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The role of chiral symmetry in many-body states of graphene in strong magnetic fields is theoretically studied
with the honeycomb lattice model. For a spin-split Landau level where the leading electron-electron interaction is
the nearest-neighbor repulsion, a chiral condensate is shown to be, within the subspace of the n = 0 Landau level,
an exact many-body ground state having a finite gap, for which a calculation of the Chern number reveals that
the ground state is a Hall insulator with a fopological degeneracy of two. The topological nature of the ground
state is shown to manifest itself as a Kekuléan bond order along armchair edges, while the pattern melts in the
bulk due to quantum fluctuations. These can be regarded as a realization of the bulk-edge correspondence that is
peculiar to a chiral-symmetric system. We have also obtained the ground state when point defects are introduced
in the honeycomb lattice to reveal how the presence or absence of the chiral symmetry affects the defect states.
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I. INTRODUCTION

While the physics of graphene started from the one-body
electronic structure as a Dirac fermion, a possible relevance of
electron correlation in graphene has been intensively studied
after a gap opening in the n = 0 Landau level (LL) was
experimentally observed in strong magnetic fields."™ Since
it is difficult to explain the gap within a simple one-body
problem, considerable theoretical efforts have ensued to
clarify many-body effects in graphene quantum Hall (QH)
systems.s’18 However, little attention has been paid on how
many-body effects should reflect the chiral symmetry in the
graphene QH regime, which is, after all, a fundamental
symmetry inherent in graphene’s honeycomb lattice. On the
one-body level, the effects of chiral symmetry in graphene is
well understood: To start with, the symmetry guarantees the
emergence of doubled Dirac cones in the Brillouin zone, which
can be interpreted as a two-dimensional analog of the Nielsen-
Ninomiya theorem that is well known in four-dimensional
lattice gauge theory. We can even examine the wave functions
in terms of the Aharonov-Casher argument, which states that
chiral symmetry topologically protects the degeneracy of the
n = 0 LL against random gauge fields.!® A similar situation
occurs for ripples in a graphene sheet, which can be modeled
by random hopping amplitudes. Kawarabayashi er al. have
shown that the n = 0 LL exhibits an anomalously sharp (delta-
function-like) density of states (DOS) as soon as the spatial
wavelength of the ripple exceeds a few lattice constants.>’

In the presence of electron-electron interactions, on the
other hand, the role of chiral symmetry has been investigated
primarily in zero magnetic fields in the context of spontaneous
symmetry breaking.®?!=2> While these studies mainly employ
a Dirac field model in a continuum space to discuss many-body
gap formation, such an effective treatment may well overlook
the essence of graphene’s chiral symmetry, which is intimately
related to the underlying honeycomb lattice.

With this background, we shed light in the present paper on
how the chiral symmetry influences the many-body problem in
the graphene QH effect, by fully taking account of the lattice
structure. We first examine the many-body problem with exact

1098-0121/2012/86(20)/205424(6)

205424-1

PACS number(s): 73.22.Pr, 71.10.Fd, 73.43.—f

diagonalization in a subspace projected into the n = 0 LL.
Working on the subspace enables us to classify many-body
states according to a notion of the fotal chirality of the filled
zero modes. In terms of this, for a “bipartite” electron-electron
interaction such as the nearest-neighbor repulsion, which is
the dominant interaction for a spin-split LL, we show that the
many-body ground state is exactly identified to be a chiral
condensate with a topological degeneracy of two. We confirm
numerically that there exists a finite energy gap to the first
excited state, which makes the Chern number of the ground
state well defined. The total Chern number contributed by the
filled zero modes along with the negative energy states (“Dirac
sea”) turns out to be zero, which implies the system is a Hall
insulator with vanishing Hall conductance.

Despite the cancellation of the Chern number in the bulk,
however, we move on to show that the topological nature of
the chiral condensate is in fact made manifest as an emergence
of a Kekuléan bond order in the edge state along the armchair
edges of the honeycomb lattice (in sharp contrast to zigzag
edge states in the one-body problem). On the mean-field
(MF) level the Kekulé pattern is shown to appear in the
bulk with a Kekuléan degeneracy of three, so that the present
result amounts that the mean-field order, while dissolved in
the topologically degenerate chiral condensate in the bulk,
resurfaces along an armchair edge. This can be interpreted as
an example of bulk-edge correspondence,”* which states that a
topologically nontrivial bulk state should always accompany a
characteristic edge state. In the case of graphene, the bulk-edge
correspondence becomes peculiar in that the chiral condensate
manifests itself as a freezing of a Kekuléan bond order along
a specific (armchair) edges. We also obtain the ground state
when point defects are introduced in the honeycomb lattice to
discuss how the chiral symmetry affects the defect states.

II. SPINLESS MODEL

To model interacting electrons on a honeycomb lattice,
here we consider spin-polarized electrons,” so that the
leading Coulomb interaction reduces to the nearest-neighbor
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repulsion. The Hamiltonian then reads H = Hyin + Hints
where the kinetic term

Hign = —1 Y (e cfe; +He) = ¢l Higne (1)

(ij)
describes hopping between adjacent sites (ij) with strength
t > 0. The magnetic field is included as the Peierls phase
0;j such that magnetic flux per elementary hexagon equals
Y o bij =2m¢ in units of a magnetic flux quantum A/e.
For a honeycomb lattice with N, sites in sublattice (o),

et = (cl.ch) with ], arow of creation operators for sublattice
o(0) and Hy;, is a square matrix of dimension N, + N,. If we
introduce I' = diag(/,, —I,) with an identity matrix I of
dimension N,), the kinetic term satisfies an anticommutation
relation { Hyi,, '} = 0, which defines the chiral symmetry. The
symmetry implies that, if v is the kth eigenvector with energy
&k, a chiral partner "'y exists with an energy —¢. This makes
the n = 0 LL special in that we can take Y as an eigenstate of
I' as 'ypr = £yYpo. The interaction between spin-polarized
electrons is expressed in a particle-hole symmetric form as

1 1
Hine = Z Vij (ni - 5) <”j - 5) (2)

i#]

1 n
= EZV,-j(ci'c}cjci +cicjc}cf)+const, 3)
i#]
where V;; is the strength of the electron-electron interaction,
and n; = cjci is the number operator at site i.

III. CHIRAL CONDENSATE

We start with an investigation of the many-body problem
at half filling. Since it is difficult to treat all of the many-body
states exactly, we shrink the Hilbert space by assuming that
the states are reconstructed within the » = 0 LL while the
negative-energy states are kept fully filled. Such a treatment
is valid as long as |Vj;| is perturbatively small compared
with the Landau gaps around the n =0 LL.2° In the n = 0
LL, we take a zero mode multiplet ¥ = (1,%_) where we
have decomposed it into eigenstates of the chiral operator,
Y+ = W1x, ..., ¥y, +) with degeneracy M. Note that the
zero modes are localized on each of the sublattices as
Yy = \/%( ‘/(’) Yand ¥, = \/Li( 1/(,’ ). If we introduce the negative-
energy multiplet ¢ = (¢1,¢2, ...) such that Hynop = ero
with ¢, <0, (Y, ¥_,9,T'p) forms a complete set, so that
the fermion operator is expanded as ¢ = ¥d + ¢d- + Ipd-,

where d = (Z*) and dg are columns of fermion operators

for the zero modes and the ¢ < 0 states, respectively. In
the projected subspace, the Hamiltonian is reduced, up to a
constant, to%’

==Y vy@ldee +aeele. (4)

where the projected fermion operator, ¢; = (¥d);, no
longer satisfies the canonical anticommutation relations (see
Appendix A). Still, the generator of the total chirality of the
filled zero modes can be defined as

G=cre=dld, —dld.. (5)
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Due to the~ invariancg of H for the chiral transformation
H > e?9He 99 = H, the total chirality is conserved,

[H.G1=0. (6)

Then the many-body states are classified according to the
total chiralityy,. For repulsive interactions V;; > 0, H is
semipositive definite. Furthermore, when the interactions
are bipartite (i.e., only act between different sublattices,
Vice,jes = Vieo,jeo = 0) as the case with the nearest-neighbor
interaction, chiral condensates

IGy) =d],--d}; . |D-) @)

with the Dirac sea |D.) = ]—[k(cho)k|O) constitute a
ground-state doublet ¥ = (|G ),|G_)), since ¢;¢;|G4) =
EEEHGQ =0 for, e.g., i € and j € 0.26?® We call this
a topological degeneracy of two. Unlike a simple charge
density wave (CDW), one may mix |G4) and |G_) through
a unitary transformation ¥ — W“w with w € U(2) even in
a finite system. One can numerically confirm that the chiral
condensate remains the ground state unless the nonbipartite
potential is large,'” even though the ground-state energy is
nonzero. In the rest of the paper, we focus on the leading
interaction, i.e., the nearest-neighbor repulsion for simplicity.

IV. MANY-BODY GAP

We next calculate excitation energies numerically with the
exact diagonalization method (see Appendix B). In the pro-
jected subspace, the strength of the nearest-neighbor repulsion
V > 0is the only energy scale, which acts as the unit of energy.
Full energy spectra of 7{ for finite systems suggest that the
first excited state appears in the sector of xior = (M4 — 2),12
which is created from a chiral condensate |Gy) by single
chirality flippings analogous to the projected single-mode
approximation.?”-3! Noticing this, we further shrink the Hilbert
space by focusing on the sector of y = (M4 — 2). This
enables us to obtain the energy of the first excited state, or the
energy gap A, with a calculation cost of the order of O(M32).
We consider a system on a torus composed of 2L? lattice
sites with a linear dimension L. For investigating a weak-field
regime, we adopt the string gauge,’> where a magnetic flux is
given by ¢ = m/L? with an integer m (>0) and My = m zero
modes are obtained for each chirality.

In Fig. 1, we plot A for 30 electrons as a function of ¢
with L changed consecutively. We immediately notice that
the result exhibits a marked periodicity of three, where the
values for L = 3 (mod 3) form a clear lower envelope with a
scaling A ¢2, while those for L # 3! deviate from this. The
latter behavior is considered to be a finite-size effect, since
the deviation diminishes with the sample size. To confirm the
scaling, the inset plots A /¢? at L = 3/ against 1/L for various
values of ¢, which indicates the scaling law A o ¢? is very
accurately obeyed.

V. HALL CONDUCTANCE

Let us now consider the Hall conductance of the chiral
condensate. By the Niu-Thouless-Wu formula,? the Hall
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FIG. 1. (Color online) Magnetic-field dependence of the many-
body gap A in the n = 0 LL. The result is displayed for 30 electrons
with the consecutive values of the linear dimension of the system L
connected by a line with the results for L = 3 (mod 3) forming a
lower envelope (A o ¢?). The inset shows the gap at L = 3/ against
1/L for the magnetic flux ¢ = 1/12 (circle), ¢ = 1/27 (triangle), and
¢ = 1/48 (square).

conductance is written with the Chern number* as

_ et 1 c ®)
T Ny
1
C = —,/TrND dA (A =vidw), 9)
21

where Np is the degeneracy and A is the non-Abelian Berry
connection that describes multiplets.’> In terms of the basis
that diagonalizes G, we have C = C, + C_ with

1
Cy=—

=57 | (d0ldGy). (10)
Tl

Each Chern number is further decomposed as C+ = Cy, +
C D_ with

1
Cy, = %/TrMi dyldy,, an

1
Cp. = — / Trde'dg. (12)
2mi

By the charge conjugation, we have Cy, + Cp_ = —(Cy_ +
Cp_ ), where we can show that

1
Cp. = —./Tr(l“dw)*l“dw =Cp.. (13)
2mi

Thus the total Chern number of the ground-state doublet
vanishes as

C=C¢++C¢7+2CD< =0, (14)

which may be called a topological cancellation. This implies
that the chiral condensate is a Hall insulator with a nontrivial
topological degeneracy Np = 2.

VI. BOND ORDER

As have been confirmed in various systems, while topolog-
ical phases are featureless in a bulk, they show characteristic
boundary states.>* So a natural question we can pose here is
as follows: Do the edge states in the present system exhibit
special features despite the bulk Chern number being zero?
Before presenting the result, however, let us first have a look
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FIG. 2. (Color online) Mean-field results for the energy spectrum
(a), its blowup around the n = 0 LL (b), and the bond strength |A;|
plotted in a real space (c). The parameters are L = 15, ¢ = 1/15, and
V/t = 0.25. A dashed hexagon in (c) is an enlarged unit cell with
arrows primitive vectors.

at the mean-field state in the present system in the bulk, which
will turn out to be instructive. One virtue of a mean-field
picture’ is that we can introduce a bond order,

Aij = Vicle)), (15)

for adjacent sites (ij).*”*' The dominant part of the MF
Hamiltonian is given by

Hyr = — Y _ [(te"™ + Afcle; + Hel, (16)
(ij)

where A;; is determined self-consistently by diagonalizing
Hwme. A spontaneous symmetry breaking is induced by the
many-body effect for weak magnetic fields, where the density
of states has a sharp peak at the Fermi energy. In Fig. 2,
we show a typical MF result for the ordered phase. The
energy spectrum is plotted in Fig. 2(a), where the qualitative
structure of the LLs is preserved. This comes from the fact
that the convergent order parameters turn out to retain the
initial Peierls phase as A;; = |A;jle~'%. The influence of
the electron-electron interaction appears most prominently
in the n = 0 LL, where a finite gap of the order of ¢ opens as
shown in the blowup in Fig. 2(b). To see how the symmetry
is broken in the mean field, we show in Fig. 2(c) a real-space
image of the bond order | A;;|, which is seen to exhibit a Kekulé
pattern.>>*? This makes the unit cell enlarged, which causes
K and K’ points to be coupled, and this in turn opens a finite
gap. In this sense we can regard this as a Peierls transition in
the honeycomb lattice.

On the other hand, the chiral condensate with its topological
degeneracy of two does not exhibit bond order in the bulk as
we have seen in Fig. 2. Due to the quantum fluctuation, the
bond order of the mean field is destroyed and the quantum
liquid ground state is realized.

VII. EDGE AND DEFECT STATES

We are now in a position to ask the following question: What
kind of edge state does the chiral condensate accommodate?
Based on the bulk-edge correspondence, we may expect a
nontrivial behavior of the many-body states near the edges. A
prime example is the fractional QH states in a two-dimensional
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FIG. 3. (Color online) Bond strength near an armchair (left) or
zigzag (right) edge of the doubly degenerate chiral condensate. The
magnetic flux is ¢ = 1/192 for which the magnetic length is [ ~
8.9a. The bond order decays in a bulk away from the edges.

electron gas (2DEG), where a CDW-like behavior emerges
along the edges of a ribbon,** while in the bulk it melts into the
Laughlin liquid with no long-range order, which has a g-fold
degeneracy of the fractional QH states at filling v = 1/g. Note
that a honeycomb lattice with edges has QH edge states whose
mode lies in a LL gap. To perform the projection into then = 0
LL we set an energy cutoff, the choice of which is shown to
have little influence on the edge states shown below.

InFig. 3 we show |A;;| for the chiral condensate plotted in a
real space near the armchair and zigzag edges. In Fig. 3(a), we
can see that a Kekulé-type bond order that is reminiscent of the
mean-field result in Fig. 2 emerges along the armchair edge.
This is the key result in the present work. The enhancement
in bonds rapidly decays away from the edge in a few lattice
constants, and |A;;| slightly oscillates with a length scale of
the order of the magnetic length [z ~ a/+/®, with a being the
interatomic spacing. This may naively seem to be analogous
to the fractional QH edge states in a 2DEG, but here the
honeycomb lattice structure is essential in the ground state.
Indeed, the ring pattern is locked along the armchair edge in
a Kekulé pattern, while this is not the case with zigzag edges
[see Fig. 3(b)]. In the latter case, the ring pattern is blurred
by the translational symmetry along a zigzag edge, and a very
weak stripe pattern parallel to the edge appears. These patterns
related with the threefold degeneracy of the Kekulé pattern
are washed out in the bulk chiral condensate. All these are a
specific property of a honeycomb lattice model.

We can further endorse that the lattice structure is at the
core by looking at the states around lattice defects. When
a single atom is removed from the bulk honeycomb lattice,
one-body localized zero modes appear that are protected by the
chiral symmetry.**> In the presence of the electron-electron
interactions, however, local chiral symmetry breaking occurs
spontaneously to lower the energy by inducing effective
hopping in the same sublattice.*>*® Then what if two point
defects come close to each other? Such a divacancy consists
of two adjacent missing atoms, and is recently observed
experimentally in ion-irradiated carbon samples.*’ We expect
that the chiral symmetry may be partially recovered with a
reconfiguring of the two symmetry-breaking bonds. We plot
in Fig. 4 the bond order for the chiral condensate near the
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FIG. 4. (Color online) Bond strength of the chiral condensate
near a divacancy composed of two adjacent sites that are missing.
The magnetic flux is ¢ = 1/1200 for which the magnetic length is
Ip ~ 22.3a. The bond order reflects twofold axial symmetry of the
divacancy.

divacancy. We do confirm that enhancement of the bond order
near the divacancy, which can be considered due to the revival
of the chiral symmetry.

We have thus shown that the bond order emerges along
edges and around vacancies, despite the topological cancel-
lation C = 0 that might first seem to wipe out any signature
of the chiral condensate. Indeed, the charge density (n;) itself
is uniform for the chiral condensate even along the edges,
which is due to the invariance of the chiral condensate for
the charge conjugation. Thus it is the bond order |A;;| that
we have to look at as a probe for the chiral condensate.
Thus the bond order provides a probe for the many-body
effect in half-filled graphene in a magnetic field. The bond
order near the edges should be observable experimentally
with some imaging techniques such as Green’s function
scanning tunneling microscopes.***° Since the amplitude of
AV = |(cjc_,-)| is of the order of the magnetic flux ¢, the
magnetic field should have significant magnitudes.

VIII. SUMMARY

The many-body ground state at half filling in the hon-
eycomb lattice is identified as a doubly degenerate chiral
condensate for a spin-split Landau level. The many-body effect
opens a finite energy gap, which makes the chiral condensate
a generic topological insulator. However, the system has a
peculiar manifestation of the bulk-edge correspondence in
topological systems as an emergence of a bond order with
a Kekulé pattern along armchair edges in an exact ground
state, while the pattern is dissolved in the bulk.
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APPENDIX A: ANTICOMMUTATION RELATIONS IN THE
n = 0 LANDAU LEVEL

We show how the anticommutation relations are modified
by the projection into the n =0 LL. From the canonical
anticommutation relations between ¢;’s, it is clear that d,, =
wix ¢, where x = *+ and « labels the zero modes with the
chirality, is a canonical fermion as

{ag dh ) =D War); Wpe)ilercl) = Supbye.  (AD)

ij

{daxadﬁs} = Z (I//ax)f(wﬁe)j{civcj} =0, (A2)
ij
{dl,.dj.}=0. (A3)

On the other hand, ¢ = ¥d no longer obeys the fermionic
anticommutation relations, but has

(6.6 =" Wan)i (g Hday dh} =y = pij. (Ad)
afixe
(@,61) = D Wan)i(Wpe) i{day dpe) =0,
afxe
fel.ely=o.

(AS5)

(A6)

PHYSICAL REVIEW B 86, 205424 (2012)

where the square matrix p = ¥y is a projection into the
n=0LLas¢ = pc.

APPENDIX B: PSEUDOPOTENTIAL

If we restrict ourselves to the bipartite interactions, the
projected Hamiltonian (4) is rewritten as

o1 - .
H=> 3" Vapysdlydl_dy_ds + VS sdurds_d_dj.,).
afysd
B

with the pseudopotential

Vapys = Z VijWa)i (Wp-); () j (Yot )i = Ve

ice,jeo
(B2)

Numerical calculations are performed using a basis

\pm) =d,,---d dl,_---dl, 10), (B3

pry+Em =7
Pr < p2<--<PDnN,, (B4)

mp<mpy<---<my_, (BS)

where p = (py, ...

,PNJ andm = (my,...,my_).

“hatsugai.yasuhiro.ge @u.tsukuba.ac.jp
Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan,
M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and
P. Kim, Phys. Rev. Lett. 96, 136806 (2006).

27. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99,
106802 (2007).

%Y. Zhao, P. Cadden-Zimansky, F. Ghahari, and P. Kim, Phys. Rev.
Lett. 108, 106804 (2012).

‘A.F Young, C. R. Dean, L. Wang, H. Ren, P. Cadden-Zimansky,
K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, and P. Kim,
Nat. Phys. 8, 550 (2012).

SK. Nomura and A. H. MacDonald, Phys. Rev. Lett. 96, 256602
(2006).

6J. Alicea and M. P. A. Fisher, Phys. Rev. B 74, 075422 (2006).

M. O. Goerbig, R. Moessner, and B. Dougot, Phys. Rev. B 74,
161407 (2006).

SV.P. Gusynin, V. A. Miransky, S. G. Sharapov, and I. A. Shovkovy,
Phys. Rev. B 74, 195429 (2006).

°1.-N. Fuchs and P. Lederer, Phys. Rev. Lett. 98, 016803 (2007).

191, F. Herbut, Phys. Rev. B 75, 165411 (2007).

117 Alicea and M. P. A. Fisher, Solid State Commun. 143, 504 (2007).

2. Sheng, D. N. Sheng, F. D. M. Haldane, and L. Balents, Phys.
Rev. Lett. 99, 196802 (2007).

13]. Jung and A. H. MacDonald, Phys. Rev. B 80, 235417 (2009).

K. Nomura, S. Ryu, and D.-H. Lee, Phys. Rev. Lett. 103, 216801
(2009).

15C.-Y. Hou, C. Chamon, and C. Mudry, Phys. Rev. B 81, 075427
(2010).

167. Yang and J. H. Han, Phys. Rev. B 81, 115405 (2010).

171. F. Herbut, Phys. Rev. B 81, 205429 (2010).

8M. Kharitonov, Phys. Rev. B 85, 155439 (2012).

19Y. Aharonov and A. Casher, Phys. Rev. A 19, 2461 (1979).

20T. Kawarabayashi, Y. Hatsugai, and H. Aoki, Phys. Rev. Lett. 103,
156804 (2009).

21, E. Drut and T. A. Lihde, Phys. Rev. Lett. 102, 026802 (2009).

22]. E. Drut and T. A. Lihde, Phys. Rev. B 79, 165425 (2009).

23Y. Araki and T. Hatsuda, Phys. Rev. B 82, 121403 (2010).

24Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).

2 Along with the spin-polarized scenario at the charge neutrality point
(Ref. 2), a spin-unpolarized one has also been proposed in recent
experiments (Refs. 3 and 4). At any rate, the results obtained in the
present paper have experimental relevance in the context of cold
atoms on a optical lattice (Ref. 50).

26Y. Hatsugai, T. Morimoto, T. Kawarabayashi, Y. Hamamoto, and
H. Aoki, arXiv:1210.0714.

?’We have justified the projected Hamiltonian (4) by confirming
that the energy spectrum scarcely changes from that obtained with
unprojected Hamiltonian (3).

28Y. Hamamoto, Y. Hatsugai, and H. Aoki, arXiv:1108.1638 [Journal
of Physics: Conference Series (to be published)].

8. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev.
Lett. 54, 581 (1985).

308, M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. B
33, 2481 (1986).

3I'T. Nakajima and H. Aoki, Phys. Rev. Lett. 73, 3568 (1994).

32Y. Hatsugai, K. Ishibashi, and Y. Morita, Phys. Rev. Lett. 83, 2246
(1999).

3Q. Niu, D. J. Thouless, and Y.-S. Wu, Phys. Rev. B 31,3372 (1985).

34D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs,
Phys. Rev. Lett. 49, 405 (1982).

33Y. Hatsugai, J. Phys. Soc. Jpn. 73, 2604 (2004).

36Y. Hatsugai, T. Fukui, and H. Aoki (unpublished).

205424-5


http://dx.doi.org/10.1103/PhysRevLett.96.136806
http://dx.doi.org/10.1103/PhysRevLett.99.106802
http://dx.doi.org/10.1103/PhysRevLett.99.106802
http://dx.doi.org/10.1103/PhysRevLett.108.106804
http://dx.doi.org/10.1103/PhysRevLett.108.106804
http://dx.doi.org/10.1038/nphys2307
http://dx.doi.org/10.1103/PhysRevLett.96.256602
http://dx.doi.org/10.1103/PhysRevLett.96.256602
http://dx.doi.org/10.1103/PhysRevB.74.075422
http://dx.doi.org/10.1103/PhysRevB.74.161407
http://dx.doi.org/10.1103/PhysRevB.74.161407
http://dx.doi.org/10.1103/PhysRevB.74.195429
http://dx.doi.org/10.1103/PhysRevLett.98.016803
http://dx.doi.org/10.1103/PhysRevB.75.165411
http://dx.doi.org/10.1016/j.ssc.2007.06.035
http://dx.doi.org/10.1103/PhysRevLett.99.196802
http://dx.doi.org/10.1103/PhysRevLett.99.196802
http://dx.doi.org/10.1103/PhysRevB.80.235417
http://dx.doi.org/10.1103/PhysRevLett.103.216801
http://dx.doi.org/10.1103/PhysRevLett.103.216801
http://dx.doi.org/10.1103/PhysRevB.81.075427
http://dx.doi.org/10.1103/PhysRevB.81.075427
http://dx.doi.org/10.1103/PhysRevB.81.115405
http://dx.doi.org/10.1103/PhysRevB.81.205429
http://dx.doi.org/10.1103/PhysRevB.85.155439
http://dx.doi.org/10.1103/PhysRevA.19.2461
http://dx.doi.org/10.1103/PhysRevLett.103.156804
http://dx.doi.org/10.1103/PhysRevLett.103.156804
http://dx.doi.org/10.1103/PhysRevLett.102.026802
http://dx.doi.org/10.1103/PhysRevB.79.165425
http://dx.doi.org/10.1103/PhysRevB.82.121403
http://dx.doi.org/10.1103/PhysRevLett.71.3697
http://arXiv.org/abs/arXiv:1210.0714
http://arXiv.org/abs/arXiv:1108.1638
http://dx.doi.org/10.1103/PhysRevLett.54.581
http://dx.doi.org/10.1103/PhysRevLett.54.581
http://dx.doi.org/10.1103/PhysRevB.33.2481
http://dx.doi.org/10.1103/PhysRevB.33.2481
http://dx.doi.org/10.1103/PhysRevLett.73.3568
http://dx.doi.org/10.1103/PhysRevLett.83.2246
http://dx.doi.org/10.1103/PhysRevLett.83.2246
http://dx.doi.org/10.1103/PhysRevB.31.3372
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1143/JPSJ.73.2604

YUII HAMAMOTO, HIDEO AOKI, AND YASUHIRO HATSUGAI PHYSICAL REVIEW B 86, 205424 (2012)

371. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988). 468. Ryu and Y. Hatsugai, Physica E 22, 679 (2004).

38X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989). M. M. Ugeda, 1. Brihuega, F. Hiebel, P. Mallet, J.-Y. Veuillen,

3], Voit, Phys. Rev. B 45, 4027 (1992). J. M. Gémez-Rodriguez, and F. Yndurdin, Phys. Rev. B 85, 121402

40M. Nakamura, Phys. Rev. B 61, 16377 (2000). (2012), to be precise, have detected five-membered rings adjacent

#IB. Uchoaand A. H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007). to an eight-membered one, where odd-membered rings are expected

42Y. Hatsugai, T. Fukui, and H. Aoki, Physica E 40, 1530 (2008). to have significant effects on the chiral states.

“E. H. Rezayi and F. D. M. Haldane, Phys. Rev. B 50, 17199 48], M. Byers and M. E. Flatté, Phys. Rev. Lett. 74, 306 (1995).
(1994). #Q. Niu, M. C. Chang, and C. K. Shih, Phys. Rev. B 51, 5502 (1995).

43, Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002). 30, Dalibard, F. Gerbier, G. Juzeliiinas, and P. Ohberg, Rev. Mod.

43Y. Hatsugai, Solid State Commun. 149, 1061 (2009). Phys. 83, 1523 (2011).

205424-6


http://dx.doi.org/10.1103/PhysRevB.37.3774
http://dx.doi.org/10.1103/PhysRevB.39.11413
http://dx.doi.org/10.1103/PhysRevB.45.4027
http://dx.doi.org/10.1103/PhysRevB.61.16377
http://dx.doi.org/10.1103/PhysRevLett.98.146801
http://dx.doi.org/10.1016/j.physe.2007.09.164
http://dx.doi.org/10.1103/PhysRevB.50.17199
http://dx.doi.org/10.1103/PhysRevB.50.17199
http://dx.doi.org/10.1103/PhysRevLett.89.077002
http://dx.doi.org/10.1016/j.ssc.2009.02.055
http://dx.doi.org/10.1016/j.physe.2003.12.098
http://dx.doi.org/10.1103/PhysRevB.85.121402
http://dx.doi.org/10.1103/PhysRevB.85.121402
http://dx.doi.org/10.1103/PhysRevLett.74.306
http://dx.doi.org/10.1103/PhysRevB.51.5502
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523

