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Abstract

We study gluon scattering amplitudes/Wilson loops in N = 4 super Yang-Mills the-
ory at strong coupling which correspond to minimal surfaces with a light-like polygonal
boundary in AdS3. We find a concise expression of the remainder function in terms of
the T-function of the associated thermodynamic Bethe ansatz (TBA) system. Contin-
uing our previous work on the analytic expansion around the CFT/regular-polygonal
limit, we derive a formula of the leading-order expansion for the general 2n-point re-
mainder function. The T-system allows us to encode its momentum dependence in
only one function of the TBA mass parameters, which is obtained by conformal per-
turbation theory. We compute its explicit form in the single mass cases. We also find
that the rescaled remainder functions at strong coupling and at two loops are close
to each other, and their ratio at the leading order approaches a constant near 0.9 for
large n.
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1 Introduction

Gluon scattering amplitudes in N = 4 super Yang-Mills theory are dual to light-like polyg-

onal Wilson loops [1, 2]. The AdS-CFT correspondence enables us to study these ampli-

tudes/Wilson loops at strong coupling by calculating the area of the minimal surfaces in

AdS with the same light-like polygonal boundary [1].

The logarithm of the ratio of an amplitude to the tree-level amplitude is expressed as the

sum of the Bern-Dixon-Smirnov (BDS) part [3] and the remainder function part [4]. The

BDS part, which includes the IR divergent terms, is determined by the recursive structure of

the amplitudes [5] and the anomalous dual conformal Ward identities [6]. Due to the dual

conformal invariance, the remainder function is a function of the cross-ratios of external

momenta and has been shown to exist for n(≥ 6)-point amplitudes [7, 8].

It is important to determine its exact form in order to confirm the AdS-CFT correspon-

dence and study the structure of the amplitudes. At weak coupling, it has been calculated

perturbatively in some cases [9–16]. In particular, Heslop and Khoze proposed the two-loop

remainder function for 2n-point amplitudes for external momenta in R1,1, whose kinematical

configuration corresponds to a null polygon with 2n-cusps on the AdS3 boundary [12]. At

strong coupling, the remainder function can be evaluated by the minimal surfaces in AdS

with the help of integrability [17–25]. The cross-ratios of the cusp coordinates corresponding

to external momenta therein are expressed in terms of the Y-functions, which satisfy the

functional relations called the Y-system [26]. The remainder function is then written by

these Y-functions in addition to the free energy associated with the Y-system [19].

Under certain asymptotic conditions, the Y-functions also satisfy the Thermodynamic

Bethe Ansatz (TBA) integral equations, which describe finite-size effects of two-dimensional

integrable models [27]. Around the small mass parameter/high-temperature/UV limit,

which corresponds to regular-polygonal Wilson loops, one can study the free energy as

the ground state energy of the dual channel by using the conformal perturbation theory.

For the minimal surfaces with a 2n-gonal boundary in AdS3, the TBA equations are those

of the homogeneous sine-Gordon (HSG) model [28] with purely imaginary resonance pa-

rameters [20]. The relevant CFT in the UV limit is the generalized parafermion theory [29]

for SU(n − 2)2/U(1)n−3. Similarly for m-cusp Wilson loops/amplitudes in AdS4, the TBA

equations are those of the HSG model associated with the coset SU(m − 4)4/U(1)m−5 [20].

In order to obtain an analytic formula for the remainder function around the CFT point,

which is the main subject of this paper, we need to find small (complex) mass expansions

of the Y/T-functions. For this purpose, we note that the ratio of the g-function (boundary

entropy) [30] obeys the same integral equations as for the T-function [31]. Moreover, the
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exact g-functions for real small masses are obtained by the boundary and bulk perturbation

of the corresponding CFT [31, 32]. Combined with an analytic continuation to complex

masses, these give the analytic expansion of the T-functions. The expansion of the Y-

functions is obtained thereof, since the Y-functions are written generally as ratios of the

T-functions. Together with the expansion of the free energy, the analytic expansion for the

remainder function is derived.

In [25], Sakai and the present authors presented a general formalism to obtain the small-

mass expansion of the 2n-point remainder function for the minimal surfaces in AdS3 along

the above line of argument. In particular, the complete leading-order expansion was obtained

for n = 5 by examining the single mass cases classified in [33] and by using the exact mass-

coupling relations in [34,35]. We also derived for n = 4 an all-order expansion of the integral

representation of the remainder function obtained in [17]. These expressions were compared

with the 2-loop formulas. After appropriate normalization [9], the two rescaled remainder

functions were found to be very close to but different from each other.

The purpose of this paper is to study analytically the remainder function for the minimal

surfaces with a 2n-gonal boundary in AdS3 for general n. We show that the cross-ratios of

the cusp coordinates appearing in the remainder function are concisely expressed in terms

of the T-functions of the associated TBA system. Using this result, we derive a formula of

the leading-order expansion for the general 2n-point remainder function at strong coupling.

The T-system allows us to encode its momentum dependence in only one function of the

mass parameters. We explicitly compute this function in several simplified cases where the

TBA system contains only one mass scale. We also compare our strong coupling results with

those at two loops. As in the case of n = 4, 5 [9, 25], the rescaled remainder functions [9]

are close to each other, and their ratio at the leading order decreases to a constant near 0.9

for large n.

This paper is organized as follows: In section 2, we review some basic properties of the

remainder function and the T- and Y-functions related to the minimal surfaces in AdS3.

In section 3, we discuss the relation between the cross-ratios of the momenta and the T-

functions. We then present a formula for the remainder function expressed in terms of the

T-/Y-functions. In section 4, we discuss the expansion of the remainder function around

the CFT point. In section 5, we compute the explicit mass parameter dependence of the

leading expansion by using the exact mass-coupling relations in the single mass cases. In

section 6, we compare the remainder function at strong coupling with the 2-loop formula.

We also discuss the large-n limit of the expansion of the remainder function. We conclude

with a summary and discussion for future directions in section 7. Appendix A contains

some details about the relation between the T-functions and the cross-ratios for even n.
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2 Remainder function for 2n-point amplitudes

In this section we introduce the remainder function for the scattering amplitudes with

external momenta lying in two-dimensional subspace R1,1, which correspond to minimal

surfaces in AdS3 [17, 19, 20, 23, 25]. In this case, the number of gluons should be even for

momentum conservation, and thus the boundary of the minimal surfaces forms a light-

like polygon with 2n-cusps on the AdS3 boundary. We label its vertices in the light-cone

coordinates as x2k−1 = (x+
k , x−

k−1), x2k = (x+
k , x−

k ) with identification x±
k+n = x±

k (k =

1, · · · , n). The gluon momenta are given by

2πpj = xj+1 − xj. (2.1)

In conformal gauge, the equations for the minimal surfaces reduce to the generalized sinh-

Gordon equation ∂z∂z̄α − e2α + |p(z)|2e−2α = 0 for a real scalar α(z, z̄), where (z, z̄) are

worldsheet coordinates. p(z) is a polynomial of z of order n − 2 for a 2n-sided polygon.

It is convenient to define the coordinate w satisfying dw =
√

p(z)dz in order to study the

solution. The area of the minimal surfaces defined by A = 4
∫

d2ze2α is decomposed as

A = Asinh + 4

∫
d2z

√
pp̄, Asinh = 4

∫
d2z(e2α −

√
pp̄). (2.2)

In order to calculate the area, it is useful to consider two auxiliary linear differential

equations for the left and right spinors in AdS3, so that the coordinates of a minimal surface

are constructed as products of the two spinors. Introducing the spectral parameter ζ, one

can combine these equations into a single linear differential equation. Its compatibility

condition turns out to be the SU(2) Hitchin system, which reduces to the above generalized

sinh-Gordon equation. For a polynomial p(z) of order n−2, there are n angular regions called

the Stokes sectors, where one can define the large and small solutions. The small solution

in each sector is uniquely defined up to a factor. Let sj(z, z̄; ζ) be the small solution in the

j-th Stokes sector, with the normalized Wronskian

〈sj, sj+1〉 ≡ det(sj sj+1) = 1. (2.3)

We can extend the index j to take values in integers by analytic continuation of the solutions

with respect to z. Since the small solutions sj and sj+n belong to the same Stokes sector,

we have sj ∝ sj+n. We note that from the ratios of the Wronskians

Xijkl(ζ) =
〈si, sj〉〈sk, sl〉
〈si, sk〉〈sj, sl〉

, (2.4)
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one can calculate the cross-ratios of external gluon momenta as

Xijkl(1) =
x+

ijx
+
kl

x+
ikx

+
jl

, Xijkl(i) =
x−

ijx
−
kl

x−
ikx

−
jl

. (2.5)

We now define the remainder function from the area (2.2). The term Asinh in (2.2)

is finite and up to a constant turns out to be minus the free energy Afree = −F of an

integrable system, which we will discuss shortly. The constant term is evaluated in the

limit where the zeros of the polynomial p(z) are separated far apart and each zero gives

the value for the hexagon. The second term in (2.2) diverges since the surface extends to

infinity, while a finite part is written in terms of the period integrals on the Riemann surface

w2 = p(z). Introducing, e.g., the radial cut-off and subtracting the BDS part from the area,

we can obtain the remainder function at strong coupling. Because of the dual conformal

symmetry [1, 6, 36], it is a function of the cross-ratios of the external momenta. To find its

functional form is the main problem in this subject. The formula of the remainder function

at strong coupling is different for odd n and even n due to the monodromy around infinity.

2.1 Remainder function for odd n

For odd n the remainder function is

R2n =
7π

12
(n − 2) + Afree + Aperiods + ∆ABDS. (2.6)

Here Afree denotes the free energy part. Aperiods is defined by

Aperiods = i

(n−3)/2∑
r=1

(
w̄e

rw
m,r − we

rw̄
m,r
)
, (2.7)

where we
r =

∮
γe

r

√
p(z)dz and wm,r =

∮
γm,r

√
p(z)dz are the periods for the electric and

magnetic cycles with the canonical intersection form γe
r ∧ γm,s = δs

r . The fourth term is the

difference between the BDS formula and a part of the area solving the dual conformal Ward

identities:

∆ABDS =
1

4

n∑
i,j=1

log
c+
i,j

c+
i,j+1

log
c−i−1,j

c−i,j
, (2.8)

where c±i,j are the sequential cross-ratios formed by neighboring distances. To represent

these, we introduce a notation,

[i1, i2, i3, i4, i5, · · · , i2k]
± ≡ −

x±
i2i3

x±
i4i5

· · · x±
i2ki1

x±
i1i2

x±
i3i4

· · · x±
i2k−1i2k

, (2.9)
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Figure 1: Examples of sequential cross-ratios. c1,6 for n = 7 is shown in (a). caux
2,6 for

n = 8 is shown in (b). In (c), the dotted and dashed line stand for cleft
1,6 and cright

1,6 for

n = 8, respectively. In (d), the dotted and dashed line stand for dleft
1,5 and dright

1,5 for n = 8,
respectively. Superscripts ± are suppressed here for simplicity.

where x±
ij ≡ x±

i − x±
j . The cross-ratios are then given by1

c±i,j =

{
[i, i + 1, · · · , j − 1, j]±, j − i > 0: odd,
[i, i − 1, · · · , j + 1, j]±, j − i > 0: even,

(2.10)

together with c±i,j = c±j,i and c±i,i = c±i,i+1 = 1. The path connecting the vertices runs clockwise

for odd j − i > 0 and counterclockwise for even j − i > 0, respectively. In Fig. 1 (a), we

show an example of c±1,6 for n = 7.

2.2 Remainder function for even n

For even n case, the remainder function R2n can be obtained from the double soft limit of

the 2(n + 1)-point amplitudes [23], which is x±
n+1 → x±

1 . In this limit, one of the branch

point of γm,1 is sent to infinity, or equivalently m1 → ∞ with m2 kept finite in terms of

the mass parameters defined later in (2.26). The remainder function in this case receives

contributions from the non-trivial monodromy around infinity and becomes

R2n =
7π

12
(n − 2) + Afree + Aperiods + Aetxra + ∆ABDS. (2.11)

Here Afree is the free energy again. The period term Aperiods is

Aperiods = i

(n−2)/2∑
r=2

(
w̄e

rw
m,r − we

rw̄
m,r
)
, (2.12)

with the same definition of we
r, wm,r as in the odd n case. The extra term Aextra is given by

Aextra = −1

2
(ws + w̄s) log γR

1 +
1

2i
(ws − w̄s) log γL

1 , (2.13)

1In the following, we choose the range of the indices i, j so that |j − i| ≤ n.
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where ws describes the monodromy of the small solutions around infinity and is given by

ews+w̄s = [1, 2, ..., n]+, e(ws−w̄s)/i = [1, 2, ..., n]−. (2.14)

γL
1 , γR

1 are the Stokes coefficients of the associated Hitchin equations, which are given by

〈s0, s2〉(ζ) at ζ = 1, i, respectively. Finally, the ∆ABDS term is given by

∆ABDS =
1

4

n+1∑
i,j=1

log
ĉ+
i,j

ĉ+
i,j+1

log
ĉ−i−1,j

ĉ−i,j
. (2.15)

Here, ĉ±i,j = ĉ±j,i (i, j, = 1, ..., n + 1; mod n + 1) are obtained from c±i,j for the 2(n + 1)-point

amplitudes by the double soft limit and take the form,

ĉ±i,j =



caux±
i,j (i, j = 2, ..., n),

cleft±
1,2k (i = 1, j = 2k),

dright±
1,2k+1 (i = 1, j = 2k + 1),

cright±
1,2k (i = n + 1, j = 2k),

dleft±
1,2k+1 (i = n + 1, j = 2k + 1),

(2.16)

with ĉ±i,i = ĉ±i,i+1 = 1. caux±
i,j = caux±

j,i are the cross-ratios for auxiliary polygons made of the

cusp points {x±
2 , · · · , x±

n }:

caux±
i,j =

{
[i, i + 1, . . . , j]±, j − i > 0: odd,

[i, i − 1, . . . , 2, n, . . . , j]±, j − i > 0: even,
(2.17)

with caux ±
i,i = caux±

i,i+1 = 1. cleft,right±
1,2k = cleft,right±

2k,1 and dleft,right±
1,2k+1 = dleft,right±

2k+1,1 are the

cross-ratios containing the vertex x±
1 , which are given by

cleft±
1,2k = [1, 2, . . . , 2k]±,

cright±
1,2k = [1, n, . . . , 2k]±,

dleft±
1,2k+1 = −[1, n, 2, 3, . . . , 2k + 1]±, (2.18)

dright±
1,2k+1 = −[1, 2, n, n − 1, . . . , 2k + 1]±,

and cleft±
1,2 = cright±

1,n = 1. In Fig. 1 (b)-(d), we show examples of ĉi,j for n = 8.

2.3 Y-functions and free energy

In order to obtain the remainder function as a function of the cross-ratios (2.5), we still

need to compute Afree and Aextra, and to find the relation between Aperiods and the cross-

ratios. These are achieved by using the associated Y- and T-functions. In this subsection,

we consider Afree and Aperiods. Aextra is discussed in the next subsection. For a review on

the T-/Y-system, see [37] for example.
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For our purpose, we first define the T-functions Ts (s = 0, · · · , n − 2) by

T2k+1(θ) = 〈s−k−1, sk+1〉(ζ), T2k(θ) = 〈s−k−1, sk〉(e
πi
2 ζ), (2.19)

where ζ = eθ is the spectral parameter. From the Plücker relation

〈si, sj〉〈sk, sl〉 + 〈si, sl〉〈sj, sk〉 + 〈si, sk〉〈sl, sj〉 = 0, (2.20)

the functions Ts(θ) are shown to satisfy the T-system of An−3-type:

Ts

(
θ +

πi

2

)
Ts

(
θ − πi

2

)
= 1 + Ts−1(θ)Ts+1(θ), (2.21)

where T0 = 1 by definition, and one can choose the gauge Tn−2 = 1 for odd n. We have also

set T−1 = Tn−1 = 0, which is in accord with (2.19). We note that this T-system is invariant

under a (residual) gauge transformation Ts → eµs cosh θTs with µs being constants satisfying

µs+1 + µs−1 = 0.

We then define the Y-functions Ys (s = 1, · · · , n − 3) by using Xijkl in (2.4):

Y2k(θ) = −X−k,k,−k−1,k+1(ζ), Y2k+1(θ) = −X−k−1,k,−k−2,k+1(e
πi
2 ζ). (2.22)

These Y-functions satisfy

Ys(θ) = Ts−1(θ)Ts+1(θ), (2.23)

and obey the Y-system,

Ys

(
θ +

πi

2

)
Ys

(
θ − πi

2

)
=
(
1 + Ys−1(θ)

)(
1 + Ys+1(θ)

)
, (2.24)

Here we have set Y0 = Yn−2 = 0, which is in accord with (2.22). The WKB analysis [19,38]

shows that the Y-functions for the minimal surfaces have the asymptotic behavior,

log Ys(θ) ∼ −ms

2ζ
(ζ → 0),

log Ys(θ) ∼ −m̄sζ

2
(ζ → ∞). (2.25)

Here, we have introduced the “mass” parameters ms which are given by

m2k = −2Z2k, m2k+1 = 2iZ2k+1, (2.26)

through the period integrals Zs = −
∫

γs

√
p(z)dz. The cycles γs are related to the electric

and magnetic cycles γe
r , γm,s by γ2k = (−1)k+1(γe

k − γe
k+1), γ2k−1 = (−1)k+1γm,k. Their

intersection numbers are given by γ2k ∧ γ2l−1 = δk,l + δk+1,l and γ2k ∧ γ2l = γ2k+1 ∧ γ2l+1 = 0.
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Defining the intersection matrix θrs ≡ γr ∧ γs and its inverse wrs ≡ (θ−1)rs, which exits for

odd n, the period term Aperiods takes the form iwrsZrZ̄s for odd n. In terms of ms, it reads

Aperiods =
1

4

(n−3)/2∑
k=1

(n−3)/2∑
j=k

(−1)j+k+1(m2jm̄2k−1 + m̄2jm2k−1). (2.27)

The period term for even n is obtained from Aperiods for odd n′ = n + 1 by the double soft

limit:

Aperiods =
1

4

(n−2)/2∑
k=2

(n−2)/2∑
j=k

(−1)j+k+1(m2k−2m̄2j−1 + m̄2k−2m2j−1). (2.28)

To derive the integral equations obeyed by the Y-functions, we introduce

Ỹs(θ) = Ys(θ + iϕs), (2.29)

where ϕs are the phases of the mass parameters,

ms = |ms|eiϕs . (2.30)

In terms of these Ỹs, the asymptotic behavior (2.25) becomes

log Ỹs(θ) ∼ −|ms| cosh θ (|θ| → ∞). (2.31)

From the Y-system (2.24), one can then derive the integral equations

log Ỹs(θ) = −|ms| cosh θ +

∫ ∞

−∞
dθ′
[
K(θ − θ′ + iϕs − iϕs−1) log

(
1 + Ỹs−1(θ

′)
)

+ K(θ − θ′ + iϕs − iϕs+1) log
(
1 + Ỹs+1(θ

′)
)]

, (2.32)

where the kernel of the integral is defined by

K(θ) =
1

2π

1

cosh θ
. (2.33)

The integral equations are valid for |ϕs −ϕs±1| < π/2, and are identified [20] with the TBA

equations of the homogeneous sine-Gordon (HSG) model with purely imaginary resonance

parameters associated with the coset SU(n − 2)2/U(1)n−3.

Finally, we obtain Afree by using Ỹs:

Afree =
1

2π

∫ ∞

−∞
dθ

n−3∑
s=1

|ms| cosh θ log
(
1 + Ỹs(θ)

)
. (2.34)

In this formalism, the period and free energy terms are given as functions of ms. These are

converted to functions of the cross-ratios through the Y-functions, which are also functions of

ms. Consequently, one obtains the remainder function for odd n in terms of the cross-ratios

of external momenta.
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2.4 T-functions and extra term

To complete the computation of the remainder function for even n, we still need Aextra in

terms of the cross-ratios or indirectly of the mass parameters. It turns out that this reduces

to the computation of the T-functions.

In order to obtain the T-functions, we first note that the asymptotic behavior of Ys in

(2.25) and the relation between the Y- and the T-functions (2.23) lead to the asymptotic

behavior,

log Ts(θ) ∼ − νs

2ζ
(ζ → 0),

log Ts(θ) ∼ − ν̄sζ

2
(ζ → ∞), (2.35)

where νs satisfy ms = νs−1+νs+1. Since T0 = 1, one has ν0 = 0. Similarly to the Y-functions,

we then introduce

T̃s(θ) = Ts(θ + iφs), (2.36)

where φs are the phases of νs,

νs = |νs|eiφs . (2.37)

In terms of T̃s, the asymptotic behavior (2.35) reads

log T̃s(θ) ∼ −|νs| cosh θ. (2.38)

From the T-system (2.21), one can then derive the integral equations

log T̃s(θ) = −|νs| cosh θ +

∫ ∞

−∞
dθ′K(θ − θ′ + iφs − iϕs) log

(
1 + Ỹs(θ

′)
)
. (2.39)

By solving these equations, one obtains Ts as functions of νs, which are in turn expressed

by ms. For odd n, the gauge Tn−2 = 1 implies νn−2 = 0. This gives

ν2i =
i−1∑
k=0

(−1)km2(i−k)−1, ν2i+1 =
m−2−i∑

k=0

(−1)km2(i+k)+2. (2.40)

For even n, the gauge νn−2 = 0 is not consistent generally, but ν1 = 0 is possible instead.

With this gauge choice,

ν2i =
i−1∑
k=0

(−1)km2(i−k)−1, ν2i+1 =
i−1∑
k=0

(−1)km2(i−k). (2.41)

In particular νn−2 is given by

νn−2 = mn−3 − mn−5 + · · · + (−1)
n
2
−2m1. (2.42)
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Since Yn−2 = 0, we also have

log Tn−2(θ) = −1

2

(
νn−2e

−θ + ν̄n−2e
θ
)
. (2.43)

Now let us write down the extra term Aextra for even n in terms of these T-functions.

First, since Tn−2 =
∏n/2−2

k=0 Y
(−1)k

n−3−2k, the monodromy terms in (2.14) are given by

ews+w̄s =
(
Tn−2

(
−π

2
i
))(−1)n/2+1

, e(ws−w̄s)/i =
(
Tn−2(0)

)(−1)n/2+1

. (2.44)

In addition, the Stokes coefficients γL,R
1 are given through the relations γ1(ζ) = 〈s0, s2〉(ζ) =

〈s−1, s1〉(eπiζ) = T1(θ + πi). Putting these together, we find

Aextra =
(−1)

n
2

2

[
log Tn−2

(
−π

2
i
)

log T1

(3π

2
i
)
− log Tn−2(0) log T1(πi)

]
. (2.45)

By expressing νs and ms in terms of the cross-ratios through the Y-functions, one obtains

the remainder function for even n as a function of momenta.

2.5 Z2n-symmetry and periodicity of Y-/T-functions

The remainder function is invariant under the cyclic shift of the cusp points xk → xk+1, or

in terms of the light-cone coordinates,

x−
j → x+

j+1 , x+
j → x−

j . (2.46)

This Z2n-symmetry is concisely expressed by the Y-functions as [39],

Ys(θ) → Ys

(
θ +

π

2
i
)
. (2.47)

This symmetry strongly constrains the structure of the remainder function [25, 39]. More-

over, acting with this symmetry twice induces a translation of the light-cone coordinates,

x±
j → x±

j+1. (2.48)

In the next section, we use this Zn-transformation for representing cross-ratios by the Y-

/T-functions.

Another property used in the later sections is the periodicity of the Y-/T-functions.

First, from the Y-system (2.24) with the boundary condition Y0 = Yn−2 = 0, one finds the

following half-periodicity of the Y-functions:

Ys

(
θ +

πi

2
n
)

= Yn−2−s(θ), (2.49)
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where s = 0, . . . , n−2. We note that this implies the full periodicity Ys(θ+πin) = Ys(θ). One

can similarly find the periodicity of the T-functions. For odd n, we have the half-periodicity

Ts

(
θ +

πi

2
n
)

= Tn−2−s(θ), (2.50)

where s = 0, . . . , n− 2. For even n one has to take into account the fact that the rightmost

T-function is not generally equal to unity; Tn−2(θ) 6= 1. Then, the T-system (2.21) with the

boundary condition T0 = 1 and (2.43) leads to the quasi-periodicity,

Ts

(
θ +

πi

2
n
)

= Tn−2−s(θ)Tn−2

(
θ +

πi

2
(s − 2)

)
, (2.51)

where s = 0, . . . , n − 2 and we have used Tn−2(θ + πi) = T−1
n−2(θ). For the periodicities of

the Y- and T-systems, see [40] for example.

3 Cross-ratios and T-functions

In the previous section, the remainder function was given in terms of the Y-/T-functions,

the mass parameters specifying their asymptotic behavior and the sequential cross-ratios

c±i,j, ĉ
±
i,j. In this section, we find that c±i,j, ĉ

±
i,j and hence ∆ABDS are concisely expressed by

the T-functions. This shows that each term in the remainder function is directly represented

in the language of the Y-/T-system. Furthermore, it turns out that such a representation

enables us to derive an analytic expansion of the remainder function around the CFT limit,

beyond numerical analysis or that in the small or large mass limit.

Before going into details, let us summarize our notation. In terms of the bracket intro-

duced in (2.9), the 4-point cross-ratios in (2.5) are given by

[i, j, k, l]± = −
x±

jkx
±
li

x±
ijx

±
kl

= −Xiljk(ζ), (3.1)

where ζ = 1(i) for plus(minus) sign.2 From the relation between Xijkl and the Y-functions

(2.22), we then find that

[k, k + 1,−k − 2,−k − 1]+ = Y
[−1]
2k+1, [k, k + 1,−k − 1,−k]+ = Y

[0]
2k ,

[k, k + 1,−k − 2,−k − 1]− = Y
[0]
2k+1, [k, k + 1,−k − 1,−k]− = Y

[1]
2k , (3.2)

where

Y [k]
s ≡ Ys

(πi

2
k
)
. (3.3)

2The cross-ratio χijkl ≡ xijxkl/xikxjl satisfies relations such as χijkl = χjilk = χklij , χikjl = 1/χijkl,
χlijk = 1 − χijkl, χijkl/χijkm = χlkjm.

11



_

_

_

_

_

_

_

_

+

+

+

+

+

+

+

+

Figure 2: Graphical representation of Y-functions for n = 7. Y
[k]
s are represented by

tetragons in the heptagon formed by the cusp coordinates x±
i (i = 1, ..., 7). Here, the i-

th vertex stands for x+
i . The + sign indicates factors appearing in the numerator of the

cross-ratios, whereas the − sign indicates those in the denominator.

These relations are understood graphically: in the n-gons formed by x±
i , the Y-functions at

special values of θ are identified with the tetragons which are represented by the brackets

in (3.2) . In Fig. 2, we show an example for n = 7 and x+
i .

3.1 Odd n case

Now, let us discuss the relation between the sequential cross-ratios and the Y-/T-functions.

We begin with the odd n case, where c±i,j are given in (2.10). We recall that the subscripts

i, j labeling the vertex are defined modulo n.

To find the relation of our interest, we first derive recursion relations among c±i,j. As

a simple example, let us consider c+
1,n−2 = c+

1,−2 = [1, 0,−1,−2]+ = Y
[−1]
1 . By adding two

vertices, one has c2,−3 = [2, 1, 0,−1,−2,−3]+. Multiplying these two then gives Y
[−1]
3 :

c+
1,−2c

+
2,−3 = [1, 2,−3,−2]+ = Y

[−1]
3 . (3.4)

This is easily understood graphically as in Fig. 3, where c+
1,−2 and Y

[−1]
3 are represented as

a tetragon whereas c2,−3 is as a hexagon. Continuing similar procedures, we also have

c+
k,−k−1c

+
k+1,−k−2 = [k, k + 1,−k − 2,−k − 1]+ = Y

[−1]
2k+1, (3.5)

where k = 0, · · · , r − 2 and we have set n ≡ 2r + 1. Another simple example is given

by c+
r−1,−r+1 = Y

[0]
n−3. Multiplying this with c+

r−2,−r+2, we have c+
r−2,−r+2c

+
r−1,−r+1 = Y

[0]
n−5.

Similarly, we find

c+
k,−kc

+
k+1,−k−1 = [k, k + 1,−k − 1,−k]+ = Y

[0]
2k , (3.6)

where k = 1, · · · , r − 1.
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Figure 3: Graphical representation of a recursion relation for ci,j. The dashed line represents
c1,−2. The dotted line stands for c2,−3. The bold line represents Y3.

Next, we invert the relations (3.5) and (3.6), to find

c+
k+1,−k−2 =

k∏
l=0

(
Y

[−1]
2k+1−2l

)(−1)l

= T
[−1]
2k+2,

c+
k,−k =

n−3
2

−k∏
l=0

(
Y

[0]
2k+2l

)(−1)l

= T
[0]
2k−1. (3.7)

These cover all the non-trivial sequential cross-ratios which contain the tetragonal factor

[0, 1,−2,−1]+ = Y
[−1]
1 or [r− 1, r,−r,−r +1]+ = Y

[0]
n−3. To obtain other cross-ratios, we use

the Zn-transformation x±
j → x±

j+1 in (2.48). Since this is generated by Y
[k]
s → Y

[k+2]
s , we

find from (3.7) that

c+
k+1+l,−k−2+l =

k∏
l=0

(
Y

[2l−1]
2k+1−2l

)(−1)l

= T
[2l−1]
2k+2 ,

c+
k+l,−k+l =

n−3
2

−k∏
l=0

(
Y

[2l]
2k+2l

)(−1)l

= T
[2l]
2k−1. (3.8)

Graphically, the Zn-transformation generates rotations of the polygons represented by c±i,j.

The cross-ratios c−i,j are obtained from c+
i,j simply by the shift Y

[k]
s → Y

[k+1]
s . We then find

that the expression for the cross-ratios are further summarized in the form,

c+
i,j = T

[i+j]
|i−j|−1, c−i,j = T

[i+j+1]
|i−j|−1 . (3.9)

This formula gives a concise expression of ∆ABDS in (2.8). Furthermore, by using the

quasi-periodicity (2.50), one can derive an expression in terms of Ts with s ≤ (n − 3)/2,

∆ABDS = −1

4

n−3
2∑

s=1

2n∑
k=1

log
T

[k−1]
s

T
[k]
s−1

log
T

[k]
s

T
[k−1]
s−1

− 1

4

n∑
k=1

log
T

[k−1]
n−3

2

T
[k+n]
n−3

2

log
T

[k]
n−3

2

T
[k+n−1]
n−3

2

, (3.10)
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where T0 = 1. This is used for studying the expansion of the remainder function in the next

section.

3.2 Even n case

Let us move on to the case of even n. In this case, the sequential cross-ratios ĉ±i,j are generally

more complicated than c±i,j for odd n. However, it turns out that still ĉ±i,j are concisely

represented by the Y-/T-functions: choosing the range of the indices as 1 ≤ i, j ≤ n+1, we

find that

ĉ+
i,j =

{
T

[i+j]
|i−j|−1 ( i − j : odd )

T
[i+j]
|i−j|−1(T

[2]
1 )(−1)j+1

(T
[−1]
n−2 )(−1)j+ n

2 ( i − j : even )
,

ĉ−i,j =

{
T

[i+j+1]
|i−j|−1 ( i − j : odd )

T
[i+j+1]
|i−j|−1 (T

[3]
1 )(−1)j+1

(T
[0]
n−2)

(−1)j+ n
2 ( i − j : even )

, (3.11)

for 2 ≤ |i − j| ≤ n − 1 and ĉ±i,j = 1 otherwise. For details, see the appendix. Since the

quasi-periodicity (2.51) for even n involves the factor of Tn−2, the expression is modified if

we choose a different range of i, j. Note also that (−1)j = (−1)i for even |i − j| and the

above expression is symmetric with respect to i and j.

This formula gives a concise expression of ∆ABDS for even n in (2.15). Furthermore,

similarly to the case of odd n, one finds an expression in terms of Ts with s ≤ (n− 2)/2 by

using the quasi-periodicity (2.51) :

∆ABDS = −1

4

n
2
−1∑

s=1

2n∑
k=1

log
T

[k−1]
s

T
[k]
s−1

log
T

[k]
s

T
[k−1]
s−1

+
1

2

n∑
k=0

log T
[k]
n
2
−1 log T

[k+ n
2
+2]

n−2

− n − 1

4
log T

[0]
n−2 log T

[−1]
n−2 +

(−1)
n
2
+1

2
log T

[−1]
n−2 log T

[3]
1 (3.12)

+
(−1)

n
2

2
log T

[0]
n−2 log

[
T

[2]
1

[n
4
]∏

l=1

(T
[0]
2l−1)

2(−1)l

]

where T0 = 1, and [n/4] in the product stands for the greatest integer less than or equal to

n/4 (Gauss symbol). Since Tn−2(θ) = e−νn−2 cosh θ for real masses, log T
[−1]
n−2 and hence the

middle line in (3.12) vanish in this case.
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3.3 Remainder function

Given the expression of ∆ABDS in terms of the T-functions, the remainder function for the

2n-point amplitudes at strong coupling is summarized as follows: For odd n,

R2n =
7π

12
(n − 2) +

1

2π

∫ ∞

−∞
dθ

n−3∑
s=1

|ms| cosh θ log
(
1 + Ỹs(θ)

)
−1

4

(n−3)/2∑
k=1

(n−3)/2∑
j=k

(−1)j+k(m2jm̄2k−1 + m̄2jm2k−1)

−1

4

(n−3)/2∑
s=1

2n∑
k=1

log
T

[k−1]
s

T
[k]
s−1

log
T

[k]
s

T
[k−1]
s−1

− 1

4

n∑
k=1

log
T

[k−1]
(n−3)/2

T
[k+n]
(n−3)/2

log
T

[k]
(n−3)/2

T
[k+n−1]
(n−3)/2

, (3.13)

For even n, Aextra and ∆ABDS add up to be simplified, and give

R2n =
7π

12
(n − 2) +

1

2π

∫ ∞

−∞
dθ

n−3∑
s=1

|ms| cosh θ log
(
1 + Ỹs(θ)

)
−1

4

(n−2)/2∑
k=2

(n−2)/2∑
j=k

(−1)j+k(m2k−2m̄2j−1 + m̄2k−2m2j−1)

−1

4

n
2
−1∑

s=1

2n∑
k=1

log
T

[k−1]
s

T
[k]
s−1

log
T

[k]
s

T
[k−1]
s−1

+
1

2

n∑
k=0

log T
[k]
n
2
−1 log T

[k+ n
2
+2]

n−2

−n − 1

4
log T

[0]
n−2 log T

[−1]
n−2 +

(−1)
n
2

2
log T

[0]
n−2 log

[ [n
4
]∏

l=1

(T
[0]
2l−1)

2(−1)l

]
. (3.14)

Now the remainder function is written completely in term of the T-/Y-functions. By

using these expressions and the conformal perturbation theory of the underlying integrable

models, we discuss analytic expansions of the remainder function around the CFT/small-

mass limit in the next section .

4 High-temperature expansion

As noted in section 2, the TBA equations (2.32) are identical to those of the homogeneous

sine-Gordon model associated with SU(n− 2)2/U(1)n−3. This HSG model is obtained as an

integrable perturbation of the coset SU(n − 2)2/U(1)n−3 CFT,

S = SCFT + λ

∫
d2x Φλ,λ̄, (4.1)
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where Φλ,λ̄ is the perturbing operator, which is given by a linear combination of the weight

0 adjoint operators in the coset CFT. The coupling constant λ is related to the overall mass

scale M as

λ = −κnM
2−(∆+∆̄), (4.2)

where ∆ = ∆̄ = (n−2)/n are the conformal dimensions of Φλ,λ̄ and κn is the dimensionless

coupling. In the small-mass limit, one can perturbatively expand the physical quantities

around the CFT point (λ = 0) by using the conformal perturbation theory. Since the mass

scale is proportional to the inverse temperature, we call it the high-temperature/small-

mass expansion. In [25], we discussed the high-temperature expansion in the HSG model.

In particular, the Y-/T-functions are expanded by using the relation to the g-function

(boundary entropy) [30]. Together with the expansion of the free energy, we obtained the

high-temperature expansion of the remainder function at strong coupling for the octagon

and for the decagon explicitly.

Here we consider the high-temperature expansion of the remainder function for the

general 2n-gon at strong coupling. Below we mainly focus on the case that all the masses

are real. The results in the general case of complex masses are obtained by complexifying

the masses in the final expression [25]. The way of the complexification is specified by

consideration based on the Z2n-symmetry (2.47), which is equivalent to ms → ms/i in the

high-temperature expansion.

4.1 Expansion of T-functions

First, let us consider the expansion of the T-function. From the periodicity, the Y- and T-

functions have the Laurent expansion for |θ| < ∞. Each coefficient of the Laurent expansion

is further expanded by the scale parameter l = ML near the high-temperature limit, where

L is the size of the system. See [25] for detail. In our notation, the mass Mj of the j-th

particle is related to mj in the TBA equations (2.32) as follows,

|mj| = MjL = M̃jl, (4.3)

where M̃j ≡ Mj/M is the relative mass.

For odd n case, since the T-functions satisfy the half-periodicity (2.50), the T-functions

are expanded as

Ts(θ) =
∞∑

p,q=0

t(p,2q)
s l(1−∆)(p+2q) cosh

(
2pθ

n

)
, (4.4)
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with t
(p,2q)
n−2−s = (−1)pt

(p,2q)
s . Some of the coefficients t

(p,2q)
s are fixed by the T-system. For

example, one can check that

t(0,0)
s =

sin( (s+1)π
n

)

sin(π
n
)

, (4.5)

and

t(1,0)
s = t(0,2)

s = t(1,2)
s = 0. (4.6)

Note that t
(0,0)
s is equal to the quantum dimensions (ratios of the modular S-matrices)

because the T-system reduces to the Q-system at this order. One can also check that (4.5)

and (4.6) are consistent with the results from the CFT perturbation. In [25], we determined

the first non-trivial coefficient t
(2,0)
s as

t
(2,0)
s

t
(0,0)
s

= −κnG(M̃j)B(1 − 2∆, ∆)

2(2π)1−2∆

(
sin(3(s+1)π

n
)

sin( (s+1)π
n

)

√
sin(π

n
)

sin(3π
n

)
−

√
sin(3π

n
)

sin(π
n
)

)
, (4.7)

where B(x, y) ≡ Γ(x)Γ(y)/Γ(x + y) is the beta function, and G(M̃j) is the normalization

factor of the two-point function of the perturbing operator Φλ,λ̄,

〈
Φλ,λ̄(z)Φλ,λ̄(0)

〉
=

G2

|z|4∆
, G(M̃j) =

n−3∑
i,j=1

M̃
2
n
i FijM̃

2
n
j . (4.8)

Classically, the coefficients Fij are given by the inverse of the Cartan matrix. At the quantum

level, however, these coefficients receive corrections due to the renormalization.

For even n case, the expansion is slightly complicated due to the extra factor in the

quasi-periodicity (2.51). From the quasi-periodicity, we find that the T-functions should

have the following forms,3

T2k+1(θ) = T̂2k+1(θ) e(−1)k+ n
2 2

nπ
νn−2θ sinh θ

(
k = 0, . . . ,

n

2
− 2
)

,

T2k(θ) = T̂2k(θ) e(−1)k+ n
2 1

2
νn−2 cosh θ

(
k = 1, . . . ,

n

2
− 2
)

. (4.9)

Here, T̂s(θ) satisfy the half-periodicity T̂s(θ + πin/2) = T̂n−2−s(θ), and are expanded near

the high-temperature limit as

T̂s(θ) =
∞∑

p,q=0

t̂(p,2q)
s l(1−∆)(p+2q) cosh

(
2pθ

n

)
. (4.10)

3The quasi-periodicity constrains the form of the exponent up to (θ − ck) sinh θ, where ck is a constant.
For real masses, the reality condition T (θ) = T (−θ̄) requires ck = 0. For n = 4 with complex masses, this
constant is precisely the phase of the mass parameter. One can also check for lower n that ck is independent
of k to satisfy the T-system.
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Since the exponential factors in (4.9) start to be non-trivial at O(l), the coefficients t̂
(p,2q)
s

for lower p and q are the same as t
(p,2q)
s . Consequently, we have the same formulae (4.5)

and (4.6) as in the odd n case, and t̂
(2,0)
s = t

(2,0)
s are given by (4.7) for n ≥ 6.4 We also

note that T2k+1(θ) for even n contain the non-analytic term log l in the high-temperature

expansion. This follows from the integral equations (2.39) and the above expansions (4.9).

The non-analytic terms are cancelled in Ys and T2k, which are given by the ratios of Ys. We

will come to this point later again.

4.2 Expansion of remainder function at strong coupling

Now let us consider the high-temperature expansion of the remainder function at strong

coupling. As seen in the previous sections, the remainder function is given by (2.6) or (3.13)

for odd n and by (2.11) or (3.14) for even n.

4.2.1 Odd n case

Let us first consider the odd n case. In this case, the period term is given by (2.27). As

seen in [25], the CFT perturbation allows us to expand the free energy part as

Afree =
π

6
cn + fbulk

n +
∞∑

k=2

f (k)
n l

4k
n , (4.11)

where cn is the central charge of the coset CFT for SU(n − 2)2/U(1)n−3, and fbulk
n is the

bulk contribution. They are given respectively by

cn =
(n − 2)(n − 3)

n
, fbulk

n =
1

4

n−3∑
j,k=1

mj(I
−1)jkmk, (4.12)

with Ijk being the incidence matrix for An−3. One can check that the bulk term fbulk
n

just cancels with the period part Aperiods.
5 The corrections f

(k)
n in (4.11) are given by the

worldsheet integral of the connected k-point function of the perturbing operator. For k = 2,

we have

f (2)
n =

π

6
C(2)

n κ2
nG2(M̃j), (4.13)

4For n = 4, t̂
(2,0)
1 differs from t

(2,0)
1 due to the factor in (4.9), and (4.7) does not make sense because

∆ = 1/2. The relation between the T-function and the g-function, from which (4.7) is derived, is based on
the integral equations obeyed by them and not on the particular form of the expansion. One can numerically
check (4.7) for even n, as was done for odd n [25].

5Useful relations to see this are Zj = − 1
2ηjkmk and the one between the incidence matrix and the

intersection matrix I = iηθη−1 where η =diag(i, 1, i, · · · ).
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where

C(2)
n = 3(2π)

2(n−4)
n γ2

(
n − 2

n

)
γ

(
4 − n

n

)
, (4.14)

and γ(x) ≡ Γ(x)/Γ(1 − x).

Since ∆ABDS is expressed in terms of the T-functions as in (3.10), we find the high-

temperature expansion of ∆ABDS after substituting (4.4) into (3.10),

∆ABDS = −n

2

(n−3)/2∑
s=1

log2

(
t
(0,0)
s

t
(0,0)
s−1

)
− l

8
n
n

4

(n−3)/2∑
s=1

An,s − 2

t
(2,0)
n−3

2

t
(0,0)
n−3

2

2

sin2
(π

n

) , (4.15)

where

An,s ≡

(t
(2,0)
s−1

t
(0,0)
s−1

)2

+

(
t
(2,0)
s

t
(0,0)
s

)2
 cos

(
2π

n

)
−

2t
(2,0)
s−1 t

(2,0)
s

t
(0,0)
s−1 t

(0,0)
s

+

(t
(2,0)
s−1

t
(0,0)
s−1

)2

−

(
t
(2,0)
s

t
(0,0)
s

)2

− 4

(
t
(0,4)
s−1

t
(0,0)
s−1

− t
(0,4)
s

t
(0,0)
s

) log

(
t
(0,0)
s

t
(0,0)
s−1

)
, (4.16)

and we have used (4.6). The coefficients t
(0,0)
s and t

(2,0)
s are given by (4.5) and (4.7), respec-

tively. For t
(0,4)
s , we have the equations which follow from the T-system,

2t(0,0)
s t(0,4)

s +
1

2
(t(2,0)

s )2 cos

(
4π

n

)
= t

(0,0)
s−1 t

(0,4)
s+1 + t

(0,0)
s+1 t

(0,4)
s−1 +

1

2
t
(2,0)
s−1 t

(2,0)
s+1 , (4.17)

for s = 1, . . . , n−3. By solving these equations with the boundary condition T0 = Tn−2 = 1,

the coefficients t
(0,4)
s are expressed in terms of t

(0,0)
s and t

(2,0)
s .

We note that t
(3,0)
s , t

(2,2)
s and t

(4,0)
s do not appear in the expansion. This is understood as

a consequence of the Z2n-symmetry: For general complex ms, the terms in the expansion

(4.4) are modified [25] as t
(p,2q)
s cosh(2pθ/n) → 1

2
(t

(p,2q)
s e2pθ/n + t̄

(p,2q)
s e−2pθ/n). Under the Z2n-

transformation (2.47), these coefficients transform as (t
(p,2q)
s , t̄

(p,2q)
s ) → (t

(p,2q)
s epπi/n, t̄

(p,2q)
s e−pπi/n).

Given the vanishing coefficients (4.6) at lower orders, the non-constant combinations invari-

ant under the Z2n-symmetry are only t
(2,0)
s t̄

(2,0)
s and t

(0,4)
s up to O(l

8
n ).

Combining all of the above results, we then find that the remainder function at strong

coupling has the following high-temperature expansion,

R2n = R
(0)
2n + l

8
n R

(4)
2n + O(l

12
n ), (4.18)
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where

R
(0)
2n =

π

4n
(n − 2)(3n − 2) − n

2

(n−3)/2∑
s=1

log2

(
sin( (s+1)π

n
)

sin( sπ
n

)

)
, (4.19)

R
(4)
2n =

π

6
C(2)

n κ2
nG2(M̃j) −

n

4

(n−3)/2∑
s=1

An,s − 2

t
(2,0)
n−3

2

t
(0,0)
n−3

2

2

sin2
(π

n

) . (4.20)

Note that the leading term R
(0)
2n gives the remainder function for the regular 2n-gon.

By further using (4.7) and (4.17), the results are expressed by t
(0,0)
s and, e.g., t

(2,0)
1 . All

the mass parameter dependence is encoded in the latter. The results for complex masses

are given by replacing (t
(2,0)
1 )2 in the resultant expression by t

(2,0)
1 t̄

(2,0)
1 . One can also express

the result in terms of the expansion coefficients of the Y-function y
(2,0)
s , which are defined

similarly to t
(2,0)
s , by using the relation,

y(2,0)
s = 2 cos

(2π

n

)
t(0,0)
s t(2,0)

s (n ≥ 5). (4.21)

4.2.2 Even n case

Let us next consider the even n case. In this case, the period term is given by (2.28). The

free energy part is expanded as in (4.11), but the bulk term is now given by [25]

fbulk
n =

1

nπ
ν2

n−2 log l. (4.22)

As in (2.45), Aextra is expressed by T1 and Tn−2. It contains the non-analytic term log l

coming from T1, and this is canceled by fbulk
n . To see this, let us recall that L1 ≡ log(1+Y1)

has the following order l term [41]

L1 ∼ − 2

n
νn−2 cosh

(
θ +

inπ

2

)
= (−1)

n
2
+1 2

n
νn−2 cosh θ. (4.23)

This term leads to the log l term in log T1 as

log T1(θ0) ∼
∫ log(1/l)

− log(1/l)

dθ

2π

L1(θ)

cosh(θ0 − θ)
∼ (−1)

n
2

2

nπ
νn−2 cosh θ0 log l, (4.24)

where θ0 is a constant. Since Aextra reduces to

Aextra =
(−1)

n
2
+1

2
log Tn−2(0) log T1(πi), (4.25)

for real masses, we have

Aextra ∼ − 1

nπ
ν2

n−2 log l + O(l), (4.26)
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which indeed cancels fbulk
n . We also note that the analytic term of Aextra starts from order

l, because log Tn−2(0) = −νn−2 is of order l.

For the expansion of ∆ABDS, we first note that

log Ts(θ) = log T̂s(θ) + O(l), (4.27)

and the exponential factors in (4.9) and Tn−2 are irrelevant up to O(l
8
n ) for n ≥ 10. Thus,

similarly to the odd n case, ∆ABDS for n ≥ 10 is expanded as6

∆ABDS = −n

2

n/2−1∑
s=1

log2

(
t
(0,0)
s

t
(0,0)
s−1

)
− l

8
n
n

4

n/2−1∑
s=1

Ân,s + O(l
12
n ), (4.28)

where Ân,s is given by replacing t
(p,2q)
s in (4.16) by t̂

(p,2q)
s . These are, however, given by (4.5),

(4.7) and (4.17) as in the case of odd n, since t
(p,2q)
s = t̂

(p,2q)
s for p + 2q < n/2. Combining

the relevant terms from Afree and ∆ABDS, we find for n ≥ 10 that

R2n = R
(0)
2n + l

8
n R

(4)
2n + O(l

12
n ), (4.29)

where

R
(0)
2n =

π

4n
(n − 2)(3n − 2) − n

2

n/2−1∑
s=1

log2

(
sin( (s+1)π

n
)

sin( sπ
n

)

)
, (4.30)

R
(4)
2n =

π

6
C(2)

n κ2
nG

2(M̃j) −
n

4

n/2−1∑
s=1

Ân,s. (4.31)

For n = 4, we can obtain the all order expansion in l. The logarithmic terms there are

canceled out, and the remainder function is expanded in l2. See [25] for detail. We have also

checked that the final results (4.29)-(4.31) are valid for n = 6, 8: the contributions from the

extra factors in the T-functions in (4.9) exactly cancel with those from Aextra, so that the

final result becomes Z2n-symmetric. The relations (4.5), (4.6), (4.7) and (4.17) also hold.

As in the case of odd n, the results for complex masses are given by expressing t
(2,0)
s and

κnG, e.g., by t
(2,0)
1 and replacing (t

(2,0)
1 )2 by t

(2,0)
1 t̄

(2,0)
1 (for n ≥ 6). In Table 1 of section 6,

we list the numerical values of R
(0)
2n and R

(4)
2n /t

(2,0)
1 t̄

(2,0)
1 for both odd and even n. Since the

mass-parameter dependence is encoded in t
(2,0)
1 t̄

(2,0)
1 , they are independent of ms and κnG.

6As we have mentioned, log T2k+1 contain the non-analytic terms. Such terms, however, do not appear
in ∆ABDS, because ∆ABDS is originally expressed by the cross-ratios ĉ±i,j and these cross-ratios can be
expressed by the Y-functions only, which do not have the non-analytic terms.
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4.3 Relation between cross-ratios and mass parameters

In summary, the leading correction to the remainder function around the CFT limit is

expressed by the coefficients t
(0,0)
s , t

(2,0)
s and κnG, where κn is the dimensionless coupling

defined in (4.2) and G is the normalization factor of the two-point function in (4.8). From

(4.7), t
(2,0)
s are also regarded as functions of κnG, and vice versa. Thus, the result is given

in terms of (one of) t
(2,0)
s or κnG, which are functions of the mass parameters.

The momentum dependence of the remainder function is read off through their relation

to the Y-functions. Indeed, similarly to Ts the Y-functions for general complex masses are

expanded near the CFT limit as

Ys(θ) = y(0,0)
s +

1

2

(
y(2,0)

s e
4
n

θ + ȳ(0,0)
s e−

4
n

θ
)
l

4
n + O(l

6
n ). (4.32)

Here, y
(0,0)
s are the solution to the constant Y-system, y

(0,0)
s = sin

(
sπ
n

)(
(s+2)π

n

)
/ sin2

(
π
n

)
. For

real ms, one has y
(2,0)
s = ȳ

(2,0)
s . From (4.21), we then find that

Y [k]
s = y(0,0)

s + cos
(2π

n

)
t(0,0)
s

(
t(2,0)
s e

2π
n

ki + t̄(2,0)
s e−

2π
n

ki
)
l

4
n + O(l

6
n ). (4.33)

By inverting these relations, the remainder function is expressed in terms of the cross-ratios

of momenta (which depend on each other at this order through (4.33)). To be concrete, one

finds that

|t(2,0)
s |l

4
n =

δY
[0]
s

2t
(0,0)
s cos 2π

n
cos ϕs

,

2π

n
ϕs = arctan

(
cot
(2π

n

)δY
[−1]
s − δY

[1]
s

δY
[−1]
s + δY

[1]
s

)
, (4.34)

at this order. Here, we have set t
(2,0)
s = |t(2,0)

s |eiϕs , and δY
[k]
s are the deviations of the cross-

ratios from the regular-polygonal/small-mass limit, δY
[k]
s ≡ Y

[k]
s − y

(0,0)
s . The cross-ratios

are given by (3.1), (3.2) and the Zn symmetry (2.48) or Y
[k]
s → Y

[k+2]
s . From (4.20) and

(4.31), it then follows that the remainder function depends on these cross-ratios through

κ2
nGḠ ∝ |t(2,0)

s |2 given via (4.34). Once t
(2,0)
s are expressed by ms, one can also find the

momentum dependence along the trajectories parametrized by them. The relation between

the sequential cross-ratios c±i,j, ĉ
±
i,j and t

(2,0)
s or κnG is similarly found from the expansion of

Ts.

5 Mass-coupling relations in single mass cases

As mentioned at the end of the last section, the momentum dependence of the leading

expansion of the remainder function is traced through t
(2,0)
s or κnG by expressing them as
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functions of the n − 3 mass parameters ms. In this section, we find the exact form of κnG

and hence of t
(2,0)
s in simple cases where the TBA system has only one mass scale. Such

TBA systems associated with various Dynkin diagrams are classified in [33], and our TBA

system with a single mass scale reduces to the known ones in the classification [25]. We

read off κnG thereof.

The single mass cases discussed below fix (n−1)/2 parameters for odd n and (n−2)/2 for

even n among the (n−1)(n−3)/4 independent parameters in κnG for odd n and (n−2)2/4

for even n.7 For n = 5, these single mass cases completely fix the form of κnG [25].

5.1 Case of perturbed unitary minimal model

Let us first consider the case that only the leftmost mass parameter is non-zero:

M1 = M, M2 = · · · = Mn−3 = 0. (5.1)

In this case, the TBA equations for the homogeneous sine-Gordon theory reduces to those

for the (RSOS)n−2 scattering theory [42,43], which is regarded as the massive perturbation

of the unitary minimal model Mn−1,n by the primary field Φ1,3. Taking into account an

appropriate normalization of the overall scale, we then find

κnG(M̃j) = κnF11 = κRSOS
n , (5.2)

where the constant κRSOS
n is given by [42]

κRSOS
n =

1

π

n2

(n − 2)(2n − 3)

[
γ
(3(n − 1)

n

)
γ
(n − 1

n

)] 1
2
[√

πΓ(n
2
)

2Γ(n−1
2

)

] 4
n

. (5.3)

Although (5.2) and (5.3) have already been given in [25], we have included them for com-

pleteness. Given this coupling, we also find that the first non-trivial coefficient (4.13) be-

comes,

f (2)
n = 2π

(
n − 3

n − 2

)2 [
1

4
√

π

Γ(n
2
)

Γ(n−1
2

)

] 8
n

γ

(
4

n
− 1

)
γ

(
1 − 3

n

)
γ2

(
1 − 2

n

)
γ

(
1 − 1

n

)
. (5.4)

5.2 Case of perturbed unitary SU(2) diagonal coset model

Let us next consider the case that only the k-th mass parameter is non-zero:8

Mj = δjkM for j = 1, . . . , n − 3. (5.5)

7There are two symmetries for Fij , Fij = Fji and Fij = Fn−2−i,n−2−j , and one can absorb the over all
scale into l.

8The result in this subsection is based on discussions with Kazuhiro Sakai.
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In the following, we take the normalization,

κnG(M̃j) = κRSOS
n

n−3∑
i,j=1

M̃
2
n
i

Fij

F11

M̃
2
n
j , (5.6)

which reduces to (5.2) in the previous case, and

κnG(M̃j) = κRSOS
n

Fkk

F11

, (5.7)

in the more general present case.

The TBA equations (2.32) with the real masses (5.5) describe the system obtained as the

integrable perturbation of the SU(2)k × SU(2)n−2−k/SU(2)n−2 coset CFT by the operator

Φ(1,1;adj) [44]. In [35], the exact mass-coupling relation and the high-temperature expansion

of the free energy in the perturbed coset Gk × Gl/Gk+l theories have been given. Applying

this result to our case of G = SU(2), one obtains

f (2)
n = 2π

k2(n − k − 2)2

(n − 2)2

[
1

8

Γ(n
2
)

Γ(k
2

+ 1)Γ(n−k
2

)

] 8
n

× γ

(
4

n
− 1

)
γ

(
1 − 3

n

)
γ2

(
1 − 2

n

)
γ

(
1 − 1

n

)
. (5.8)

On the other hand, from (5.7), we find

f (2)
n =

π

6
C(2)

n (κRSOS
n )2

(
Fkk

F11

)2

. (5.9)

Comparing these two expressions, we can fix the unknown ratio Fkk/F11 in κnG as

Fkk

F11

=
k(n − k − 2)

n − 3

[√
π

2

Γ(n−1
2

)

Γ(k
2

+ 1)Γ(n−k
2

)

] 4
n

. (5.10)

5.3 Case of perturbed non-unitary minimal model

When n is odd, we can further consider the case where

M1 = Mn−3 = M, M2 = · · · = Mn−4 = 0. (5.11)

In this case, with the normalization (5.6) we have

κnG(M̃j) = 2κRSOS
n

(
1 +

F1,n−3

F11

)
, (5.12)
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where we have used the symmetries, F11 = Fn−3,n−3, F1,n−3 = Fn−3,1. Since the Y-functions

satisfy the additional relation Ys(θ) = Yn−2−s(θ), the number of independent Y-functions

reduces to half. One then finds that the resultant reduced TBA system is equivalent to

that for the T(n−3)/2 = An−2/Z2 scattering theory, which is described by the perturbation of

the non-unitary coset SU(2)n/2−3 × SU(2)1/SU(2)n/2−2 model by Φ(1,1;adj), or equivalently

of the non-unitary minimal model Mn−2,n by Φ1,3 [33]. Due to the above Z2-symmetry, the

free energy for the TBA system (2.32) with (5.11) is twice larger than that in the perturbed

minimal model Mn−2,n up to the constant part corresponding to the central charge. κnG

in (5.12) is then determined as below.

First, for the T(n−3)/2 scattering theory, the perturbing operator Φ̂ = Φ1,3 has the di-

mension ∆̂ = (n − 4)/n, and the exact mass-coupling relation [35] is given by

λ̂ = κ̂M8/n, (5.13)

where

κ̂2 =
1

π2

(
n − 6

n − 4

)2

γ

(
1 − 2

n

)
γ

(
1 − 6

n

)[√
π

2

Γ(n
4
)

Γ(n
4
− 1

2
)

] 16
n

. (5.14)

The free energy is expanded for the small mass scale as

F̂ (l) =
π

6
ĉ + B̂l2 +

∞∑
k=1

f̂ (k)l8k/n, (5.15)

where ĉ is the effective central charge, and B̂ is the bulk term. Since the one-point function

of the perturbing operator does not vanish in the non-unitary CFT, the first non-trivial

coefficient in (5.15) is the term with k = 1. In our case, this is given by (see [27, 45] for

example)

f̂ (1) =
π

6
κ̂Ĉ(1), (5.16)

where

Ĉ(1) = −12(2π)
n−8

n CΦ̂0Φ̂Φ̂0
, (5.17)

with Φ̂0 = Φn−3
2

, n−1
2

being the vacuum operator. CΦ̂0Φ̂Φ̂0
is the structure constant, which is

given by [46]

(CΦ̂0Φ̂Φ̂0
)2 = γ

(
−n − 4

n

)
γ

(
−n − 6

n

)
γ

(
4

n

)
γ2

(
n − 3

n

)
γ3

(
n − 2

n

)
γ2

(
n − 1

n

)
.

(5.18)
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Substituting this into (5.17), we find

f̂ (1) = 4π

[
1

4
√

π

Γ(n
4
)

Γ(n
4
− 1

2
)

] 8
n

γ

(
4

n
− 1

)
γ

(
1 − 3

n

)
γ2

(
1 − 2

n

)
γ

(
1 − 1

n

)
. (5.19)

Next, taking into account the Z2-symmetry remarked above and comparing the high-

temperature expansions order by order, we obtain

f (2k)
n = 2f̂ (k), f (2k+1)

n = 0 (k = 1, 2, . . . ). (5.20)

From (5.12), we also find

f (2)
n =

π

6
C(2)

n (κRSOS
n )2 · 4

(
1 +

F1,n−3

F11

)2

. (5.21)

Combining (5.19), (5.20) and (5.21), we can fix the ratio F1,n−3/F11 in κnG as,

1 +
F1,n−3

F11

=
n − 2

n − 3

[
Γ(n

4
)Γ(n−1

2
)

Γ(n
4
− 1

2
)Γ(n

2
)

] 4
n

. (5.22)

For n = 5, this reproduces the result for the decagon considered in [25]. Once this ratio is

fixed, we can obtain κnG for general M1 and Mn−3 with M2 = · · · = Mn−4 = 0.

6 Comparison with two-loop results

In this section, we compare the remainder function at strong coupling in the previous sections

with the two-loop results in [12, 39]. By numerically studying the remainder function for

n = 4, it was noticed in [9] that appropriately shifted and rescaled remainder functions at

strong coupling and at two loops are close to each other. Such similarity was observed also

analytically in [25] for n = 4 and n = 5. Whether the similarity continues to hold for general

n would be a curious question, which should provide useful insights into the structure of the

amplitudes. We thus discuss the case of the multi-point amplitudes below.

6.1 Two-loop remainder function

The analytic expression of the 2n-point amplitudes has been given for the external momenta

lying in a (1+1)-dimensional subspace of Minkowski space-time [12], which correspond to

the case of the minimal surfaces in AdS3. To write down the formula, we introduce the

cross-ratios,

vij ≡
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

. (6.1)

26



Denoting the cusp coordinates of the 2n-gon as x2i = (x−
i , x+

i ), x2i+1 = (x−
i , x+

i+1), vij are

reduced to vij = 1 when i − j is odd, and to

v2i+1,2j+1 = u−
ij , v2i,2j = u+

ij , (6.2)

when i − j is even, where 2 ≤ |i − j| (mod n) ≤ n − 2 and

u±
ij ≡

x±
ij+1x

±
i+1j

x±
ijx

±
i+1j+1

. (6.3)

The remainder function then reads

R2-loop
2n = −1

2

∑
S

log(vi1i5) log(vi2i6) log(vi3i7) log(vi4i8) −
π4

36
(n − 2) . (6.4)

The sum runs over

S =
{

i1, ..., i8
∣∣ 1 ≤ i1 < · · · < i8 ≤ 2n, ik − ik−1 : odd

}
. (6.5)

As on the strong-coupling side, the above formula of the two-loop remainder function pre-

serves the Z2n-symmetry (2.46) or (2.47).

In order to compute the remainder function from the Y-/T-functions, we need to express

u±
ij by Ys/Ts. First, form (2.22) and (2.5) one finds that

u+
k,−k−2 =

Y
[−1]
2k+1

1 + Y
[−1]
2k+1

, u+
k,−k−1 =

Y
[0]
2k

1 + Y
[0]
2k

. (6.6)

Furthermore, the general u+
ij are obtained with the help of the Zn-transformation (2.48)

induced by Y
[k]
s → Y

[k+2]
s . Namely, u+

ij = Y
[2(i−k)−1]
2k+1 /(1 + Y

[2(i−k)−1]
2k+1 ) for j − i = n − 2k − 2,

and u+
ij = Y

[2(i−k)]
2k /(1 + Y

[2(i−k)]
2k ) for j − i = n − 2k − 1. u−

ij are also obtained from u+
ij by

the shifts Y
[k]
s → Y

[k+1]
s . Eliminating k, we then arrive at the formulas,

u+
ij =

Y
[i+j+1]
|i−j|−1

1 + Y
[i+j+1]
|i−j|−1

=
T

[i+j+1]
|i−j| T

[i+j+1]
|i−j|−2

T
[i+j+2]
|i−j|−1 T

[i+j]
|i−j|−1

,

u−
ij =

Y
[i+j+2]
|i−j|−1

1 + Y
[i+j+2]
|i−j|−1

=
T

[i+j+2]
|i−j| T

[i+j+2]
|i−j|−2

T
[i+j+3]
|i−j|−1 T

[i+j+1]
|i−j|−1

, (6.7)

where 2 ≤ |i − j| ≤ n − 2. In the above, we have used the symmetry u±
ij = u±

ji, the

half-periodicity (2.49) and the relations among Ys and Ts in (2.21), (2.23).

Using the expansions of Ts in (4.4), (4.9) and (4.10), or similar ones for Ys, and the

above expression of u±
ij, one can compute the expansion of the two-loop remainder function
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strong coupling 2 loops ratio

2n R
(0)
2n r

(4)
2n r̄

(4)
2n R

(0)
2n r

(4)
2n r̄

(4)
2n

R̄strong
2n

R̄2-loop
2n

8 3.687 −0.003533 −0.1638 −5.527 0.01843 −0.1597 1.026
10 5.547 −0.002183 −0.04419 −8.386 0.01204 −0.04490 0.9841
12 7.410 −0.006482 −0.08111 −11.26 0.03692 −0.08441 0.9609
14 9.275 −0.01259 −0.1126 −14.14 0.07320 −0.1190 0.9463
16 11.14 −0.02078 −0.1437 −17.03 0.1226 −0.1535 0.9366
18 13.01 −0.03137 −0.1764 −19.93 0.1869 −0.1897 0.9297
20 14.87 −0.04466 −0.2112 −22.82 0.2682 −0.2284 0.9247
22 16.74 −0.06098 −0.2486 −25.72 0.3683 −0.2699 0.9209
24 18.61 −0.08063 −0.2886 −28.61 0.4892 −0.3143 0.9180
30 24.21 −0.1626 −0.4253 −37.31 0.9955 −0.4661 0.9124
50 42.88 −0.7781 −1.067 −66.32 4.817 −1.177 0.9062
80 70.89 −3.220 −2.571 −109.9 20.02 −2.843 0.9044
200 182.9 −50.60 −15.10 – – – –
500 463.1 −791.2 −92.00 – – – –
1000 930.0 −6331 −364.8 – – – –

Table 1: Expansion coefficients and ratios of the remainder functions at strong coupling
and at two loops. In the table, r

(4)
2n ≡ R

(4)
2n /t

(2,0)
s t̄

(2,0)
s , r̄

(4)
2n ≡ R̄

(4)
2n /t

(2,0)
s t̄

(2,0)
s for 2n 6= 8,

and r
(4)
2n ≡ R

(4)
2n , r̄

(4)
2n ≡ R̄

(4)
2n for 2n = 8. For large n, one finds that R

strong (0)
2n ≈ 1.868n,

r
strong (4)
2n ≈ −5.065 × 10−5n3 and r̄

strong (4)
2n ≈ −1.447 × 10−3n2. The values of R

2-loop (0)
2n for

2n ≤ 30 are found in [9,12], whereas the results for n = 4 and 5 are read off from [25]. (The

case of 2n = 8 is special in that t
(2,0)
1 receives contributions due to the non-trivial Tn−2.)

near the CFT limit. As in the case at strong coupling, one then finds that the remainder

function takes the form,

R2-loop
2n = R

2-loop (0)
2n + l4(1−∆)R

2-loop (4)
2n + O(l6(1−∆)) , (6.8)

where ∆ = (n−2)/n. By further using the T-system (2.21) or the Y-system (2.24), R
2-loop (4)
2n

can be given again by t
(2,0)
1 t̄

(2,0)
1 or y

(2,0)
1 ȳ

(2,0)
1 , where all the dependence of the mass param-

eters or the cross-ratios is included up to this order.

Since the remainder function in (6.4) contains an octuple sum, the number of the terms

in the sum rapidly increases. We have computed the expansions up to n = 40 for both odd

and even n. In Table 1, we list the numerical values of R
2-loop (0)
2n and R

2-loop (4)
2n /t

(2,0)
1 t̄

(2,0)
1 .
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6.2 Rescaled remainder function

Now, let us consider the rescaled remainder function. For the 2n-point amplitudes, it is

defined by

R̄2n =
R2n − R2n,reg

R2n,reg − (n − 2)R6,reg

, (6.9)

where R2k,reg are the remainder functions in the CFT limit corresponding to the regular

2k-gons. For the hexagon, they are

Rstrong
6,reg =

7π

12
, R2-loop

6,reg = −π4

36
, (6.10)

at strong coupling and at two loops, respectively. R̄2n is calibrated so that it vanishes in the

CFT limit and approaches −1 in the large l limit when all the mass parameters are non-zero.

More generally, if k among n−3 mass parameters are zero, R2n → (n−3−k)R6,reg+R2(k+3),reg

for large l. This is understood by tracing the location of the poles of the polynomial p(z)

appearing in (2.2), and can be checked numerically. In this case, R2n approaches a constant

different from −1. In addition, when the mass parameters have a hierarchical structure, e.g.,

m1, m2 � m3 � · · · , the remainder function shows a plateau at each scale where ms much

smaller than that scale are regarded as effectively vanishing. The corresponding behavior

of the Y-/T-functions have been studied in [47–49].

One can then compute R̄2n from the results at strong coupling in section 4 and 5, and

those at two loops in the previous subsection. They are expanded as in the unrescaled case.

Up to O(l4(1−∆)), they are proportional to t
(2,0)
1 t̄

(2,0)
1 , and the ratio R̄strong

2n /R̄2-loop
2n becomes

a numerical number. In Table 1, we list the numerical values for R̄strong
2n and R̄2-loop

2n at

O(l4(1−∆)) divided by t
(2,0)
1 t̄

(2,0)
1 , and their ratios up to 2n = 80. We find that the remainder

functions at strong coupling and at two loops continue to be close to each other for higher

point amplitudes. Furthermore, numerical plots for 2n = 12 and 14 show that the rescaled

remainder functions are close at any scale (Fig. 4), as observed for 2n = 8 and 10 [9, 25] .

We expect that this holds also for general 2n-point amplitudes.

6.3 Large n limit

Table 1 suggests that the ratio approaches a constant for large n. Let us consider this large

n behavior in more detail.9 In the following, we fix κnG corresponding to the coupling in

the CFT perturbation. From (4.7), this implies t
(2,0)
1 ∼ κnG/n2 for large n.

9In the large n limit, the amplitudes are approximated by smooth Wilson loops after subtracting divergent
terms [4, 17].
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Figure 4: Plots of the rescaled remainder functions at strong coupling (×) and at two
loops (+) for 12-point amplitudes (left) and for 14-point amplitudes (right). The functions

are evaluated for ms = le
πi
20

s. At l = 2, R̄strong
12 = −0.538, R̄2-loop

12 = −0.542, whereas
R̄strong

14 = −0.559, R̄2-loop
14 = −0.565.

On the strong coupling side, the large n behavior of the remainder function is extracted

from our formulas (4.18)-(4.20) and (4.29)-(4.31). At O(l0), the summand log2(t
(0,0)
s /t

(0,0)
s−1 )

in ∆ABDS scales as 1
n2 h1(x), where x = s/n and h1(x) is a certain function. Taking into

account the fact that h1(1/n) grows as (n log 2)2, one finds that ∆ABDS at this order scales

as a1n + a0 + · · · . The other term at this order from Afree, i.e., cn, has the same scaling.

At O(l
8
n ), the terms in An,s or Ân,s without t

(0,4)
s scale as 1

n2 h2(x), where h2(x) is a certain

smooth function. In addition, by numerically solving the equations for t
(0,4)
s in terms of t

(2,0)
s ,

one finds that the terms with t
(0,4)
s also have the same scaling in n. Adding these terms,

∆ABDS at this order scales as b−1

n
+ b−2

n2 + · · · . The other term f
(2)
n from Afree also has the

same scaling.

Thus, the remainder function scales as (a′
1n + a′

0 + · · · ) + l
8
n (

b′−1

n
+

b′−2

n2 + · · · ). The linear

behavior at O(l0) has been observed in [17]. Indeed, by a fit of the data for n = 100 to 500

which includes terms up to O(n−3) at O(l0) and up to O(n−5) at O(l
8
n ), we find the large

n behavior at strong coupling,

Rstrong
2n ≈ 1.868n

(
1 − 2.043

n
+

0.06340

n2
+

1.303 × 10−7

n3
+

0.08598

n4

)
(6.11)

− l
8
n (κnG)2 · 2.337

n

(
1 − 6.703

n
+

24.90

n2
− 62.32

n3
+

113.1

n4

)
.

The accuracy of the fit is of O(10−13) at O(l0) and of O(10−11) at O(l
8
n ).

On the two-loop side, we do not have a closed expression of the expansion of the remain-

der function. However, one can expect the same scaling as at strong coupling. Indeed, the

linear behavior at O(l0) has been observed from numerical data up to n = 15 [9]. Further-

more, by performing a fit of the data for n = 25 to 40 which includes terms up to O(n−3)
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at O(l0) and up to O(n−5) at O(l
8
n ), we find the large n behavior at two loops,

R2-loop
2n ≈ −2.903n

(
1 − 2.166

n
+

0.2544

n2
− 0.001335

n3
+

0.4473

n4

)
(6.12)

+ l
8
n (κnG)2 · 14.57

n

(
1 − 6.707

n
+

19.99

n2
− 16.19

n3
− 66.06

n4

)
.

The accuracy of the fit is of O(10−8) at O(l0) and of O(10−10) at O(l
8
n ). The behavior at

O(l0) is consistent with the result in [9].

In the fits, the coefficient at O(n−2) in Rstrong
2n is of O(10−7), which suggests that it is

vanishing. In addition, the term of O(n0) in R2-loop
2n is 6.288 and close to 2π, as noted in [9].

We also observe that at each order in l the expansions in the parentheses in (6.11) and

(6.12) are similar to each other. It is expected that they become closer with data for larger

n at two loops.

From the results (6.11) and (6.12), we also find the ratio of the rescaled remainder

functions for large n,

R̄strong
2n�1

R̄2-loop
2n�1

≈ 0.9049 − 0.1178

n
+ · · · + O(l

4
n ) . (6.13)

Reflecting the similarity of the large n expansion noted above, the ratio is close to 1, and

the leading term is consistent with the expected value from Table 1. We note that a similar

closeness has been observed between minimal surfaces in AdS and the amplitudes/Wilson

loops at weak coupling [50].

7 Conclusions

In this paper, we have studied the gluon scattering amplitudes of N = 4 super Yang-Mills

theory at strong coupling by using the associated Y-/T-system, focusing on the case where

external momenta lie in a two-dimensional subspace R1,1. In particular, by continuing the

work [25], we have considered the analytic expansion of the 2n-point amplitudes around the

momentum configurations corresponding to the regular polygonal minimal surfaces, or the

high-temperature limit of the TBA system.

We found that the cross-ratios c±i,j, ĉ
±
i,j, which appear in the remainder function, are

concisely expressed in terms of the T-function. This led to the simple expressions of ∆ABDS

(3.10) and (3.12). From these expressions, we derived the formulas (4.18)-(4.20) and (4.29)-

(4.31) for the leading-order expansion of the 2n-point remainder function. The Y-/T-system

enabled us to encode its momentum/mass-parameter dependence into only one function, e.g.,

t
(2,0)
1 in (4.7). As shown in [25], this function is computed by boundary CFT perturbation
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based on the relation between the g-function (boundary entropy) and the T-function [32,51].

In addition to the result for 2n = 10 and those for general n corresponding to the RSOS

scattering theory [25], we explicitly computed this function in the case where the TBA

systems reduce to those associated with the unitary and non-unitary diagonal coset CFTs.

We also compared our results at strong coupling with those at two loops [12, 39]. As in

the case of 2n = 8, 10 [9,25], the appropriately shifted and rescaled remainder functions [9]

continue to be close to each other for general n. Their ratio at the leading order tends to

be a constant for large n. Moreover, the original remainder functions at the leading order

have similar 1/n expansions.

The observed closeness suggests that the remainder function at general coupling is con-

strained by some mechanism which is yet to be understood. This would be an interesting

issue for clarifying the full structure of the amplitudes.

It would also be interesting to extend our analysis to various directions. One is to find out

the full mass-parameter dependence as in the case of 2n = 10 [25]. Another is to derive the

expansion in the case corresponding to the minimal surfaces in AdS4 and AdS5. For these

purposes, one needs to better understand multi-parameter integrable deformations of the

CFTs associated with the relevant homogeneous sine-Gordon models. In the general case of

AdS5, the underlying integrable model and the CFT are not identified yet, in spite that its

Y-system has been known [19]. This would be an important future problem. One may also

consider computation of higher order terms in the expansion by extending the boundary

CFT perturbation in [31,32] or by developing a formalism along the line of [51–53].
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A Cross-ratios and T-functions for even n

In this appendix, we briefly summarize a procedure to relate the cross-ratios ĉ±i,j and the

T-functions for even n. As in the case of odd n, the relation is well understood graphically.
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Let us first consider the cross-ratios consisting of x+
k . For ĉ+

i,j with odd i − j, namely,

for caux +
i,j with odd i − j, cright +

1,2k and cleft +
1,2k , discussion is similar to that in section 3.1. We

then find that

caux +
k+l,−k−1+l =

n/2−k−2∏
p=0

(
Y

[2l−1]
2k+1+2p

)(−1)p

= T
[2l−1]
2k T

[n+2(k+l)−1]
n−2 , (A.1)

where k = 1, ..., n/2 − 2; k + 1 ≥ l ≥ 2 − k, and

cright +
1,−2k−2 =

k∏
l=0

(
Y

[−2k−1]
2k+1−2l

)(−1)l

= T
[−2k−1]
2k+2 ,

cleft +
1,−2k =

n/2−k−2∏
l=0

(
Y

[1−2k]
2k+1+2l

)(−1)l

= T
[1−2k]
2k T

[n+1]
n−2 , (A.2)

where k = 0, ..., n/2 − 2.

The cross-ratios ĉ+
i,j with even i − j, namely, caux +

i,j with even i − j, dright +
1,2k+1 and dleft +

1,2k+1,

are a little more complicated than those for odd i− j: the first vertex is dropped off or the

edges stemming from the first or the n-th vertex are crossed (see Fig. 1 (b)-(d)). This traces

back to the fact that Y1 for the 2(n+1)-point amplitudes is factored out non-trivially in the

double soft limit to the 2n-point amplitudes [23]. To write down the relation in this case,

it is helpful to use “fan-shaped” cross-ratios,

[−k + 1, k + 2p − 1, k + 2p, k + 2p + 1]+ =
1 + Y

[1+2p]
2(k+p)−1

Y
[2p]
2(k+p)−2

=
T

[2+2p]
2(k+p)−1

T
[2p]
2(k+p)−3

,

[k + 1,−k − 2p + 3,−k − 2p + 2,−k − 2p + 1]+ =
1 + Y

[3−2p]
2(k+p)−1

Y
[4−2p]
2(k+p)−2

=
T

[2−2p]
2(k+p)−1

T
[4−2p]
2(k+p)−3

.

(A.3)

Combining these with caux +
k+1,−k+1 =

∏k−2
l=0

(
Y

[2]
2k−2−2l

)(−1)l

= T
[2]
2k−1

(
T

[2]
1

)(−1)k

, which are ob-

tained similarly to (A.1), we find that

caux +
k+1+2l,−k+1 = caux +

k+1,−k+1

l∏
p=1

T
[2+2p]
2(k+p)−1

T
[2p]
2(k+p)−3

= T
[2+2l]
2(k+l)−1

(
T

[2]
1

)(−1)k

,

caux +
k+1,−k+1−2l = caux +

k+1,−k+1

l∏
p=1

T
[2−2p]
2(k+p)−1

T
[4−2p]
2(k+p)−3

= T
[2−2l]
2(k+l)−1

(
T

[2]
1

)(−1)k

, (A.4)

where k = 1, ..., n/2− 1; l = 0, ..., n/2−k− 1. In Fig. 5, we show a graphical representation

of caux +
7,9 = caux +

7,−1 for n = 10, which corresponds to the case of k = l = 2 in the first equation

in (A.4).
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Figure 5: Decomposition of caux +
7,9 for n = 10. The i-th vertex stands for x+

i . The dotted
line represents caux +

7,9 and the bold line represents the tetragon corresponding to caux +
3,9 . The

dashed line represents the fan-shaped tetragons corresponding to T
[2+2p]
2(2+p)−1/T

[2p]
2(2+p)−3 for

p = 1, 2.

To find the expressions of dright +
1,2k+1 and dleft +

1,2k+1, we note that dright +
1,−2k+1 = Y

[−2k+2]
2k /caux +

2,−2k

and dleft +
1,2k+1 = Y

[2k+2]
2k /caux +

2(k+1),0. It then follows that

dright +
1,−2k+1 = T

[2−2k]
2k−1 T

[2]
1 , dleft +

1,2k+1 = T
[2+2k]
2k−1 T

[2]
1 , (A.5)

where k = 1, ..., n/2 − 1. For k = n/2 − 1, the intermediate relations to Y2k do not make

sense. However, the above expressions hold also for dright +
1,3 and dleft +

1,−1 , which are obtained

through

dleft +
1,2k+1

dright +
1,2k+1

=
cright +
1,2k

cleft +
1,2k

= cright +
12 = T

[n−1]
n−2 . (A.6)

The results in (A.1)-(A.5) cover all the non-trivial elements of ĉ+
i,j. The corresponding

expression for ĉ−i,j are obtained by the shift T
[k]
s → T

[k+1]
s . Furthermore, choosing the range

of the indices as 1 ≤ i, j ≤ n + 1, they are summarized in the form given in the main text

(3.11). As in the course of the derivation, it is also possible to express ĉ±i,j by Ys.
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