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A HIGHER ORDER LARGE-DEVIATION
APPROXIMATION FOR
THE DISCRETE DISTRIBUTIONS

Masafumi Akahira* and Kunihiko Takahashi**

For a sum of independent discrete random variables, its higher order large-
deviation approximation is discussed. An approximation to the tail probability of
the distribution of the sum is provided, and its numerical comparison with other ap-
proximations is done in the binomial case. Consequently, the approximation formula
is seen to be more accurate.

Key words and phrases: Large-deviation approximation; Edgeworth expansion; Sad-
dlepoint approximation; Binomial distribution.

1. Introduction

In the higher order asymptotics, the Edgeworth expansion for the distri-
bution of statistics is very useful to compare statistical procedures like estima-
tors and tests (see, e.g. Akahira and Takeuchi (1981), Pfanzagl and Wefelmeyer
(1985), Ghosh (1994)). On the other hand, the large-deviation approximation
plays an important role in the asymptotic efficiency of tests (see, e.g. Bahadur
(1971) and Bucklew (1990)).

Recently, the higher order large-deviation approximation for the distribution
of the sum of independent discrete random variables was discussed by Akahira et
al. (1999). The approximation is closely connected with the saddlepoint approx-
imation (see, e.g. Daniels (1954, 1987), Lugannani and Rice (1980), Barndorff-
Nielsen and Cox (1989), Jensen (1995)).

In this paper, a higher order large-deviation approximation to the tail prob-
ability for the distribution of the sum of independent discrete random variables
is given. A numerical comparison with others, including the saddlepoint approx-
imation, is done in the binomial case. Consequently, the higher order approxi-
mation gives sufficiently accurate results.

2. The large-deviation approximation

In this section, the higher order large-deviation approximation in Akahira
et al. (1999) is summarized as follows. Assume that X, Xo,...,Xn,... is
a sequence of independent integer-valued random variables and, for each 7 =
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1,2,...,n,..., X; is distributed according to a probability function
pj(z) :=P{X; =2} for z=0,%£1,%£2,....

Letting S, := Z?:l X, we denote a probability function of S, by

(2.1) pu(y) i= P{S =y}

for y = 0,£1,£2,.... We also denote the moment generating function (m.g.f.)
of X; by

(2.2) M;(6) := E[e]

for j = 1,2,...,n,..., assuming that M;(0)’s exist for values of 6 in an open

interval © which includes 0. Now, for each j, we consider a discrete exponential
family P; := {p;¢(z) : € O} of probability functions

(2.3) pjo(x) = Pp{X; =z} = pj(a:)eg‘”Mj(H)_l

for £ = 0,41,%2,..., where pjo(z) = pj(z). Denote a probability function of
Sp by

(2.4) Pho(y) = Po{Sn =y} (y=0,£1,£2,...)

for 6 € ©, where p}, (y) = pp(y).
From (2.1) to (2.4) we have

(2.5) pho(y) = pa(w)e® [ ] M;(6)~".
Jj=1

On the other hand, it follows from (2.2) that, for each j, the characteristic
function of X;, under the family P;, is given by

(2.6) [e"%4] Ze”zpjg M;(0) ' M;(0 + it).

Since, by (2.6), the characteristic function of Sy, under the families of {P;}, is

“S" ﬁ (0 + it H

j=1
we have by the Fourier inverse transform
n .
(2.7) P oy / H M;(0+ it) ] M;(0) et
=1 j=1
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From (2.5) and (2.7) we obtain

(28) pn =€ OyHM pnB

n n
_— H M;(6) - 5- / TT M0 + it) T M;(0)2e~va.
j=1 =1 J=1

Letting K, () := ;}:1 log M;(8), we have
n
(2.9) [ M;(6) = 5@,
j=1
From (2.8) and (2.9) we obtain
(2.10) paly) = eXn@-0v. 21 / efn 0+t~ Kn(O) =ity gy
T

For small |t|, we have the Taylor expansion
1
K (0 +it) — Kn(0) = KV (0)it + §K,(f)( )(it)? + 6K JO)(it)2 + -,

where K\ )( ) := (d*/d0*)K,(0) for « = 1,2, .... Then we consider an estimator
0 := 6(S,) for 6 such that
(2.11) KD () =y,

where S, =y fory =0,%1,£2,.... The following theorems are given in Akahira
et al. (1999).

THEOREM 1. If K,(Lj)(é) = 0(n) (j = 2,3,...), then the probability func-
tion pr(y) of the sum Sy, is asymptotically given by

. 45
1 Hn(6) -0y [1+ n (0)

Dn (y) = IQWKT(LQ) (é) 8{K7(12) (é)}z
5{K‘3’ (é)}? 1 }
(kP 6)) o (ng) '

THEOREM 2. IfKU)(O) = O(n) (1 =2,3,...), then

(2.12)

(2.13) P{S, >y} = oHn (6)~0y Ze—ez
27TK<2)(9)
~ [1 2 K (0)z
2K0(0) 2{K 2 0))?

n2

(4) 3 (3) 2
0 5K 0) 1
8{K (0))2 24{K£2’<é>}3+0( )]
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for ally > E(Sy).

The formula (2.12) is numerically shown to be sufficiently accurate in the
binomial and negative-binomial cases, and (2.13) seems to have an advantage in
comparison with others, including the saddlepoint approximation. In the next
section we try to improve (2.13) to get a more numerically stable and accurate
formula for the tail probability than (2.13).

3. A higer order approximation to the tail probability

First, we consider two estimators 0o = 00(S,) and 6 = 0x(Sn + k) (k =
1,2,...) for 0 such that

(3.1) K@) =y, KV(O) =y+Fk

when S, =y for y=0,+1,4£2,.... Foreach k =1,2,..., we put
(3.2) Ay =0, — bp.

Then we have the following.

THEOREM 3. If Ky(lj)(éo) = 0(n) (j =2,3,...), then the upper tail proba-
bility of the distribution of Sy is given by

o0 R ]{)2
(3.3) P{S, >y} =p;(y) ) exp {—kﬂo -
kzzo 2K (B)

(3) 4
Ky (60)k 1
2{Kn" (60)}? "
for all y > E(Sy), where pX(y) is given by (2.12).
PROOF. From (2.12) we have

1 Kn(60)—yfo

pn(y) = —e
\/ 27TK7(L2)(90)

~[1+ K9 (60) 5K (0 +O(1)}’

8{K (By) 2 24{ K (60)}3 n?
1 N R
p:(l (y + k) = = eKn(gk)_(y‘f‘k)Ok
2K, (B)

| KB (KD (0} 1
[1 ' BIKY (002 24{K\V (00)}? +o (ﬁﬂ
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for y =0,%1,4+2,.... Then we obtain
(3.4) log(py(y + k)/pil( )
= Ky (9k) Ko (f0) — {(y + k)0 — ybo}
- —{1og K2 (0r) —log K (60)}

KW

) (0)  B{KY (00)) 1

+los _1 ’ S{K” (6:))2  24{K(60))° o <"2 _

] Wil (KD (o)) 1]
log |1+ 8{K(2 ( 0)}2 24{Kr(12)(é0)}3 + 0 <n2>

Since, from (3.1),
k=KD (0r) - K“>(éo>

= KP(00) Ay + - K3>(90)A2+ K<4>(90)A3 ,
it follows that
k K (60)k?
Do) 2K (60))3
__EDG) | {ED )P } v
6{K\ (00)}  2{K (Bo)}®

(3.5) Ap =

which implies

R 1 R R
(3:6)  En(Bk) — Kn(do) = <1><90>Ak+§Ké2>(oo>A2+—Kﬁ3><eo>Ai+

1
6
1
= yAp+ = K 2)(60)AZ + O (-2-) .
n
From (3.2) we have
(37) k@k kieo + kAL,

and

1 A o
(3:8) 5{log K () —log K2 (00)}

1 [EP @y, 1 &“(%)_(xﬁ’(%))Q )
o [Kﬁ”(éo)AHQ{K#)(éo) K7y ) [T
K0 S{ER (00)) 1
Ol —
SEDG0P (KD 6P (n>

(3.9) log [1 +

45 (3) 2 D/
—lo n (00) . 5{Kn (0)} g( )(90) A o i
1g[l+8{f<ﬁ>(éo)}2 24{K?(0)}*] 1+ 9(bo) et <n2)
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where
KW (3) 2
o) = i 29;}2 i 254{{?7%2)((()9))}}3 -o3)
oV (6) = 0
_ KD _K“)(e) 20 5K (0)KS(0)  5{KL (6))
SKC (02 HED0)1  12{KP0P (KD (0))

From (3.4) to (3.9) we obtain

* (3)(g
R 1 R K7 (0
1ng = —kf — kA + =K (60) A2 — &Ak +0 < 12)
9 n

Ph(y) 2 K2 (6o)
hence
* N 1 %)
(B10) P+ k) = ph)exp { ki — ket GKEE)AL

K (60) 1
_—-—--——-2{K7(l2)(é0)} Ak + O <$> } .

Since, by (3.5),

it follows from (3.10) that

* ok A _ kg 7(13)(é )k 1
pn(y + k) = pn(y) eXp{ k6o 2K1(12)(é0) Q{K(2 ( )}2 +0 (nQ)} ’

which implies (3.3) from P{S, >y} = 2%, pi(y + k). O

In a similar way to the above we have a higher order approximation to the
lower tail probability of the distribution of S,. Indeed, we consider two estimators
6o = 00(Sy) and Oy = 0x(S, — k) (k =1,2,...) for 8 such that

KDy =y, KY(6) =y—k,

when S, =y for y = 0,£1,%2,.... Then we have

R K(?”(éo)k 1 }
Pay — k) = pa(y )eXp{kHO 2K P o) + NTECITRE +0 <n2> :
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COROLLARY. If Ky(lj)(éo) =0(n) ( =2,3,...), then the lower tail proba-
bility of the distribution of S, is given by

o0
. k2
(3-11) P{Sn < y} = p’,ﬁ(y) exp § kfp — ————
Z 2K7§LQ)(90)

k=0
B p
n (90)k5 i

for ally < E(S,), where p},(y) is given by (2.12).

4. Binomial cases

Suppose that X1, Xo,...,X,,... is a sequence of independent random vari-
ables and, for each j = 1,2,...,n,..., X is distributed as the binomial distri-
bution B(1,p;) with a probability function

fx,(x) = P{X; = 2} = pfq; ™"

for z = 0,1, where 0 < p; <1 and ¢; =1 —p;. Let Sp := 377 | X;. Then we
consider the large-deviation approximations (2.13), (3.3), the Edgeworth expan-
sion and the Lugannani and Rice approximation to the upper tail probability of

the distribution of Sy,. First, in a similar way to the binomial case in Akahira et
al. (1999), from (2.11) we take 8 = 6(S,,) such that

-3y

j= 1 pie? +q;
where S,, = y for y = 0,+1, %2, ..., hence

n
EQ(6) = Zpﬂb, EP(0) = pid;(d5 — py),
(4.1)
K{M(0) = ZMJ — 6p;;),

where p; = pjeé’/(pjeé +¢;)and g =1—-p; (j=1,...,n). From (4.1) we can
calculate the large-deviation approximations (2.13) and (3.3) to the upper tail
probability of the distribution of S,. Second, the cumulants of S,, are given by

n
pn = E(Sp) = ij, = V(Sn) = ijqy,
K3n = ’@3 ij%

Kan = ka(Sn) = ijQj(l — 6p;q;),
j=1
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Table 1. The exact values of the tail probability P{S, > y} of Sn, and the rela-
tive errors of its E-approx. (4.3) and its second order LD ones (2.13) and (3.3) when (i)
{p;};2, = 0.05(0.05)0.95, (i) {p;}32, = 0.03(0.03)0.60, and (iii) {pj}]zg | is uniformly dis-
tributed on the interval (0, 1), that is p1,... ,p20 are given by 0.305146, 0.715095, 0.612101,
0.672283, 0.447648, 0.268358, 0.434328, 0.552620, 0.608603, 0.130255, 0.941095, 0.141198,
0.164085, 0.693920, 0.565611, 0.977985, 0.0513902, 0.877854, 0.451323, 0.0628465, respectively
(see Tables 3.4, 3.5 and 3.6 in Akahira et al. (1999)).

(i) {p;}}2, = 0.05(0.05)0.95
y Exact(%) E-approx. LD (2.13) LD (3.3)

10 50.0000 0.0000 — -0.0029
11 29.0651 —-0.0000 -0.8356 0.0001
12 13.4452 0.0000 -0.2010 0.0009
13 4.7942 0.0004 -0.0627 0.0009
14 1.2761 0.0014 -0.0232 0.0007
15 0.2442 -0.0006 -0.0097 0.0003
16 0.0320 -0.0293 —0.0048 —0.0003
17 0.0027 0.2154 ~-0.0038 -0.0018
18 0.0001 — -0.0083 -0.0077
19 0.0000 — — —

(i) {p;}32, = 0.03(0.03)0.60

y Exact(%) E-approx. LD (2.13) LD (3.3)
7 45.0120 0.0002 — -0.0213
8 26.2247 0.0003 -0.9933 —0.0095
9 12.7076 —-0.0003 —0.2467 —-0.0043

10 5.0524 —-0.0032 —0.0840 —-0.0020

11 1.6288 -0.0067 —0.0346 -0.0009

12 0.4207 0.0005 -0.0161 —-0.0003

13 0.0859 0.0451 —0.0082 -0.0001

14 0.0136 0.1758 —0.0044 —-0.0001

15 0.0016 0.4772 —0.0026 -0.0001

16 0.0001 1.1191 —0.0018 -0.0003

17 0.0000 2.5290 -0.0017 —0.0008

18 0.0000 6.0939 -0.0025 -0.0020

19 0.0000 18.1006 —0.0076 -0.0073

20 0.0000 91.0675 —_— —

(iii) {p;}22, is uniformly distributed on the interval (0, 1)
y  Exact(%) E-approx. LD (2.13) LD (3.3)

10 53.7097 -0.0002 — -0.0059
11 32.6462 —-0.0003 — -0.0010
12 16.0033 0.0001 ~-0.2793 0.0005
13 6.1365 0.0012 -0.0836 0.0008
14 1.7877 0.0023 -0.0306 0.0006
15 0.3836 -0.0014 -0.0129 0.0003
16 0.0585 —-0.0307 ~-0.0061 -0.0000
17 0.0060 0.1676 -0.0036 -0.0006
18 0.0004 -0.7757 -0.0032 -0.0018
19 0.0000 S -0.0067 -0.0062
20 0.0000 S — —
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Table 2. The exact values of the tail probabilities P{S, > y} for y > E(S,) and P{S, < y}
for y < E(Sy), and the relative errors of its normal approx. the saddlepoint approx. with the
first term only, the saddlepoint (sp.) expansion, the L-R approx., and the LD approx. (3.3)
and (3.11) when p; =p =015 (j =1,...,n) forn=10,20and p; =p =05 (j = 1,... ,n)
for n = 10. The values except the LD approx., are referred from Table 2.4.4 of Jensen (1995,

page 44).
(i) n =10, p=0.15
Y 1 2 4 5 8 9
Exact(%) 54.43  45.57 500  0.987 867x107* 3.33x10°°
Normal -0.081 0.097 -0.234 --0.601 —-0.994 -1.000
Saddlepoint -0.251 -0.137 -0.050 —0.035 -0.007 0.021
Sp.-expansion 0.050 0.004 0.004 0.005 0.010 0.024
Lugannani-Rice 0.051 0.004 0.008 0.013 0.038 0.081
LD (3.3), (3.11) -0.008 -0.069 -0.008 -0.003 -0.002 -0.006
(i) n =20, p = 0.15
Y 1 2 6 8 18 19
Exact (%) 17.56  40.49 6.73 0.592 2.07 x 10711 3.80 x 1013
Normal -0.010 -0.069 -0.128 -0.591 -1.000 -1.000
Saddlepoint -0.150 -0.196 -0.043 -0.027 0.010 0.039
Sp.-expansion 0.055 0.021 0.001 0.002 0.005 0.021
Lugannani-Rice 0.065 0.023 0.003 0.005 0.039 0.084
LD (3.3), (3.11) -0.006 0.018 -0.010 -0.003 -0.004 -0.006
(i) n=10,p=0.5
Y 1 2 3 4
Exact(%) 1.07 5.47 17.19 37.70
Normal 0.252 0.040 -0.003 -0.003
Saddlepoint -0.047 -0.090 -0.116 -0.149
Sp.-expansion 0.047 0.020 0.013 0.008
Lugannani-Rice 0.075 0.032 0.017 0.009
LD (3.11) -0.007 0.000 0.001  -0.003

it follows that the Edgeworth expansion of the distribution of S, is given by

Sn = Hn t— pin
= —— (1) {1+ —as (57— 3y) + o (y* — 6%+ 3)
vV Un 61}731/2 24'U721 (
3 1
\T 6 4 2
-1 4 — 15 —
T3 W T 18y + 45y~ 15) +O<n\/ﬁ)’
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where y := (t — pn)/\/Un. From (4.2) we have

(4.3) P{S, >y} =1—-2(2) + ¢(2)
K3n Kd.n
{ n( D g (= 82)
K’3,n 5 3 _ 1 l
+72U%(z 10z” + 152) 24vnz+0<n)}’

where z = (y — 0.5 — pn)//Vn.
Third, the Lugannani and Rice approximation to the upper tail probability

of the distribution of S,, based on the i.i.d. sample (X1,...,X,) is given by

where

2 :2n{%log (%%) ”IOgI__‘l_—(—il%j}’

j\:\/ﬁ{la%/%} 20

Now, we compare the Edgeworth approximation (E-approx.) (4.3), the sec-
ond order large-deviation (LD) ones (2.13) and (3.3) to the upper tail probability
of the distribution of S,,. As the numerical result, the LD approx. (3.3) is more
accurate than the LD one (2.13), and (3.3) is not so worse than the E-approx.
even in the central part of the distribution of S, (see Table 1). Further, compar-
ing the LD approx. (3.3) and (3.11) with some approximations in Jensen (1995),
we see that (3.3) and (3.11) seems to be more accurate than the others in the
numerical calculation (see Table 2).

REFERENCES

Akahira, M. and Takeuchi, K. (1981). Asymptotic Efficiency of Statistical Estimators: Concepts
and Higher Order Asymptotic Efficiency, Lecture Notes in Statistics, 7, Springer, New York.

Akahira, M., Takahashi, K. and Takeuchi, K. (1999). The higher order large-deviation approxi-
mation for the distribution of the sum of independent discrete random variables, Commun.
Statist.—Theory Meth., 28(3&4), 706-726.

Bahadur, R. R. (1971). Some Limit Theorems in Statistics, Regional Conference Series in
Applied Mathematics, SIAM, Philadelphia.

Barndorfl-Nielsen, O. E. and Cox, D. R. (1989). Asymptotic Techniques for Use in Statistics,
Chapman and Hall, London.

Bucklew, J. A. (1990). Large Deviation Techniques in Decision, Simulation, and Estimation,
Wiley, New York.

Daniels, H. E. (1954). Saddlepoint approximations in statistics, Ann. Math. Statist., 25, 631-
650.

Daniels, H. E. (1987). Tail probability approximations, Int. Statist. Review, 55, 37-48.

Ghosh, J. K. (1994). Higher Order Asymptotics, NSF-CBMS Regional Conference Series, Prob-
ability and Statistics, 4, IMS, Hayward, California.

NI | -El ectronic Library Service



The Japan Statistical Society

LARGE-DEVIATION APPROXIMATION 267

Jensen, J. L. (1995). Saddlepoint Approximations, Clarendon Press, Oxford.

Lugannani, R. and Rice, S. (1980). Saddlepoint approximation for the distribution of the sum
of independent random variables, Adv. Appl. Prob., 12, 475-490.

Pfanzagl, J. and Wefelmeyer, W. (1985). Asymptotic Expansions for General Statistical Models,
Lecture Notes in Statistics, 831, Springer, Berlin.

NI | -El ectronic Library Service



