33
0.25	onconio mosto	50	0.1	0.1		mass: Ushijima [<mark>14</mark>],
0 _r 55	organic waste	50	0.1	0.1	Ŧ	P, N (unit): Aramaki <mark>&</mark> Thuy [<mark>8</mark>]
0.4		0	0	0	+ 3900000	mass, P, N: meaningless, value: average
0 _r 4	work lorce	0	0	0	(100%)	of 3 households in Ushijima [<mark>14</mark>]
					± 0	Ushijima[14],N: NH_4 -N + NO_3 -N
R _r 1	river inflow	52000	0.4	1.3	(0%)	P: PO ₄ -P
					+ 0	Ushijima[14] N· NH ₄ -N + NO ₂ -N
$R_r 2$	river outflow	97000	0.8	3.5	(0%)	$P: PO_P$ reaching ratio of N $P: 0.36$
					(0%)	$1.10_{4^{-1}}$, reaching ratio of $10, 1.0.50$
R _r 3	mosque	8300	0	0	± 0	Ushijima[<mark>14</mark>]
	_				(0%)	

- 1
- 2

3 4 Discussion

4

5 4.1 Current material flow

6

7 Using material flow and value flow analysis, the value flow in and around an urban slum family were 8 analyzed, not only in terms of easy-to-price factors or quantitative flows but also in terms of 9 difficult-to-price factors or qualitative flows, such as garbage disposal and excreta disposal. Based on the 10 result, "costs for disposal" for garbage and wastewater were determined. These values, listed in Table 1 are 11 approximately 0.7% and 1.1% of per capita income for garbage disposal and for urine and excreta disposal, 12 respectively. The World Bank has roughly evaluated benchmarks for affordability to pay (ATP) as 2% and 13 1% of consumable per capita income for garbage collection service and sewerage service, respectively [18], 14 similar to the current costs derived here. Thus, current value flows for garbage and excreta disposal seem 15 reasonable for people in light of such benchmarks. However, the material flow of excreta into the river is 16 clearly causing deterioration of the water environment. Because this value loss has a negligible direct

1 effect, and because the disadvantages apply to populations downstream instead of to disposers, it would

- 2 seem that the structure of the current value flow would impede efforts to improve the water environment.
- 3

4 4.2 Resource recycling system

5

6 A proposed resource recycling sanitation system would not discharge excreta to the river; rather such 7 waste would be sent to farms, where it would have positive value as a fertilizer. From the catchment area 8 studied, the system would remove almost all the nitrogen and half of the phosphorus discharged, and 9 therefore, the net flux of nitrogen and phosphorus through the river under a recycling scenario (see Fig.3: 10 R_r2-R_r1) would be less than under current conditions (Fig.2: R_c2-R_c1). The positive impacts on river water 11 quality resulting from the introduction of resource recycling sanitation would be potentially large.

12 As it is a source of nutrients, excreta has good potential for the generation of value through use as

13 fertilizer. However, the value of compost made from human excreta may also be discounted relative to 14 chemical fertilizers because of psychological resistance. Further, the quality or handling of the processed

15 excreta may also affect the value of the resulting compost. However, the price of synthetic fertilizers has

16 been rising the last decade, and if this rise continues, the incentive of saving costs through substitution may

- 17 overcome the psychological barriers.
- In any event, the exact value of human excreta is currently difficult to evaluate. A case study of one company selling liquid fertilizer made from human urine seems suitable as a reference [19]. The company pays 1000 Rupiah·L⁻¹ to people as compensation for urine offer. Assuming that one liter of urine is produced per capita per day, this price corresponds to 365000 Rupiah·(capita·year)⁻¹, equivalent to 9% of per capita income, which is listed in Table 1 as O_c4.

23 In the area studied, the initial cost of a water flush toilet is reported to be approximately 2000000 Rupiah

[14]. Assuming a family size of four people and a toilet lifetime of 15 years (which is standard in Japan),
 the WTP is thus estimated at 79000 Rupiah·(capita·year)⁻¹. If we apply the excreta price mentioned above
 as an optimum estimation, affordable initial cost for resource recycling sanitation system is estimated as

27

$(Initial \ cost \ / \ lifetime) < 4400000 \ \text{Rupiah} \cdot (\text{capita} \cdot \text{year})^{-1}, \tag{3}$

For a 15-year lifetime composting toilet, the estimated affordable initial cost for a four person family would be 27000000 Rupiah, equivalent to approximately 3200 USD according to the June 2011 exchange rate. This is similar in price to a cheaper composting toilet (approximately 2000 USD) currently available in the market.

- 32
- 33

34 5 Conclusions

35

36 In this study, for an urban slum, the material and value flows of water, sanitation related materials,

37 nitrogen, and phosphorus were calculated and plotted. The value flow analysis evaluated garbage disposal

- 1 cost and excreta disposal cost at 0.7% and 1.1%, respectively, of household income, which represents a
- 2 reasonable cost to disposers. However, under the current disposal scheme, negative value due to excreta
- 3 disposal appears to be passed on to downstream populations. The structure of this value flow suggests that
- 4 little attention is paid to the negative externalities, indicating that a solution in this case may be difficult to
- 5 obtain.

6 The affordable initial cost of a new resource recycling system was evaluated and compared with the 7 costs of a currently used commercial compost toilet by evaluating equipment lifetimes and potential 8 income streams available from the sale of human excrement fertilizers. To estimate a value for the human 9 excrement fertilizer, real-world case study in Indonesia, in which money was paid in exchange for human 10 urine, was referred to. The evaluated affordable initial cost derived was sufficiently comparable to the 11 price of a cheaper composting toilet currently available in the market. This implies that such a resource 12 recycling system is feasible even in an urban slum.

- 13
- 14

15 Acknowledgements This research was financially supported by the Core Research for Evolutional

16 Science and Technology of the Japan Science and Technology Agency (JST-CREST), the Science and

17 Technology Research Partnership for Sustainable Development of the Japan Science and Technology

18 Agency and Japan International Cooperation Agency (JST-JICA-SATREPS), and the science research S of

19 the Grants-in-Aid for Scientific Research of Japan Society for the Promotion of Science.

- 20
- 21

22 **References**

23

24 1. Metcalf & Eddy International Inc. in association with Brockman Tym International and TCGI

Engineers. Pasig River Development Plan, Final Report to ADB, vol.1. Quezon City: Metcalf & Eddy International Inc. in
 association with Brockman Tym International and TCGI Engineers, 1998

- 27 2. Tanaka N. Environment of developing countries in Asia-Pacific, Thai (1). Journal of Resources and
 28 Environment, 1992, 28(11): 1065–1076 (in Japanese)
- 29 3. Tsuzuki Y, Koottatep T, Rahman M D M, Ahmed F. Preliminary study on pollutant discharge from

30 domestic wastewater and pollutant load in the river: a comparative study between Japan, Thailand and

31 Bangladesh. In: Proceedings of the Water Environment Partnership in Asia (WEPA) Forum on "Water Environmental

- 32 Governance in Asia", Bangkok. Kanagawa: Water Environment Partnership in Asia (WEPA), 2007
- 33 4. Winblad U, Simpson-Hebert M. Ecological Sanitation Revised and Enlarged Edition. Stockholm: SEI, 2004
- 34 5. Lopez Zavala M A, Funamizu N, Takakuwa T. Onsite wastewater differentiable treatment system:
- 35 modeling approach. Water Science and Technology, 2002, 46(6–7): 317–324
- 36 6. Ushijima K, Ito K, Ito R, Funamizu N. Greywater treatment by slanted soil system. Ecological Engineering
- 37 2012papers in press, doi: 10.1016/j.ecoleng.2012.04.028

- 1 7. Harada H, Adachi T, Fujii S, Lien N P H, Hai H T. Phosphorus flow analysis in Hanoi focusing on
- 2 wastewater, agriculture and stockbreeding. Environmental Engineering Research, JSCE, 2010, 47: 465–474
- 3 (in Japanese)
- 4 8. Aramaki T, Thuy N T T. Material flow analysis of nitrogen and phosphorus for regional nutrient
- 5 management: case study in Haiphong, Vietnam. Sustainability in Food and Water. Alliance for Global
- 6 Sustainability Bookseries, 2010, 18(6): 391–399 <u>doi:10.1007/978-90-481-9914-3_38</u>
- 7 9. Zhou C, Liu J, Wang R, Yang W, Jin J. Ecological-economic assessment of ecological sanitation
- development in the cities of Chinese Loess Plateau. Ecological Complexity, 2010, 7(2): 162–169
 doi:10.1016/j.ecocom.2009.10.001
- 10 10. Li S, Yuan Z, Bi J, Wu H. Anthropogenic phosphorus flow analysis of Hefei City, China. The Science
- 11 of the Total Environment, 2010, 408(23): 5715–5722 doi:10.1016/j.scitotenv.2010.08.052 PMID:20863550
- 12 11. Statistics Indonesia B P S. Seri Kependudukan Jawa Barat Tahun 1920–2005. Jakarta: BPS, Indonesia, 2005
- 13 12. World Bank. Indonesia Environment Monitor 2003. Jakarta: World Bank Indonesia Office, 2003
- 14 13. Ushijima K, Irie M, Sintawardani N, Triastuti J, Ishikawa T. Field research on domestic wastewater
- 15 from a slum in Bandung City. Journal of Hydroscience and Hydraulic Engineering, 2008, 26(1): 129–140
- 16 14. Ushijima K. Study on water environment rehabilitation by introducing new toilet system in urban area of Southeast Asia.
- 17 Dissertation for the Doctoral Degree. Tokyo: Tokyo Institute of Technology, 2007 (in Japanese)
- 18 15. Ushijima K, Irie M, Sintawardani N, Triastuti J, Ishikawa T. Practical model design of sustainable sanitation
- 19 system in urban slum. In: Proceedings of the 6th International Symposium on Sustainable Sanitation, Changchun:
- 20 Northeast Normal University (NENU), 2008, 27–33
- 21 16. Memed Gunawan. Market Prospects for Upland Crops in Indonesia, the CGPRT Centre Working Paper Series 25. Bogor:
- 22 Regional Co-ordination Centre for Research and Development of Coarse Grains, Pulses, Roots and Tuber Crops in the Humid
- 23 Tropics of Asia and the Pacific (CGPRT), 1997
- 24 17. Ushijima K, Yabui K, Hijikata N, Ito R, Funamizu N. Development of self-buildable simple composting toilet. In:
- 25 Proceedings of IWA ASPIRE, Tokyo. Tokyo: the 4th IWA-ASPIRE Organizing Committee, 2011
- 26 18. Japan International Cooperation Agency (JICA). Study on Method of Economic Evaluation in Development Studies.
- 27 Tokyo: JICA, 2002 (in Japanese)
- 28 19. Ushijima K, Irie M, Sintawardani N, Triastuti J, Ishikawa T, Funamizu N. Sanitation model for urban slum in
- 29 Southeast Asia. In: Proceedings of IWA 2nd Development Congress, Kuala Lumpur, Malaysia. London: IWA, 2011