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Abstract

For frequently purchased products, household’s brand choice be-
havior may be influenced by its past choices in two ways, namely
inertia and variety-seeking. Even though there is vast literature in
this field, much of literature assumes either inertia or variety-seeking
because these two behaviors were once considered to be mutually ex-
clusive (Givon 1984). One of few studies that entertain the possibility
of households transforming itself from initial inertia to variety-seeking
later is Bawa (1990), which he calls it hybrid behavior. However,
Bawa (1990) does not incorporate the effect of marketing variables

and solely relies on run - the number of the purchases of the same
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brand - to express the hybrid behavior. In this study, the compre-
hensive model which can accommodate variety-seeking, inertia and
hybrid behaviors along with the heterogeneous preferences to brands
and sensitivities to marketing variables across households is proposed
to express households > complex brand choice behaviors. We present
the empirical application of our model to a benchmark panel data of
ketchup buying households provided by ERIM division of AC Nielsen.

The implications of the results and discussions are presented.

1 Introduction

Understanding the dynamic household’s brand choice behavior is an interest
to both retailers and manufacturers who plan their marketing strategies. One
of the major topics in this field includes two behavioral patterns seemingly
persisting across more than one purchase occasion. They are referred to as
inertia and variety-seeking.

The term “inertia” is defined to be the behavior such that a purchase of a
brand will increase the probability of the same brand being purchased again
on a succeeding occasion. The “variety-seeking” refers to the opposite, i.e.,
a purchase of a brand will decrease the probability of the same brand being
purchased again on a succeeding occasion (Bawa, 1990; Chintagunta, 1998).!
Often they are jointly referred to as state dependence.

Accounting for state dependence in household’s brand choice behavior is
important for many reasons. For example, the ability to measure the house-

hold’s tendency and intensity of variety-seeking would result in a better un-

'When the purchase probability is affected only by the last purchase (i.e., Markov
process), the behavior is called “first-order” behavior. Accordingly, “zero-order” indicates

the behavior which is independent of any previous choice.



derstanding of the market and would help the firm to improve its competitive
position (Givon, 1984). On the other hand, Keane (1997) points out that if
a researcher ignores a household’s inertial tendency when it exists and only
accounts for households-specific preferences to brands, the latter will be ex-
aggerated. Meanwhile, if one ignores the fact that some households purchase
a certain brand because they prefer it and only accounts for inertia, the effect
of inertia would be overstated.

The existence of state dependence plays important roles in a marketer’s
decision making as Chintagunta (1998) states: “From a managerial stand
point, it would be important to know whether a brand’s consumers are in-
ertial or variety prone (Chintagunta, 1998, 254).” For example, when house-
holds have inertial tendencies, inducing trials via a free sampling would be
an effective promotion. Also, a brand retention could be more emphasized
to inertial households as their brand switching could lead to a sustained
defection (Chintagunta, 1998). On the other hand, the existence of variety-
seeking behavior could motivate marketers to extend their product lines so
that household’s brand switching behavior would benefit their own products
(Seetharaman, 2004).

Moreover, the effect of promotion is more accurately measured by ac-
counting for the multi-periods impacts of promotion due to state dependence.

In this paper, we propose a model to capture complex behaviors of house-
holds who vary their choices with or without any apparent reasons. The rest
of this paper is structured as follows. In the next section, we review lit-
eratures in this field. In section 3, we propose our specifications of utility
and model. In section 4, we review the latent class model. In section 5, we
will present empirical results and findings. The final section concludes with

discussions.



2 Literature Review

The motivation for modeling variety-seeking behavior is well described in
the work of McAlister (1982), where she proposes the satiation hypothesis
which claims that the preference to a brand decreases when the “inventory of
attribute,” such as “fruit flavor of soft drink,” reaches the point of satiation.
Then a variety-seeking behavior is triggered by a desire for different attributes
or a stimulus associated with switching behavior. Much of the literature
on the variety-seeking is based on this theory (Lattin and McAlister, 1985;
Feinberg et al., 1992; Trivedi et al., 1994).

The example of specification of the variety-seeking model can be seen in
Trivedi et al. (1994). In their work, they conceptualize the choice being de-
rived from the balance between two forces; the preference for a specific brand
(they termed it as a tendency to purchase a brand that is close to household’s
“ideal”) and the propensity to seek variety. The choice probability of brand

j given the previous purchase of [ in their work is governed by the term
u;j(1 —v) +vf(Djy)

where u; is the utility of brand j when variety-seeking is absent, Dj; is the
dissimilarity index between brands j and [ ranging between 0 and 1, and v
is the degree of variety-seeking sought on a given purchase occasion ranging
between 0 and 1. When v = 0, the household’s choice is not affected by
its previous choice (thus becomes zero-order behavior) and when v = 1, a
household’s propensity of variety-seeking is maximum.

The dissimilarity index is used since a variety-seeking effect and the sim-
ilarities between the two brands are related, i.e., when a household seeks va-
riety, it would choose something “dissimilar” to the previously chosen brand.

The higher value of D;; would lead to the higher probability for purchasing j



in such a case. When a household seeks for the similar brand to [/, the higher
value of Dj;; would lead to the lower probability for purchasing j.

The idea of incorporating the balance between a genuine preference to a
brand and a variety-seeking propensity comes from the work of Givon (1984)
and the idea of incorporating the dissimilarity index comes from Lattin and
McAlister (1985). The contribution of Trivedi et al. (1994) is the specification
of the term v which is assumed to follow a Beta distributions. In the earlier
studies, this index was assumed to be fixed.

In contrast to a variety-seeking behavior, some researchers found the in-
ertial tendency for some households. There are many plausible explanations
for inertia including a habit persistence, learning effect combined with risk
aversion and so forth (Keane, 1997). One of the most influential work in this
stream is of Guadagni and Little (1983), which proposes the unique specifi-
cation of the brand loyalty variable where the weighted sequential influences

of past choices to the current utility are incorporated in the form of

Tijt; = O Tijt,—1
+(1 — ap){household i bought brand j on occasion (t; — 1)},

where «, is a parameter and {statement} denotes an indicator function taking
an unity if the statement is true. The indices ¢ = 1,...,N, j = 1,...,J
and t; = 1,...,T; denote a household, a brand and purchasing occasion of
household 7 respectively in this study. They find that, based on the criteria
such as t-values, the loyalty variable they propose contributes most to the
model fit. This may be a part of the reason that their loyalty variable has
been widely used in this study field. The other studies on inertia include
Gupta et al. (1997), Keane (1997) and Seetharaman (2003).

Meanwhile, Bawa (1990) suggests the “hybrid behavior” which assumes

both inertia and variety-seeking behaviors for the same household. The hy-
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brid behavior hypothesized in Bawa (1990) is characterized by the behav-
ior where a household exhibits an inertial tendency for a certain period of
time and then exhibits a variety-seeking tendency once a certain period of
time passes. In other words, at least for some households, it seems that the
marginal utility of the same brand increases first but starts to decrease by
the repeated consumption of the same brand, and brand switching occurs
once the utility of that brand becomes lower than those of the other brands.?

He justifies the hybrid behavior based on the psychological study of
Berlyne (1970) which examines a relationship between the stimulus condi-
tions and hedonistic values. According to the study, the hedonistic value
such as pleasantness increases at first as a stimulus becomes more familiar,
but starts to decrease once the stimulus loses its novelty due to the repeated
exposure. This is because any stimulus that produces the moderate increase
in arousal is rewarding and pleasant, and familiarity to the stimulus will
reduce the arousal level of the aversive stimulus due to its novelty to the
point of non-aversive state. Therefore the utility function based on this the-
ory has inverted U-shape when the horizontal axis is taken to represent the
consumption period or repeating purchases of the brand.

In the model of Bawa (1990), the marginal utility of the brand is specified
to be the function of the number of times the same brand had been continu-
ously purchased up to t;-th occasion, which he calls “run” and denoted it by

rij(t;). Accordingly, the utility of household ¢ for brand j on ¢;-th occasion

2There are some other studies than Bawa (1990) which assume both inertia and variety-
seeking behaviors, such as Chintagunta (1998), but these studies usually assume inertia
for some households and variety-seeking behaviors for the other households and these

behavioral tendencies are assumed to be stable over time.



given r;;(¢;) in Bawa’s model is
Usjtafri; t) = @ij + birij(ts) + ci(rig (t3)%,

where a;; is a brand specific constant, and b; and ¢; are parameters, while
the marginal utility of household i for brand [ (# j) up to time ¢; conditional

on 7;;(¢;) is specified as
Uilti|’r‘¢j(ti) - ail)

where a;; is a brand specific constant for brand [. The terms a;;, a;;, b; and
¢; are parameters to be estimated and are assumed to take different values
across households.

There are several limitations in the specification of Bawa’s model. Besides
the model limits the number of brands to be two, it does not incorporate the
effects of marketing variables and households’ heterogeneous preferences to
brands, which are known to be relevant in brand choice behaviors (Keane,
1997).

The major drawback of the model is its specification of an inertial part of
the utility; it uses run for the inertial part of the hybrid behavior, which is
not generally adopted. The examples of variables used to incorporate inertia
include the lagged choices, the lagged utilities, and the serially correlated
error structure and so forth (Seetharaman, 2003). Run may be categorized
as the lagged choice, but a more general way of including the lagged choice
effect is through the loyalty variable as in Guadagni and Little (1983) for
instance.

On the other hand, most of the early works on variety-seeking assume the
first order Markov process. As stated in the work in Bawa (1990), it may be

possible that a variety-seeking propensity emerges in the course of repeated



purchases of the same brand, which cannot be formulated by the first order
Markov process. To avoid this issue, we have to use a different approach.

In short, the comprehensive model which can accommodate both inertia
and variety-seeking behaviors as well as the hybrid behavior along with the
heterogeneous preferences to brands and sensitivities to marketing variables
is necessary in order to understand the household’s complex brand choice
behavior accurately. In the next section, we discuss the specification of our

model.

3 The Specification of the Model

In constructing the model, we use the brand loyalty variable of Guadagni
and Little (1983), which we will refer to it as “GL variable” henceforth, to
express inertial part of the hybrid behavior. To capture the effect of variety-
seeking, we include run which is defined in Bawa (1990). The purpose of
including run is to “put brake” on the utility increase due to the GL variable,
which keeps increasing as long as the same brand is kept being purchased.
By including run, the utility for the same brand would start to decline as a
result of the repeated consumption of the same brand if run negatively affects
utility. Another reason for using run is it can express the cumulative effect of
satiation due to a repeated consumption of a brand. By this specification, if a
household has inertial tendency, the coefficients of both GL variable and run
would significantly be non-negative. On the other hand, the variety-seeking
behavior could be detected by the non-positive coefficient of run. Meanwhile,
the hybrid behavior could be detected by the relative magnitudes of positive
coefficient of GL variable and negative coefficient of run.

Now we write the utility of household ¢ =1,..., N forbrand j =1,...,J



on occasion t; = 1,...,T; as
Uijt, = ®ij1,Bs + €iju; (3.1)

where x;;; is a 1 X R vector of the explanatory variables including a set of
the dummy variables for brands except for one base brand, the shelf price
of brand 7, a dummy variable for coupon usage times a coupon face value,
the dummy variables for feature and display, GL variable and run. The 3,
is a corresponding R x 1 vector of parameters for segment s =1,...,S5. The
segment is a subset into which households are placed, where those in the
same segment are assumed to be homogeneous in the preferences to brands
and responsiveness to the marketing variables. Each household is assumed to
belong to only one of the segments, and it is further assumed that household
belongs to the same segment over the period of observation. The term €;;4, is
a random error term that captures the effects of unobserved variables which
is assumed to follow i.i.d. Gumbel distribution. By this specification, the
brand choice probability is given by the multinomial logit model, and the log

likelihood function for our the panel data is given by

UB) = S 3 hi(s) - yije, - In exp(@i;1,3:) )}
B) ZZZZ{ (5) - vise (z;’zlexpmﬂs)

where y;;;, is the indicator variable taking an unity if household 7 purchases

a brand j on t;-th occasion and h;(s) is the expected value of membership
probability of household ¢ to segment s. For an estimation, we use EM al-
gorithm assuming the households’ membership probabilities to each segment

as missing values.



4 The Latent Class Model

In this study, we propose a model to accommodate the coexistence of house-
holds with different behavioral patterns in the same market by using the
latent class model. The latent class model is one of the general models to in-
corporate heterogeneity across households assuming a finite and fixed number
of segments. As will be explained, the overall households’ choice probabilities
are given by the weighted sum of segment-level choice probabilities for the
brands in this model (Bucklin et al., 1998). In other words, each of the (over-
all) unconditional choice probabilities for brands “can be decomposed into a
weighted average of underlying (or “latent”) choice probabilities (Kamakura
and Russell, 1989, 380).”

The idea behind this type of model is that there is an underlying multi-
dimensional distribution of households’ heterogeneities (i.e., intrinsic pref-
erences for brands and relative responsiveness to the marketing variables)
which characterize their behaviors. In the latent class model, the underlying
distribution is assumed to be discrete. Because the finite representations of
households’ characteristics of latent class model coincide well with the con-
cept of segments in marketing, the model is widely applied to the marketing
field. The major work of this field is Kamakura and Russell (1989). The
other work using the latent class model include Bucklin et al. (1998) and
Gupta and Chintagunta (1994).

4.1 Estimation

Now let us assume there are s = 1,..., 5 segments in the sample. Obviously

as the number of segments is unknown nor can be observed, it must be



estimated. First define the relative sizes of segment s as 7, such that
O<nm, <1

for all s and

iws = 1. (4.1)

In the latent class model, each household has different membership probabili-
ties for these segments, because membership probabilities are estimated from
their choice histories which differ across households. In fact, the estimate of
the relative size of segment m, is calculated as the mean of the households’
membership probabilities for that segment. Accordingly, the term 7, can be
viewed as the “likelihood of finding a household in segment s (Kamakura and
Russell, 1989, 380)” in the sample. The detail will be explained later.

Now let us define the random variable Y;;;, which takes value one if house-
hold i chooses brand j at t;-th occasion. In other words, for household 7, let

Yijt; be entries of T; x J matrix Y;

Yi11, - 5 Yig1
Y, = : : : (4.2)

Yar, - HYiJT,
and let us denote each row as y;;,. Since we assume ¢;;,s follow i.i.d. Gumbel
distribution, we can express the probability that household ¢ in segment s

chooses brand j at the t;-th occasion in the standard logit form as

eXp(mijti/Bs)
S exp(ay,Bs)
(4.3)

Pr{(yiltia s 7ythi) - (07 v aOa 1a07 cee ,O)lSZ = S;/Bs} =
—— =

=1 J—j

where the random variable S; indicates which segments household 7 belongs

to, assuming we could observe the segment membership of household 7. For
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brerity, we abbreviate (4.3) as

exp(Tij1, )
S exp(@i, Bs)

Pr(Yy, = j|Si = 5;8;) = (4.4)

henceforth.
The unconditional choice probability for brand j of a randomly selected
household 7 can be obtained by integrating out the equation (4.3) by the

density in the population 7, as®

Pr(Yy, = j) = / Pr(Yiy, — j|Si = s: B,) - mods. (4.5)

Since the relative size of the segment 7, is discrete, (4.5) is written as

S
Pr(Yi, = j) = Y _m - Pr(Ya, = j|Si = s;8.). (4.6)

s=1
This is a weighted average of logit formula evaluated at each mass point
(segment), as pointed out by Kamakura and Russell (1989).

Now suppose that household 7 has the choice history defined as H; =
(Hi, ..., Hi,), where element H;, indicates the brand purchased at t;-th
occasion. Then the conditional choice probability that household 7 has the

choice history H; given that household 7 belongs to segment s is written as
T J

Pr(Hi|S: = 5:8.) = [ [ [ {Pr(Yie, = 51Si = s 8.) % . (4.7)
t;=1j=1

In the same manner as (4.6), the unconditional probability of randomly se-
lected household ¢ having the choice history H; can be written as

S

Pr(H; 8) = » - Pr(H|S; = s 3,) (4.8)

s=1

3The model of the form (4.5) is sometimes called mixed logit model and = is called
mixing distribution. The latent class model can be regarded as the special case of mixed

logit model where mixing distribution is discrete (Train, 2003).
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where 3 is R x S parameter matrix

ﬁll?"'aﬁlS?"'?ﬁlS
,3:(,31,"',/65): Bris- vy Brss- -y Brs : (49)
ﬁRla--'vﬂRsa--'aﬂRS

Here let us define for each ¢ the multinomial indicator random variable
zi(s) which takes one if household i belongs to segment s and 0 otherwise,
assuming we know the membership probability of household i belonging to
segment s given his/her purchase history H;, that is Pr(S; = s|H;; Bs). Then
this membership indicator random variables z;(s)’s are entries of N x.S matrix

Z as

The row sums of the matrix Z above are all 1.
Assuming we were able to observe Z, the likelihood given the choice
histories of the all households under consideration is written as*
N S
L(ﬂ', /BlHa Z) = H H {7Ts : PI’(HASZ =S5 /Bs)}ZZ(S) )
i=1 s=1
where H = (H,,...,H;,...,Hy) is the choice history of all households in

the sample, w = (7,...,7g) is 1 x S vector of relative sizes of segments.

4The term m, - Pr(H;|S; = s;[3,) is the joint probability that household i belongs to
segment s and has choice history H;. Note, however, that the relative size of segment 7,

is unknown and has to be estimated.
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Accordingly, the log likelihood could be written as

I(m,B|H,Z) = ZZz -In (7, - Pr(H;|S; = 5; 85))

i=1 s=1
N S
= ZZ'Z’ -InPr(H;|S; = s;8s) +ZZ'Z’ ) - Inm,.
i=1 s=1 i=1 s=1

(4.10)

Now if we were able to observe Z, the algorithm to estimate parameters

(7, 3) is as follows.

Step 0.1 Set t = 0. Set the initial values BS” for s = 1,...,5 and set
70 =1/Sfors=1,...,5.

Step 0.2 Calculate () (W(t),B(t)lH, Z) using (4.10).

Step 1 Calculate 7 for s = 1,...,S from the method which will be ex-

plained below.

Step 2 Estimate Bﬁt“) for s = 1,..., 5 using the scoring or Newton-Raphson
method.

Step 3 Calculate (1) (7(t+D) G+ H, Z) using (4.10). If
[+ (ﬂ'(t“ BIYIH, Z) and 1¢ (W(t),Bgt)|H, Z) are close enough, for ex-
ample, less than some small prescribed constant €, stop the iteration as the

likelihood is maximized. Else set ¢ =t + 1 and goto Step 1.

However, in reality, we cannot possibly obtain the information z;(s). In

such a situation, the method called EM algorithm may be implemented to

13



obtain the estimate of z;(s) along with the estimates of = and 3 as explained

in the following subsection.

4.2 EM algorithm

If the segment memberships of households Z were completely known, the
vector of parameters 35 can be estimated by the algorithm described above
using well-known methods such as Newton-Raphson method. EM algorithm
takes advantage of this fact and in the algorithm, the household’s member-
ship to the segment z;(s) is assumed at first to be missing values and this
value is imputed by its “expectation” (to be explained below). Then the
conditional likelihood is maximized based on the expected value of member-
ship to the segment. The households’ expected membership is then updated
using the updated likelihood. This cycle of “expectation” of membership to
the segment and “maximization” of likelihood is repeated until the likelihood
converges.

Now taking the expectation with respect to z;(s) for the log likelihood
(4.10), we have

El(m,BlH,Z)] = Y3 hi(s) WPr(H[S; = 8,)+ Y > hi(s)

i=1 s=1 i=1 s=1
where
s
hi(s) = => a() = I|Hy; B)) = Pr(S; = s|Hy; )
=1
(4.12)
is the expected values of the indicator random variable z;(s) for s =1,...,S.

Since parameter 3 in (4.9) only appears in the first term and 7 only appears

14
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in the second term on the right hand side of (4.11), they can be estimated
by maximizing E|[l(w,3|H, Z)| alternately.

Let us first look at the second term on the right hand side of (4.11).
Since we have the condition 3.7 7, = 1 from (4.1), the second term can be
maximized by the method of Lagrange multipliers given 3,. Set

L:iihi(s)-lnﬁs—)\{im—l}.

=1 s=1

Then we have (S + 1) set of equations by partially differentiating L with
respect to m,’s and A. Now we set resulting formulas zero as

(o _ ZEm)

a1 m
oL _ SX )y 0 (4.13)
TS TS
| % =37 m41=0.
From the first S equations in (4.13), we have
N
A= M’ (4.14)

Ts

or
Tg =

Z hi(s) (4.15)

for s =1,...,S. Substitute these equations into the last equation in (4.13)

> =

to obtain
1 1
thi(1)+--~+XZhi(S) =1
=1 =1
or
N
D (hi(1) 4+ hi(S)) = A
=1
or
N = ),

15



since h;(1) + - -+ h;(S) = 1. Therefore we have from (4.15)

7 (4.16)

Tg =

for s =1,...,S. The solution (4.16) means that the relative size of segment
s is the average of segment membership for s across all households in the
sample.

Now from (4.12), h;(s) = Pr(S; = s|H;;3;) can be calculated using the
definition of conditional probability as®

i Pr(S; =s,H;;8,) 7 - Pr(H;|S; = s;8)
hils) = Pr(H;; B) B 25:1 s - Pr(H;|S; = s; 53) 1

By substituting (4.17) for (4.16), we obtain 7.

As for the first term of the right hand side of (4.11) for segment s, the
parameters can be estimated independently for each segment since the vectors
of parameters 3, are independent across segments. Then the first term on

the right hand side of (4.11) for segment s is written with the notation similar

o (4.7) as®

lS(/Bs|H) = Z
Zzlz{hi(s)'yijt InPr(Yi, = j|Si = s;8s)}-

(4.18)

hi(s) - InPr(H;|S; = s; Bs)
t;

To implement EM algorithm, repeat the following steps.

EM algorithm

°Note that h;(s) in (4.17) can be interpreted as the posterior distribution of household
1’s membership probability for segment s with prior distribution 7 and likelihood H; given

segment membership S; = s as we mentioned earlier.
6For more detail, see Appendix.
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Step 0.1 Set t = 0. Set the initial values Bg‘” for s = 1,...,5 and set
¥ =1/Sfors=1,...,8S.

Step 0.2 Set s = 1. For i = 1,..., N, calculate hl(-t)(s) by calculating
Pr(Y, = j|S; = s; Bs) using (4.3) first then (4.7) and (4.8) successively with
B and 7" and substitute these interim results for (4.17). Set s = s+1

and repeat Step 0.2 until s = S.

Step 0.3 Calculate F [l(t) (W(t),B(t)|H, Z)] using (4.11).

Step 1 Set s = 1. Renew 7\ from (4.16) using hz(-t)(s).

Step 2 Estimate 8" by maximizing (4.18) with (4.3) and hl(t)(s) obtained

previously. The actual maximization is done by the scoring or Newton-

Raphson method.

Step 3 Renew Pr(Yi;, = j|S; = s;8,)V) by substituting B obtained in
Step 2.

Step 4 Calculate hl(tﬂ)(s) from (4.17) with the renewed B and 7™ for
1=1,...,N. Set s = s+ 1 and goto Step 1. If s = 5, goto Step 5.

Step 5 Calculate E [l(t“) (w(t+1),B(t+1)|H, Z)] using (4.11). If
E [l(t“) (w(t+1),B§t+l)|H, Z)] and [l(t) (w(t),Bgt)|H, Z)} are close enough,
for example, less than small prescribed constant e, stop the iteration as the

expected log likelihood is maximized. Else set s =1 and ¢t =t+1, and return

17



to Step 1.

5 Empirical Results

We use ERIM database, the panel data of U.S. households in Sioux Falls,
SD and Springfield, MO which was collected from 1st week of 1986 to 34th
week of 1988. ERIM database is the data collected by the now-defunct ERIM
division of A.C. Nielsen on panels of households in Sioux Falls and Springfield
for academic research.”

We choose a ketchup category for our empirical analysis for the follow-
ing reasons. First, because we are interested in a household’s brand choice
behavior with the possible presence of state dependence, product categories
in which a household exhibits a strong genuine preference to specific brand
are not suitable because a household would buy the specific brand anyway.
Secondly, the products that are purchased with relatively high frequency are
preferable, since we incorporate the effect of the past brand choice on the
current purchasing occasion. In other words, the products that are purchased
on irregular intervals would not suit our purpose as households may forget
the brands they purchased on the previous occasion.

Now we build two sets of panel data from the ERIM database; one for
Sioux Falls and the other for Springfield. Sioux Falls data consists of 1,693
households who purchased ketchup during the data collection period, while
Springfield data consists of 1,343 households. Separate data sets are set up
for these two markets because households may behave differently between

these two markets, but Springfield data turns out to have a very limited

"We acknowledge the James M. Kilts Center, University of Chicago Booth School of

Business for letting us use the data.
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number of households after data screening.

Because there are more than forty Stock Keeping Units (SKUs) in the
original panel data, we use the following criteria to select SKUs for our
analysis: First, we drop the SKUs whose market shares are less than 1%
because some households in these data sets are not able to choose them
because too few stores in each of the markets carry them. This leaves fourteen
SKUs for Sioux Falls.® Next, we choose the SKUs whose sizes are either 32
or 28 ounce, which seem to be the standard sizes of ketchup judged by their
market shares; they account for 81.6% and 80.0% of the market shares in
Sioux Falls and Springfield respectively in the panel data. The other sizes
include 14, 40, 44 and 64 ounce, but those who buy the ketchup of these sizes
may have different demographic characteristics and thus may have different
purchasing patterns from those who buy the standard sized ketchup. This
leaves eight and eleven SKUs in respective markets. There are 516 households
who choose ketchup from the eight SKUs with 3,933 purchase records in Sioux
Falls.”

Next, we check how many stores carry all these SKUs in the respective
market, because if households buy ketchup from the other stores than those
carrying all SKUs, their SKU selections could have been influenced by the
lack of selection. We first take a look at Sioux Falls. There are fifteen stores
in Sioux Falls, but only five of them carry all eight SKUs.!? If we removed the
households that bought at least one ketchup in stores other than these five,
only 120 households with 497 purchase records would be left for the analysis.

8Eighteen SKUs remain for Springfield at this stage.
9There are 494 households who buy ketchup from the eleven SKUs with 3,026 purchase

records in Springfield.
10We assume that the store carries the SKU if at least one purchase record of the SKU

is found in that store during the data collection period.
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The large reduction of data is because the sixth, seventh, and eighth selling
SKUs are simultaneously available only in few stores in Sioux Falls. Hence
we choose to retain top selling five SKUs. Among fifteen stores in Sioux
Falls, twelve of them carry all top selling five SKUs. After eliminating the
households who purchased ketchup in stores other than these twelve, 255
households with 1,791 purchase records remain.

Finally, since we are interested in the household’s brand choice behavior
across time, we choose to retain the households who made more than or equal
to five purchases of ketchup during the period, which leaves 137 households
with 1,504 purchase records.!’ After screening data, we collect household ID,
SKU purchased, its shelf price, coupon values (when used), store ID, date
of purchase, an indicator variable whether it was displayed and an indicator
variable whether it was featured on each purchasing occasion.

Since the price of a particular SKU is available only when it is actually
purchased, we need to estimate purchase prices (i.e. the price households
would have paid if they had coupons) of all the competing SKUs in calculating
utilities every time one of the households under study purchases ketchup from
the five SKUs. Unfortunately however, the information of the availability of
coupons for the SKUs that were not purchased by household 7 is not available

in general. Hence we assume that coupons for the not-purchased-SKUs were

1By the same criteria, only 14 households with 109 purchase records remain for Spring-
field. One of the major differences in these two markets is the number of the stores that
carry top selling five SKUs; in Sioux Falls, twelve out of fifteen stores carry them, while
only nine out of twenty-one stores do so in Springfield. This difference coupled with the
smaller number of households in Springfield relative to Sioux Falls (0.8 to 1) and the dif-
ference in market shares of top selling five SKUs between two markets (77.8% of share in
Sioux Falls relative to 65.8% of share in Springfield) resulted in the very small number of

households in Springfield with only 109 purchase records after data screening.
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not available to that household. Now in order to estimate the shelf prices of
competing SKUs, we follow the algorithm as follows: First, for a particular
store and a particular day, if the other household purchased a competing
brand, we assume the shelf price, not the purchasing price, for this SKU is
the price household i faced in that store on that day. If no purchase record
was found by that criterion, we look for the prices for other stores on that
day. If purchase record was still not found, we used the prices in the following
dates and weeks.

The summary statistics of the five SKUs analyzed in this study are listed
in Table 5.1. “Coupon Usage” indicates the percentage of purchases with
coupons, “Display” and “Feature” indicate the percentage of purchases with
these promotions, and “Mean Value of Coupons” indicates the average value

of coupons used.

Table 5.1: Summary statistics of SKUs under study.

SKU Share  Mean Price per oz. Mean Value of Coupons Coupon Usage Display Feature
Heinz 32 oz. 31.70% 3.37 1.24 37.94% 11.52%  43.82%
Heinz PLS 28 oz. 15.80% 4.38 2.41 33.09% 16.73%  34.55%
Hunt’s PLS & GLS 32 oz. 14.30% 3.22 1.30 32.57% 11.93%  36.70%
Del Monte 32 oz. 6.40% 2.87 1.00 7.20% 11.20%  36.00%
Control 32 oz. 5.00% 2.65 1.64 3.77% 5.66% 24.53%

To calibrate the effectiveness of our model, we tested the two other mod-
els; the model which only uses marketing variables as explanatory variable
(Model 1); the model which incorporates GL variable along with the mar-
keting variables (Model 2). The third model is our proposal model which
incorporates GL variable and run in addition to marketing variables (Model
3).

We have determined the number of segments based on AIC. The number

of segments is chosen to be four because no significant increase in AIC is ob-
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Table 5.2: AIC of the three models with different numbers of segments.
Model 1 Model 2 Model 3

2 segments  1310.60 1058.19 1041.80
3 segments  948.52 861.27  835.64
4 segments  842.64 805.61 796.74
5 segments  819.09 796.54 794.21
6 segments  809.53 803.84  813.02

served for Model 3 when the number of segments is increased from four to five
as shown in Table 5.2. The estimated parameters of Model 3 are presented
in Table 5.3. The coefficients of the SKU indicate intrinsic preferences for
that SKU with respect to “Control 32 ounce” which we choose as the base
SKU.

All the coefficients of Model 3 are consistent with the expected economic
behaviors, i.e., all the coefficients of price are negative, those of coupon,
display and feature are all positive in all segments. However, the intrinsic
preferences to SKUs and responsiveness to marketing variables differ signif-
icantly across segments. As for GL variable and run, they show interesting
patterns which would have not been discovered if run was not included in
the model.

Now to see the behavioral patterns regulated by the model, we calculated
the purchasing probabilities for each SKU and segment, assuming the situ-
ation where a household repeatedly purchase the same brands five times in
row. In the calculation, we used the average prices of SKUs and assuming
no promotions took place during the period. The results are shown in Table
5.4. For example, the number at t = 3 is the purchasing probability of the
SKU given two consecutive purchases of that SKU.

Here we summarize the result in short. As shown in Table 5.4, segments 1
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Table 5.3: The parameters of the Model 3.

segment 1 segment 2 segment 3 segment 4

Heinz 32 oz. -0.076 4.279 1.885 1.437
(0.0148) (0.0183) (0.0122) (0.0155)

Heinz PLS 28 oz. 1.311 2.661 1.727 2.399
(0.0072) (0.0070) (0.0065) (0.0073)

Hunt’s PLS & GLS 32 oz. 0.027 0.296 2.713 -2.530
(0.0068) (0.0050) (0.0097) (0.0055)

Del Monte 32 oz. 1.176 -2.141 1.071 -1.154
(0.0071) (0.0014) (0.0043) (0.0057)

Price -0.848 -0.735 -0.666 -2.509
(0.0701) (0.0769) (0.0682) (0.0713)

Coupon 2.792 5.015 3.287 5.471
(0.0211) (0.0207) (0.0183) (0.0202)

Display 3.419 3.903 3.855 4.750
(0.0070) (0.0067) (0.0067) (0.0072)

Feature 5.622 2.504 2.938 5.894
(0.0126) (0.0121) (0.0119) (0.0127)

GL 4.303 0.743 1.737 5.607
(0.0136) (0.0115) (0.0102) (0.0126)

Run 0.505 *.0.127 -0.222 -0.123
(0.0891) (0.0663) (0.0519) (0.0529)

Size of Segments 0.261 0.234 0.289 0.217

Total Log Likelihood -365.81

* 90% level significance with t-value -1.917. All the other coefficients were significant at

the 0.05 level. The numbers in parentheses are standard errors.
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Table 5.4: Logit probability of purchase: Model 3

Heinz 32 oz. Segment 1 Segment 2 Segment 3 Segment 4
t=0 8.8% 87.6% 20.6% 33.5%
t=1 56.1% 91.7% 42.4% 93.6%
t=2 74.9% 91.1% 40.4% 95.3%
t=3 86.7% 90.5% 37.7% 96.2%
t=4 93.1% 89.7% 34.7% 96.8%
t=5 96.4% 88.8% 31.3% 97.1%

Heinz PLS 28 oz. Segment 1 Segment 2 Segment 3 Segment 4
t=0 15.0% 8.3% 9.0% 7.1%
t=1 70.1% 12.4% 21.9% 68.7%
t=2 84.5% 11.7% 20.5% 75.3%
t=3 92.3% 10.9% 18.8% 79.4%
t=4 96.1% 10.0% 16.8% 81.9%
t=5 98.0% 9.2% 14.8% 83.5%

Hunt’s PLS & GLS 32 0z. Segment 1 Segment 2 Segment 3 Segment 4

t=0 11.2% 1.8% 52.5% 0.9%
t=1 62.4% 2.8% 75.8% 21.6%
t=2 79.5% 2.7% 74.2% 27.6%
t=3 89.4% 2.5% 72.0% 32.6%
t=4 94.6% 2.3% 69.3% 36.3%
t=5 97.2% 2.0% 66.0% 38.8%
Del Monte 32 oz. Segment 1 Segment 2 Segment 3 Segment 4
t=0 47.4% 0.2% 12.8% 9.0%
t=1 92.2% 0.3% 29.4% 74.0%
t=2 96.5% 0.3% 27.7% 79.8%
t=3 98.4% 0.3% 25.5% 83.3%
t=4 99.2% 0.3% 23.1% 85.5%
t=5 99.6% 0.2% 20.5% 86.7%
Control 32 oz. Segment 1 Segment 2 Segment 3 Segment 4
t=0 17.6% 2.1% 5.1% 49.5%
t=1 73.9% 3.2% 13.2% 96.6%
t=2 86.9% 3.0% 12.3% 97.5%
t=3 93.5% 2.8% 11.1% 98.0%
t=4 96.8% 2.5% 9.9% 98.3%
t=5 98.3% 2.3% 8.6% 98.5%
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Table 5.5: Logit probability of purchase: Model 2

Heinz 32 oz. Segment 1 Segment 2 Segment 3 Segment 4
t=0 8.8% 87.6% 20.6% 33.5%
t=1 94.6% 63.4% 85.1% 32.2%
t=2 95.5% 68.4% 87.3% 35.3%
t=3 96.2% 72.0% 88.9% 38.0%
t=4 96.7% 74.8% 90.0% 40.1%
t=5 97.0% 76.8% 90.8% 41.9%

Heinz PLS 28 oz. Segment 1 Segment 2 Segment 3 Segment 4
t=0 15.0% 8.3% 9.0% 7.1%
t=1 14.0% 49.7% 70.8% 14.4%
t=2 16.7% 55.2% 74.5% 16.2%
t=3 19.1% 59.5% 77.3% 17.8%
t=4 21.2% 62.8% 79.3% 19.1%
t=5 23.1% 65.4% 80.8% 20.3%

Hunt’s PLS & GLS 32 0z. Segment 1 Segment 2 Segment 3 Segment 4

t=0 11.2% 1.8% 52.5% 0.9%
t=1 12.4% 77.4% 0.1% 11.5%
t=2 14.9% 81.0% 0.2% 13.0%
t=3 17.1% 83.6% 0.2% 14.3%
t=4 19.1% 85.4% 0.2% 15.5%
t=5 20.8% 86.8% 0.3% 16.5%
Del Monte 32 oz. Segment 1 Segment 2 Segment 3 Segment 4
t=0 47.4% 0.2% 12.8% 9.0%
t=1 32.0% 0.8% 9.5% 39.5%
t=2 36.7% 0.9% 11.2% 42.9%
t=3 40.7% 1.1% 12.8% 45.7%
t=4 43.9% 1.3% 14.2% 47.9%
t=5 46.5% 1.4% 15.4% 49.7%
Control 32 oz. Segment 1  Segment 2 Segment 3 Segment 4
t=0 17.6% 2.1% 5.1% 49.5%
t=1 23.9% 55.4% 6.3% 79.6%
t=2 27.8% 60.7% 7.5% 81.8%
t=3 31.3% 64.9% 8.7% 83.4%
t=4 34.2% 68.0% 9.7% 84.6%
t=5 36.7% 70.4% 10.5% 85.5%
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and 4 exhibit strong inertia while segments 2 and 3 exhibit weak and modest
variety-seeking tendencies respectively. Segment 2 can be characterized by
its strong preferences to Heinz SKUs. Segment 3 with the largest proportion
of the households is least price sensitive and has relatively low coefficients
for coupons and features. Consumers in segment 4 most price sensitive and

respond to promotions most.

6 Conclusions and Discussions

In this study, we develop the comprehensive model which can accommodate
inertia and /or variety-seeking dependence along with the heterogeneous pref-
erences to brands and sensitivities to marketing variables and applied it to
the panel data of ketchup. Our model achieves the best AIC compared to
the previously proposed models with a fair number of significant variables,
indicating that the households are heterogeneous in their behavioral pat-
terns over time. The heterogeneities across households in terms of intrinsic
brand preferences and sensitivities to marketing variables are modeled as well
through the use of the latent class model.

Overall, the results of the empirical analysis give important connotations
for marketers, because the model without state dependence could be mis-
leading in constructing the strategy and planning promotions (Keane, 1997).
Specifically, the information in Table 5.4 can be used as a starting point for
brand managers to plan their marketing strategies and promotional activities.
For example, since households in segment 1 exhibit strong inertia, Del Monte
may need to ensure it has enough amounts of promotions to retain house-
holds in this segment since households in segment 1 are the best customers

for Del Monte. As households in this segment have low coefficients for coupon
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and display but have high coefficient for feature, Del Monte may increase a
budget for features to retain households in segment 1. Since households in
segment 2 exhibit strong preferences to Heinz, there seems to be little chance
for the other brands to be selected. From Heinz perspective, it may not need
spending on promotions for this segment since households in this segment
buy the brand anyway. Segment 3 is the main target for Hunt’s. Because
households in this segment are least price sensitive and have relatively low
coefficients for coupons and features, the display may be the best way to
ensure households in this segment to buy Hunt’s. Since households in this
segment are variety-seeker, Hunt’s may consider the brand line extension.
Segment 4 also exhibits strong inertia but they are most price sensitive and
respond to promotions most. For Heinz, this is the segment worth promoting
its Heinz 32 ounce. The Hunt’s and Del Monte are better off to spend its
budget on segment 1 or 3 since they have little chance to attract households
in segment 4.

Also, the results presented in Table 5.4 along with that of Table 5.3 can
also be used to measure the effect of promotion incorporating the multi-
period impact by examining the repeat purchasing probabilities. Let us take
Heinz 32 ounce as an example. The purchase probabilities for the SKU with
and without feature at ¢ = 0 are shown in Table 6.1.

Now let M be the size of the market and PM be the profit margin
of the SKU. Then the profit for Heinz 32 ounce without any promotion is
“33.0%- M - PM” where 33.0% is the proportion of households who purchase
the SKU in that condition. The profit when feature takes place is “93.7%- M -
PM —(Cost of Feature)” given that 93.7 % of households buy the SKU given
the promotion. Then the incremental profit from promotion is: “(93.7% —

33.0%) - M - PM — (Cost of Feature).” The measurement of promotion effect
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Table 6.1: An effect of promotion: a feature on Heinz 32 oz.

Segment 1 2 3 4 Average
Segment sizes  26.1% 23.4% 28.9% 21.7%
without feature 9.4% 81.1% 21.1% 25.3%  33.0%
with feature 96.6% 98.1% 83.5% 99.2% 93.7%

t=1 56.1% 91.7% 42.4% 93.6% *65.6%
t=2 74.9% 91.1% 404% 95.3% 53.1%
t=3 86.7% 90.5% 37.7% 96.2%  46.6%
t=4 93.1% 89.7% 34.7% 96.8%  42.5%
t=5 96.4% 88.8% 31.3% 97.1%  39.6%

* Tt is the weighted average of the households who would buy the SKU at ¢t = 1, i.e.,
0.261 - 0.966 - 0.561 + - -- 4+ 0.217-0.992 - 0.936 = 0.656.

without inertia stops here. However, there would be incremental households
who would keep buying Heinz 32 ounce from the next purchasing occasion on
due to inertia. According to the Table 6.1, 56.1% of households in segment
1 who bought Heinz 32 ounce would choose the SKU again on the next
purchasing occasion assuming no promotions of competing SKUs take place
and price stays the same. On the next purchasing occasion, 74.9% among
them would buy the SKU again. As such, we can calculate the proportion of
the households who would choose Heinz 32 ounce on the succeeding occasions
for each segment. The number of households who purchase the SKU are
65.6%, 53.1%, 46.6%, 42.5% and 39.6% times M. Thus the incremental profit

up to t = 5 can be calculated as

M {(65.6% — 33.0%) - PM + - - - + (39.6% — 33.0%) - PM} — (Cost of Feature)

= 0.8225- M - PM — (Cost of Feature).

Thus, the effect of promotion is under-estimated if the effect of inertia is not

accounted for. This number would be misleadingly larger if we use Model 2.

28



Unfortunately, the hybrid behavior was not detected in our analysis. This
may be because most of consecutive purchases of the same SKU are three at
most; about 90% of purchases in the data are shorter than three runs. Also,
the product like ketchup, where the bottle is consumed through a relatively
long period of time, a satiation effect may start during the consumption pe-
riod and that may lead households to switch brand, i.e., the hybrid behavior
is hidden as a result of the large package sizes of the ketchup. By using the
products which are consumed in a relatively short period of time the hybrid
behavior may has been detected.

For future studies, the model presented in this study can be tested using
different data sets for the validity of the model. The new variable to explain
state dependence can be constructed as well. It would be nice if we can in-
corporate the budget constraint in the model because households may switch

brands depending on their budget at each shopping trip.
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Appendix

A Scoring (Newton-Raphson) method

In order to maximize the (log) likelihood function, the algorithm called scor-
ing or Newton-Raphson method is widely used. First we explain Newton-
Raphson method. We denote the 3 at t+1-th iteration by adding superscript
as BV, In this method, a second-order Taylor expansion of LL(B*+)
around LL(BW) is taken as

LL(B"Y) = (81D — 5<t>)T g+ 1 (B — 5<t>)T H, (B4 — g0)

where R x 1 vector g, is the gradient at 3®

- (%)

and R x R matrix H; is matrix of the second derivatives

e (), - ()
" \oB )5\ 0BIBT

where 3* is between B¢ and B(t+1),

B=B®

B=B*

The value of 3%+ maximizing (A.1) is obtained by setting its derivative
Z€ero as

OLL (B(t+1))

ag+y o +H, (8Y - ") = 0.

This means

5(t+1) — B(t) + (_Ht_lgt)

assuming H; is invertible.
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In implementing the algorithm, the step size is often adjusted through

parameter A = 0.5,0.25 etc as

/B(H—l) — ,B(t) + ) (_Ht_lgt) )

It is because as the likelihood function gets close to its maximum, B¢+

may
pass the maximal point if its step size (—Ht_ 1 gt) is too large.

The scoring method is version of Newton-Raphson method where by the
likelihood function 1$" (ﬂ,ﬁgt)|H , Z) is replaced with its expected value
E [lgt) (71', ﬂgt)|H , Z)} to reduce the average number of iterations that can

fluctuate from sample to sample if we employ the random 1 (71', 5@ |H,Z ) .

A.1 Estimating parameters

In this subsection, we demonstrate how to calculate gradient and Hessian
using the standard logit specification. We assume that a panel data of pur-
chase histories for consumers ¢ = 1,..., N who purchase one of j =1,...,J
products at t; = 1,...,T; occasions. We also assume that all the products
are available for the group of consumers

The standard logit model, by modifying (4.3), can be written as

. EXP(L;; Zﬂ
Pr(] |B ) = 7 ( Z )
> 1= exp(Ti, B)
where x;;;, is 1 X R vector and 3 is R x 1 parameter vector. Accordingly the
likelihood function of the logit model can be written as

N T, J

LB) = [T T TT@rilsy)va,

i=1t;=1 j=1
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and the log likelihood is written as

N T
(B) = ZZZym log(Pr(j13))
=1 t;=1 j=1
T, J
= Z Zzyz]t log €Xp wzgt ﬂ Zexp wzlt
=1 t;=1 j=1
T J
= Z ZZy”tl {mm B3 — log (Z exp(Tiy, ) } ) (A.2)
i=1 t;=1 j=1
The gradient Now differentiate (A.2) with respect to the vector 3, we have
tentatively
, O, exp(@in, B)
(B) = ’ (T)
“aa Yijts N Tijt; — 7 ) (A.3)
op ; ti=1 ; ’ >_im1 exp(a,B)
since
Ozt
Wtfﬁ Lijt;1
01,3 _ . . . T
-l D e R S
O0z;ji, B
“98r Tijt; R

The last term on the right hand side of (A.3) is

i 8 X 7 ,6 T B T
- p(;;”l ) eXP(mmﬁ)xilm
0 ile; B
0>, exp(@ar,B) _ i expég;tl ) :i exp (i, B)Tiit,2
9 =1 : =1
8 X 7 ,6
- r()a(;;l ) ] | exp(miltiﬁ)xiltiR ]

Tilg;1
J
Ti1e;2
= Y exp@aB) |
=1 .

Zilt; R

mlltz thz .

IIMK‘

(A.4)
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Substituting (A.1) back into (A.3) yields

B LI SLy(exp(an B)ah, )
op B Zzzymi mgjti_ iijﬂexp(wiltﬁ)

i=1 t;=1 j=1
_ i i Z { Vi @L Yt > il (exp (@i, B)z]y,) }
i=1 t;=1 j=1 e Zf:l exp(zar,B)
_ Eii Yiit eXp(mZ]t /6) Lt
i=1 t;=1 j= " Z]t Zl—l exp(zar,;B)
N T
= E Z Z {ywt, Lijt, Prz ]l/B z]t }
i=1 t;=1 j=1
N T
= Z Z Z {ywtl PrZ j |/6)} azutZ (A5)
=1 t;=1 j=1

This is R x 1 vector of gradient.
Hessian Now differentiate (A.5) further with respect to 37 to obtain

tentatively
pup) O (SN I S e~ Prlil8)) 2T, )
oBoBT 037
N T
- P
S 9) 9) Pl (A0
=1 t;=1 j=1
where from
exp(xijt, leex T,
oPr,(718) B%Tﬁz:l L exp(@ir, B) — eXP(wz‘jtﬁ)W
o8 (L1 exp(@ir,8))?

(A7)

Since the term 8 exp(z;;:,3)/03" becomes

0 eXp(wi]’tiﬂ) _ 0 eXp(wi]’tiﬂ) 0 eXp(wijtiﬂ)
oBr 06 Y 9Br
= [exp(®it,)Tijt1, - - - eXP(®ijt,B)Tije, R]
= eXp(mijti/B)[xijtila cee :xijtiR] = exp(wijtiﬂ)mi]’tm
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and

9 Zijzl exp(xur,8) _ 0 Z{:l exp(i, B) ) Oz, 3

8ﬂT 8mijtﬁ a/BT
= eXp(.’Bijtiﬁ) : [l'ijtila s 7xijtiR]

= exp(xiju,B) - Tijt,

the equation (A.7) becomes

OPr;(j|8) _ exp(wijtiﬂ)mi]’ti Z{Zl exp(xq,3) — exp(wi]’tiﬂ) eXp(wiltiﬁ)mi]’ti
oB" (Zle exp(xqy,3))*
_ exp( i, )T, _ exp(xi;t,0) exp(xijt,0) -
Zijzl exp (i, B) 22]:1 exp(@iy,3) 22]:1 exp (T, 3) o
= Pri(j|/6)wijt¢ - {Pri(jlﬁ)}2wijti' (A.8)

Substituting (A.8) back into (A.6) yields

>*U(B) o 5Prz.7|5
2B0FT ZZZ opT i
N T; J

= — Z Z Z (Pri(j|5)wijt {Prz(ﬂﬂ)} Lijt; ) :,;ti
NZ_TZ : JJ_

- Z Z Z {Prz J |/6 m@]t mzyt Prl(jlﬁ)wz;tlwljtl)

=1 t;=1 j=1
T J

N N T; J
= I D APl Pl g, — > > > PrlilB)zl, i,

i=1 t;=1 j=1 =1 t;=1 j=1

which is R x R Hessian matrix.

A.2 BHHH method

One of the alternative methods to Newton-Raphson method is BHHH method

which would be introduced in this subsection. The Newton-Raphson method
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has two major drawbacks: calculating the Hessian is sometimes computation-
intensive and it does not guarantee an increase in the log-likelihood if the
log-likelihood is not globally concave.

The BHHH method uses matrix of outer products of the score as alter-
native to the negative Hessian in determining the next step. The score of an
observation for consumer 4, indexed by s;(3,), is defined as the derivative of
the observation’s log-likelihood with respect to the parameter (3, which is in

the form of

0In(Pr(j18))
.

Since the the log likelihood function for a standard logit model is written as

J J
Z Yij {mijtiﬁ —1In (Z eXP(%mﬁ)) } )
j=1 =1

differentiating it with respect to vector (3, yields

si(Br) =

i, exp(z1¢,8)
0Br

(ﬁr Yij Lijtir — 5 (Ag)
aﬂr Z_; T il exp(@i, 8)
since
Oz, B
a8, = Tijt;r-
The last term in (A.9) is
0 Zle eXp(milti/B) _ i 0 eXp<m’iltiﬁ)
95, 2 a5
J
= Z exp(@iy, B)Tie,r) - (A.10)
=1
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Substituting (A.10) back into (A.9) yields

J J
_, (exp(@ie, B) Tirg;r
si(B,) = Zylj o > 15 (@, B)Titr)
j=1 > =1 exp(Ti,B)
J
= S {ya Vi >oiey (exp(@ir,B)Tite,r)
- 1gligtir T
=1 Y >l exp(@in, B)
J
_ exp(ijt,3) Tijt,r
- Z yljxijti'r‘ - J
j=1 > -1 exp(Ta, B)
J
= Z {vijijer — Pri(i1B)zijert = Z {yij — Pri(jB)} wije,r-
Jj=1 j=1
We repeat the above procedure for r = 1,--- | R and stack them as R x 1 vec-

tor which we denote s;(3). In the BHHH algorithm, the matrix s;(3)s;(3)7

is used instead of negative of Hessian in Newton-Raphson method.

A.3 Variance of Estimates

The asymptotic covariance for correctly specified model is calculated as
VN(B—B) % N(O,~H ™)

where 8 is the maximum likelihood estimator, 3° denotes the true value of
parameter and H is the expected Hessian in the population. The negative
of this term —H is often called the information matrix (Train 2003). The
asymptotic covariance of is B is —H'/N. In practice, the asymptotic co-
variance of 3 is calculated as —H ! /N where H is the average Hessian in
the sample. In calculating the asymptotic covariance of is B, W~1/N and
B71!/N are used other than —H ' /N, where W is the sample covariance of
the scores and B is the sample average of outer product of the scores because
it is known that W — —H as N — oo and B -+ —H as N — oo at the

maximizing value of 8 by information identity (ibid).
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For any model for which the expected score is zero at the true value is

calculated as
VN@B-p") 5 NO,H'VH™)

where V' is the variance of scores in the population (ibid). The asymptotic
covariance of ﬁ is H-'V H!/N in this case, and it is valued whether or not
model is correctly specified or not. This matrix is called robust covariance
matrix for this reason. In practice, V is substituted by W or B and the ma-
trix is calculated as H'W H 1. If model is correctly specified, H 'V H!

reduces to —H ! since —H ! = V by information identity.
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