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In the presence of a nuisance parameter the asymptotic deficiency of the discretized
likelihood estimator (DLE) relative to the bias-adjusted maximum likelihood estima-
tor is obtained under the assumed model. It consists of two parts. One is the loss
of information associated with the DLE of the parameter to be estimated. Another,
is that due to the “incorrectness’ of the assumed model. Some examples on the normal
and Weibull type distributions are given.
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1. Introduction

A previous paper by Akahira (1989) showed that in the presence of a nuisance para-
meter, the jackknife estimator has an asymptotic deficiency of zero relative to the bias-
adjusted maximum likelihood estimator (MLE) under true and assumed models. This
means that the estimators are asymptotically equivalent up to the third order in the sense
that their asymptotic distributions are equal up to the order »~' under the models. The
asymptotic deficiency of the MLE cr the jackknife estimator under the assumed model
relative to that under the true model is also given.

It is shown that there does not exist a uniformly third order asymptotically efficient
estimator in some class C. That is, the bound for third order asymptotic distributions of
the all estimators in the class C is not uniformly attained (e.g. see Akahira (1986)). In
the one parameter case Akahira and Takeuchi (1979, 1981) showed that, for any fixed
point, the discretized likelihood estimator (DLE) is third order asymptotically efficient
at the point in the class C. The second order asymptotic comparison of the DLE with
asymptotically efficient estimators was also made by Akahira (1990) in the double ex-
ponential case. In the presence of a nuisance parameter it is useful to consider the DLE
under the assumed model. It is interesting to clarify a structure of the assumed model by
comparison of the DLE and the MLE through the concept of asymptotic deficiency.

The useful results on the asymptotic deficiency are summarized as follows (see Aka-
hira (1986) for details). Let Xi, X3z, ..., X»,...bea sequenée of independent and identi-
cally distributed random variables with a density f(x, §), where ¢ is a real valued para-
meter. Under suitable regularity conditions, it can be proved that the maximum likeli-
hood estimator (MLE) 8% of 6 is asymptotically expanded into the form
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. 7 1 1
N (0:—9)=—I—+:/7—Qo+0p<ﬁ> )

and that for any asymptotically efficient estimator 6» which admits the same type of
expansion

N (0 —0) =—Zfi+:/%Q+op<7%>

we have V(@)= Vs(Qo), where Qo=05(1), @=05(1),

and

so that 8#* has the same asymptotic bias as 6« up to the order #~* and
— — 4 1
P/ 7103 — 01502 Ponl/ 7 =01 <o

for all £>0 and all 8. Moreover, if m» is defined so that the bias-adjusted MLE é:,“,,’f
(with @F) based on the sample of size ma has the same asymptotic distribution as that of
the estimator #a (with Q) based on the sample size # up to the order 7!, we have

(1.1) Bim (n— 1) = I{V o(Q) — Vo(Q%)} .

e
The left-hand side of (1.1) is called the asymptotic deficiency of bx relative to 03* (see
Hodges and Lehmann, 1970, and Akahira, 1986). It is noted that the right-hand side of
(1.1) does not necessarily mean the difference of the variances of the estimators, but of
the asymptotic variances. Hence we do not need to bother about the remaining terms.
The above results can be extended to the presence of nuisance parameters.

In this paper, in the presence of a nuisance parameter, the asymptotic deficiency of
the DLE relative to the bias-adjusted MLE is obtained under the assumed model. It
‘consists of the losses of information on the parameter to be estimated and due to the
“incorrectness” of the assumed model. Some examples on the normal and Weibull
type distributions are given.

2. Notations and assumptions

Suppose that Xi, ..., X» are independent and identically distributed (i.i.d.) real
random variables with a density function f(x, 6, £) with respect to a ¢-finite measure g,
where 0 is a real-valued parameter to be estimated and £ is a real-valued nuisance para-
meter. We assume the following conditions (A.1) to (A.5).

(A.1) Theset {x: f(x, 6, £) >0} does not depend on § and &.
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THE STRUCTURE OF THE ASSUMED MODEL 21

(A.2) ~ For almost all z[u], f(x, 0, &) is three times continuously differentiable in £ and £.
(A.3) For each ¢ and each §

0< Ioo(6,£) = E[{ls(6,£,X)}*] = — E[loo(6,£,X)] < o0,
0<In(6,8)=E[{L(6,£,X))]=—E[lu(0.£,X)] <o,

where £0(0,€,2) = (0/00)1(0,E,x), 1oo(0,£,%) = (0%]06%)L(6,£,x),
5(0,€,x)=(3/08)4(6,£,x) and [1(68,£,x) = (0%]0&%)1(0,€,2) with [(0,£,x)=log f(x,6,£).
(A.4) The parameters are defined to be “orthogonal” in the sense that
Elln(0,6,X)]=0
where  lo(0,§,2) = (0*/3008)1(6,8,x).
Note that the condition (A.4) is not necessarily restricted, because otherwise we can

redefine the parameter 7= g(6,£) so that we have the above orthogonality.
(A.5) There exist

Jooo=E[ln(0,8,X)h(0.6,X)], Joor=E[lno(6,§,X)1:(6,§,X)],
Joro=E{l(0,£,X)0(6,£,X)], Jou=E[lo(0,£,X)1:(6,5,X)],
Jue=E[lu(0,£,X)(6,,X)], Kow=E[{(0,£,X)}*],
Koor=E[{lo(6,£,X)}0:(0,£, X)),
Moovoo=E[{loo(0,,X)}*] —TIt,
Mooor = E[loa(6,€,X)101(0,€,X)],
Mo =E[{In(6,6,X)),

and the following holds.

E[Zuuo(ﬁ,g,Xﬂ = —-3]000—Kcoo, E[lm(é),g,X)] = — Jouo,
Eloi(6,£,X)) = — Jou,

where  looo(0,£,2) = (0°)00°)(0,£,2), loo(0,£,2) = (0°/06%0E)L(6,£,%) and Lou(6,E,x) =
(9/060E2) (6., ).

From the condition (A.5) it is noted that Kooi= — Joro— Joor. We put
= (1 7) S el6, £, X3, Zi=(1v 7)) (8, &, X4,
=1 i=

Zoo= (1/»\/-7;) é{loo(@, g, Xi)+[oo} B Zo1= (1/«/72 ) é 01(19, g, Xz) .

3. The discretized likelihood estimator under the assumed model

In Akahira (1989) the asymptotic deficiency of the jackknife estimator relative to
the bias-adjusted maximum likelihood estimator under the true model where 6=06, and
£=¢o and the assumed model where 6 =60, and £=0 was obtained. In this section we
calculate the asymptotic deficiency of the discretized likelihood estimator relative to
the maximum likelihood estimator. Henceforth, for simplicity we denote by (8,§) and
(6,0) the true model (6o,£o) and the assumed model (6, 0) omitting subscript 0, respec-
tively. We assume £=£/~/% under the true model (6,£).

Let fxz be the maximum likelihood estimator (MLE) of ¢ based on a sample Xy, .. .,
X of size n under the assumed model (4, 0). Then we have the following.
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Tureorem 3.1.  Assume that the conditions (A.1) to (A.5) hold. Then, under the
assumed model (0,0), the MLE Oz of 6 has the following stochastic expansion.

— s Zo , 1 1 1 1
N (HML-—-@)=ET77Q0+77(L—0)+—7;R0+OD<%) ,
where
1 000 } b3
Q0=E<Zoo.20~§i—-2—%—§mz5> )
_ b Jo _ Jo
L= Ioo< To Z"”Z‘”)’ = ol

and Op(Ro)=1, and op(-) is taken under the distribution P, . with the density f(x,0,§).

The proof is omitted since the theorem and its proof are given as Theorem 4.1 in
Akahira (1989).

In Akahira and Takeuchi (1979, 1981) and Akahira (1986), the discretized likelihood
estimator was defined. In a similar way to those we define it as follows: A +/n-consistent
estimator értzén(Xx, ..., X») based on a sample (X1, ..., Xu) of size # is called a dis-
cretized likelihood estimator (DLE) of 6 if, for each real number 7, 0 satisfies the dis-
cretized likelihood equation

j§11(éf+rn—!/2, 0, Xi)— éll(éi‘, 0, Xi)=an(02, 0,7) ,

where ax(0,£,7) is a function of § and &, and also dependent on # and 7. The function
as(0,&,7) is not now defined but will be determined in the sequel so that the solution ob-
tained in the above equation will be k-th order asymptotically unbiased, i.e., E,,(f%)
=0-o0(n"**. A concrete construction of such a function ax(6,£,r) will be given in the
proof of THEOREM 3.2. Note that the DLE depends on 7. In the one parameter case
it is shown in Akahira (1986) that the DLE has an asymptotically best property at the
point depending on 7 in the sense that its asymptotic distribution attains the bound for
asymptotic distributions of estimators in some class at the point up to the order o(1/xn).
A related result will be given from the viewpoint of the concept of asymptotic deficiency
in Remark 3.2. We further assume the following condition.

(A.6) For given function ax(6,§,7)

n

SO+, 0, Xy — 3106, 0, Xi)—a(6, 0, 7)
=1

=1

is locally monotone in ¢ with probability larger than 1—o(n™). .

The motivation for the definition of the DLE is the following. When we test the
hypothesis §=0c+rn="%, £=0 against §=0,, £=0, the most powerful test is given by
rejecting the hypothesis if

SHOo+rn12 0, Xi)—

=1 i

10,0, X:)<en ,

n n
=1

for some constant k.. Hence if an estimator #7 is defined so that the event 78, is equi-
valent to the above inequality (at least asymptotically up to some order), then 4" is effici-
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THE STRUCTURE OF THE ASSUMED MODEL 23

ent (asymptotically up to some order) for a specified choice of 7.
Let C’ be the class of the all bias-adjusted best asymptotically normal estimators
by which are second order asymptotically unbiased and asymptotically expanded as

— Zs 1 1 1
'\/’}Z (0;&—6)=m+*7Q+;R+09<‘}‘7’> ,

where @ =0,(1), R=0,(1) and the distribution of ~/%(fx—08) admits the Edgeworth ex-
pansion up to the order »~'. If an estimator b4 belongs to the class C’, then we call it

C’-estimator.

Now we obtain the stochastic expansion of the DLE under the assumed model (6, 0).
The following additional assumption is made.

(A.7) ]011::0 and ]00120 .

The condition (A.7) is necessary to adjust the bias due to the “incorrectness” of the as-
sumed model up to the second order through the function as(0, £, 7). The condition
Jo11=01n (A.7) holds true if, for example, § is a location parameter, i.e., f(x, 8, §) =fo(z—6,
&) a.a.x[p) and fo(x, £) has the symmetric property, ie., fo(z, &) =fi(—=, §) aa.2[u)
Here, in the case when f; with respect to the Lebesgue measure x has the'above property,
a sufficient condition for Joot=0 is the following:

(3.1) Sl{(a/aﬁ) log fo(x—0, £)H(0/08)fs(x—0, §)ydp=0,
and

C (0/08)fo(x—0, ) _
(3.2) lgglmfo(af%, £) 50,0 =0,

where fi(x, §)=(0/0x)fo(x, §). Indeed, since

loo = (52/652) logfo(x*ﬁ, g) - (37 s g) {fﬂ(w s é) %-:

Flo—8,8)  Ufa—6,
b= (0)08) log fa—0, §)=-PIBEE 8
it follows that
(33) Jom=E(loon)=g7%0—%§)—(8/6§)ﬁ(x 6, E)dn
J{B g ovaie-a e

From (3.1) to (3.3) we have

Joor=E (lools) = S(a/ae) 0g folz—0, EYH(8/0F) fo(x—b, £)}dpu=0

Then we have the following.

THEOREM 3.2.  Assume that the conditions (A1) fo (A7) hold. Then, under the as-
sumed model (0, 0), the DLE @y, of 6 has the following stochastic expansion.

—345—



24 J. JAPAN STATIST. SOC. Vol. 23, No.1l 1993

Zo 4 ]oou _1_ % i)
\/77«(091,—(9) Ioo 9[00»\/% <Z°° oo ZO>T«/7LT~/%(Q0— )+nR°+0p<n ’

where L and Q. are given tn THEOREM 3.1, Rf=0,(1) and a= —/(Joo+Kooo)[(2]%).
Further the asymptotic deficiency Dilu, 7) of the DLE 85, relative to the bias-adjusted MLE
0%, in C' under the asswmed model (6, 0) is given by

(3.4) De(u, 7) —”:—Z;E-<7—}-:72}%> (Zoo M 0000 — J00) — IooMoom—]ooo]om)

so that the DLE 8%, has the same asymptotic distribution as the bias-adjusted MLE 33“

at a point u up to the ovder n™*, 1.e.,
Py {~/1To0 (00 —0) Sut(cofn)} = Po.o{/1loo(0% . —6) <u}+o0(1fn) ,

where

co=n/Tvo (¥ — p2) — =5 (LooMoooo— Jiw) with pe=E(Ro) and p¥=E(R{) .

Ib/?

The proof is given in section 4.

ReMARK 3.1. In THEOREM 3.2, the asymptotic deficiency (3.4) can be interpreted
as follows. The asymptotic deficiency consists of two parts. The first term of the RHS
of (3.4) is the loss of information associated with the DLE of the parameter to be estimat-
ed. The second term of the RHS of (3.4) is that due to the “incorrectness’” of the as-
sumed model. Indeed, the loss of information associated with any statistic 7T=7(X.. . . .,

X=) is given by

(3.5) E[V<2 log f(X+, 6, ) l ﬂ
iz a6
where V(-|T) denotes the conditional variance given T (see Fisher (1925) and Rao (1961)).
A straightforward calculation of (3.5) with a stochastic expansion of the DLE yields the
first term of the RHS of (3.4). In a similar way, it can be also shown that the second
one of (3.4) is derived from (3.5) under the assumed model.

CoROLLARY 3.1.  Assume that the conditions (A1) to (A.6) hold. Suppose that Jeoi=0
and 0 1s a location parameter, i.e., f(x, 0,8 =f(x—0,§) a.a.x[pu] and fo(x, E) has the sym-
metric property, i.e., fol®, ) =fi(—x, Ea.axu). If E=t/~'n, then, under the assumed
model (0, 0), the stochastic expansions of the DLE 8y, and the MLE 8y, are given by

Zo 1

— ' 1
x/n( L™ ) Too T\/%*LT\/;;QOT ZIOM/———-ZM—-;— Ro —;—0,;(") ,

— A A 1 1 1 1
v (‘91“_“9) =7£+TJL+77Q:+ZR°+OP<;> )

where L, Ro and R¥ are given tn THEOREMS 3.1, 3.2 and QFf =ZoZoofIs. Further, the
asymptotic deficiency Dei(u,v) of the DLE velative to the MLE undey the assumed model
8, 0) 1s grven by
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De(u, 7)= 4],00 <7+\/1 >Moooo

so that the DLE 0%, has the same asympiotic distribution as the MLE 8. at a point w up
to the order n™t, 1.e.

Py {1vo (651 —0) Sut(ci n)} = Py A~/ nT00 (Ba—0) <u}+o(1/n)

where

=T ( 2) 4[3/" ———M o000

with pe=E(Ro) and uf=E(Rf).

The proof is given in section 4. It is noted that the symmetric property of f, im-
plies unnecessity of a bias-correction of the MLE.

REMARK 3.2. When #=—7+"Io0, under the same conditions as in COROLLARY
3.1, the asymptotic deficiency of the DLE 8}, relative to the MLE 4, is given by

(—7’«/100 7)= —-—TMoooo<0
®

Since the value is non-positive, it is seen that the DLE 5, is asymptotically better than
s at w=—r~"Too up to the order o(1/n).

4. Examples

Under the previous framework, we now give examples on the normal and Weibull
type distributions.

ExampLE 4.1. (Normal case). Let X, ..., X» be iid. random variables with a

normal density function

filz—6, &)= M}

V2r(E+T) (§+1) { 2(5+1)
for —oo < <Coo; —oo<<f<<oo, —1<f. Since £=t/~/n, it is noted that
Tow=TIn(0, §)=TIun(0, 0)+o0(1)=1/(§+1)+o(l)=1+0(1),
Eo[l50(6, & X)]=Eola(0, 0, X)]+0(1) =1/(§+1)*+-0(1) = 14-0(1)
hence
Mooso=Mooo(8, £) = Maooo(6, 0)4-0(1) = 1--o(1) .

Then it follows from CorROLLARY 3.1 that the asymptotic deficiency of the DLE rela-
tive to the MLE under the assumed model (6, 0) is equal to 7(r-2u)/4+4-0(1).

ExampLE 4.2, (Weibull type case). Suppose that Xi, ..., Xu are iid. random
variables with a Weibull type density function
B ]x——& -

5
2E+ DI (a4 1)) | E+1 eXP{* 1 } ’
for —o <z <o) —o<h<oo, —1<f, 0<a, 0<f. Since £=t/+/ 7, it is noted that

folz—0, &)=
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(4.1) Too=TIua(6, &) =I00(6, 0)+0(1) = —%——3% +pAle—1)}+o(1)

and for >3
Eq[{lo(0, &, X) ] =Es:[{ln(8, 0, X)}*]40(1)

L{(e—=3)Ih) ( .., .
ZW{OC Fafe—3)(f*—1)+(@—3)(B—1)*(f—3) +o(1)

hence
(4.2) Moooo(8, £) = Moooo(0, 0)+0(1)

_ ((GL 3)/;5) 24 2 (g — R Y7
T((a+1)/p) {e?a(a—3)(f*—~1)+ (a—3)(F—1)*(f—3)}
Tle=1IE) )"y g 1ive
N 5 Terlig) (HAe— ol
for «>3. A restriction on « and £ yields from the condition Jee:=0 in (A.7) as follows.
Since

& ﬁ(ﬁ—‘l) EEE
100(6, €)=— (.Z‘w@)z — (€+1)ﬁ ‘x—~6[ s

_000C  a B g
T R

it follows from the assumption {=1¢/+/ n that

43)  Jon(6, £)= Jus(6, 0)+o(1)
=Eq,o[{—%—ﬁ<ﬂ—l>ixv-2}(—1-a+mm}+o<1>
=alart )Bus g7 )~ B K1) 4 (et DA~ DEwa(1X 1)
—BB—DEIX ) +o(1)

where C;= FH2(E+ 1) T (o4 1) [B)).

Since

; Ean(x s = 2= DL Ma=1)ip)

1\ I(fe—1)
E“(v)“" By’ AT((@1)/p)

Eoo(| X% =

it follows from (4.3) that
Joor={I((a=1)/B)[I((a+1)[B)H2e— (2 —1) (f—1)(B—2) }+-0(1) .
Hence Joo: =0 if and only if 26— (a—1)(f—1)(f—2) =0, i.e.,

(f—=1)(—2)
(f=1)(f—2)—2

oL =

Further, a>3 if and only if
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THE STRUCTURE OF THE ASSUMED MODEL 27
(B—1)(f—2)
4.4 a=
(4.4) F—1)(f—2)—2

Therefore it follows from CoroLLARY 3.1 that the asymptotic deficiency of the DLE 3,
relative the MLE 8, under the assumed model (6, 0) is equal to the value

. 2u
4100 (7 «/Ioo)Mouoo ’

where Too and Moo are given by (4.1) and (4.2) with parameters o and f satisfying (4.4).
If, in particular =0 and f=2, then the density fi(x—0, £) is a normal one with mean
6 and variance (£+1)*/2, which is reduced to Example 4.1. If «=0 and £>1, then

Jon = B(A—1)E[IX 1] = (8~ L) E1X1**)+0(1) = — B(B—1) (B—2) I((S— 1) [A) T(LI) .

hence Jon =0 if and only if f=2, i.e., the normal case.

and 3</J’<it§-/-§.

5. Proofs

Here, the proofs of the theorem and the corollary in'section 3 are given.

ProOF OF THEOREM 3.2. Let #» be the DLE of 6 under the assumed model. By
the Taylor expansion around the true value (8, §), we have

(5.1) ﬁé o(B, 0, X2)
2:/}70.112( "”X’)‘*‘ Zloo( ,«;.,A)\/”( )
%é 01((9 £ X )«/77 Et—7— o N/—~ 21000( JE X {.\/vn (0,,_9)}
1

4 NI 21011(6 £ X )ngz \/7—1 Eluoz(@, £, Xz)n(én—9)§+op<J1;Z—>

_ zo+7=(zoo—~/moo)~/‘ﬁ(@n—@) ~j~201¢%g

g 8o Ko/ 7 () — L
]010 1

-+““%@w—®€+m<J%>.

In a similar way to the above we obtain

52 < Se(ds, 0, X@:%;\f_‘,zoo( JE X+ j_ S lss(6, £, X/ (5—06)

i=1

. - | _l_
n«/v ZZJ"“( 2 AL)*/”g'TOp(\/;)

1 —_—a
:N/_ﬁ-Zoo‘*Ioo—';77(3]ooo—{—Kooo)~/ 7 (Gn—0)

1 — 1
+\/%~]010«/%g+09<77> ;

=
o
Rlv—*

(5.3) — 2 Looo(0n

" i=

é booo(6, &, X1)+0p(1) = — (3 Jooo+ Kooo)+0n(1) .

bv*
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Since the DLE 4, satisfies the equation

INE

Ubn4rn=7%, 0, Xo) — S10(6n, 0, Xs) =an(ba, 0, #)
i=1

1

and £=t/~% , it follows from (5.1) to (5.3) that

(54) lln(én, O, 7’)

:rzo+:/%(zoo-\/woo)\/%(én*9)—:/f%zm
~—?‘——‘*‘<3]000+K000){«/7’L—(én—(9)}2“3%—']011+%]010J7(én“0)
s 2‘/*-— ——==Lo— Ioo 2~/— (8 Jooo+Kooo)s/ 7 (9n-——5)

7%

L oo jWQMWKw+w@%)

If an(8, &, 7)— (Lo07*[2) = 0(1), then, putting Tu=+"7 (én"—ﬁ), we have from (5.4)

B 1 Zo 1

O) Th=— Toor an(ﬁn 0 1’)+Iou +mZuoTﬂ— Ioo«/
1 e ,

2[()%/% (3]000—-}—]{000) 21,00‘\/—1—,[]011-1— IOO‘\/—;ZTJMOTn

Z()l

(5.

» " vt
T o G T s Bl o Tt e o

GIO(:/ (3 J 000+ Kooo) TO”<\/ln >

=~ anl0, £ )= | (5enl6. €1 T pen(6. £.0) )}

Zo v 1
T~ 2TL,W/"Z°Z°° Im/”n‘z"‘ BT (S omnt Kow) 2o

t* s L‘]ow
- 2]00«/7 Jout Ioo«/nZO+

+ 72 1
2[00«/% ]010 61 «/ (3]000—;—K000)+0P<ﬁ> i

3 oo Koo} Zo

v
zzoofn‘z o 21&#7 (

Since

To

ian(ﬁ, g, 7’) = ? { 0 100(9 g)} 0(1): —%{2]000(6, g)—{—Kooo(ﬁ, g)}‘*—()(l)

30 36
%2]000TK000> o(l) (say);
%ﬂn(@,é,?’)= 1;{ 8‘2100(5 g)} o(1) = 52 oxo(6, £)+ Kun(6, E)-+o(1)

———2——(2]01o—|—-K001)+0(1) (say)
= _ZZi(fom—]om)—i*OQ) ,

putting an(6, £, #) = — (Too#?/2) (b~ 7 )+0(1)~/ %), we have

—350~



THE STRUCTURE OF THE ASSUMED MODEL 29

b . Jow 3 Jooo+ Koo £ Jou 7*

68 Bl =y Y /w2 n 2hedn  6ludn

(3Jooo+Kaoo)

™ 22{«0}1% ' 0<J7z>

In order that E(T»)=0(1/~/ %), from (5.6) we take as b the following:

]ooo ]000+Kooo ) Jou . _1_ . Jon .
b= Too 2700 T 71——6(3]000+K000)7 "T“"‘z—"’ﬁ.

By the condition (A.7) we have

B7)  an(6, & r)=—

]oo 2 e i]ooo%—Kooo
2 N

1 1
57w ——6“(3]000—1,—]{000)7’2} —{—0(——-——\/;) .
From (5.5) and (5.7) we obtain

_ J o004 Koao . 15 < Jowo > 4 < Jooo >
Tn= 2130¢92 Wi Ky S T vl S
3]000+I{000

s (L
e T e ) R o

_gi 4 ]ooo _1_ l_ 1
=T —}————-———2[00\/—7;<Zoo—— Zo) «/7@_ MRQ +0p<n) )

where a=—(Joo+Kooo)/(2]%) and RiF=0p(1). From THEOREM 3.1 we see that the
stochastic expansion of the bias-adjusted MLE B is given by

— A Zo 1 1 1 1
0 = —— — —— — —IXo i — 1 = .
'\/'ﬂ( ML 0) Too +«/%L+~/” (Qo d)~f—-nR —r0p<n> with R Op(l)
It is seen in a similar way to THEOREM 2.3.1 in Akahira (1986) that for — oo <u<co

Py A/ 7T 000, —0) <t (cofn)} = Py, o{~/nl0o(0% . — ) Su}+o0(1/n)

if and only if the asymptotic deficiency D:(u, #) of b, relative to 8%, is given by

(5.8) Dt(u,y)zzoo{v< <Zw—]°°" o>+L+Qo—a>—V(L+Qo—a)}

2[00 IOO

o el 10

_E[ZO(L+Qo—a)2]} ,

where Co’:‘\/.—[-o-o—(ﬂ;k"*ﬂg) I5/2 (IooMooog-]goo) with lUﬂ—E(RO) and /X;‘=E(R3‘), and V(')

denotes the asymptotic variance (see also Akahira, 1991). Since

E{Zow(L+Q0)]= —*I%O-(Iooﬁfoom~]ooo]0w)-'rO(l) ;
E{Zo(L+Qu)]=0(1),

it follows that
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(5.9) V< <Zoo Jovo zu) L4 Qom >~V(L+Qo—a)
2Tn Tw

etz fol s

<Mom s o ) +—LE[2M(L+QU)]— Al §°° E[Zo(L+ Qo))

4I

([ooMeooo-—]ooo) (IocMaom——]oeo_]mo) o(1) .

4[00 [3

Since

E[Zu(Zoo—J;): >}_~0(1);
[a(zoo—]"“ o)(L-{—Qoma)}—;

ol pan s )

IO() IUO ]00
+—1,—E[(zoz.,o— ] Z§> (ZOZOO—MzzH
00 Ioo 2100
__l_. o7 3]000—;—K000 s
Jooo s J000(3 J 000+ K o00) . } '
L ) 4 LBl Koon) gzl o
Iﬁg (Ioonoo—]oco)+0( ) ,
it follows that
(5.10) E[zi (zow Jooo zo> Lt Qo )} ] —E[Zo(L+Qo—a)*]
2700 Too
= (TuMomo— Jio)+0(1) .
From (5.8) to (5.10) we see that
2
Da(%, 7’) < +\/7; )(Ioozwtmao“]ooo (IOOMOOOI""JUDOJGIO +0( ) s

which completes the proof.

ProoF of COROLLARY 3.1. Since the density function has the symmetric property,
it follows that Jeoo=Kovo=Moeer=0. Hence the conclusion easily follows from THEOREMS
3.1and 3.2.
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