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PAPER

Dynamic Multiple Work Stealing Strategy for Flexible Load
Balancing

ADNAN†a), Nonmember and Mitsuhisa SATO††, Member

SUMMARY Lazy-task creation is an efficient method of overcoming
the overhead of the grain-size problem in parallel computing. Work steal-
ing is an effective load balancing strategy for parallel computing. In this
paper, we present dynamic work stealing strategies in a lazy-task creation
technique for efficient fine-grain task scheduling. The basic idea is to con-
trol load balancing granularity depending on the number of task parents in
a stack. The dynamic-length strategy of work stealing uses run-time in-
formation, which is information on the load of the victim, to determine
the number of tasks that a thief is allowed to steal. We compare it with
the bottommost first work stealing strategy used in StackThread/MP, and
the fixed-length strategy of work stealing, where a thief requests to steal a
fixed number of tasks, as well as other multithreaded frameworks such as
Cilk and OpenMP task implementations. The experiments show that the
dynamic-length strategy of work stealing performs well in irregular work-
loads such as in UTS benchmarks, as well as in regular workloads such
as Fibonacci, Strassen’s matrix multiplication, FFT, and Sparse-LU fac-
torization. The dynamic-length strategy works better than the fixed-length
strategy because it is more flexible than the latter; this strategy can avoid
load imbalance due to overstealing.
key words: multiple steals, steal overhead, load imbalance, frame man-
agement, overhead reduction

1. Introduction

For a scalable multithreaded computation on shared mem-
ory multicore processors, a computation requires a mech-
anism of efficient scheduling. To make the scheduling ef-
ficient, the overheads for scheduling a set of processors
must be considerably less than the total amount of useful
work. For instance, coarse-grain thread scheduling is effi-
cient in many cases of regular parallelism. The other issue
for efficient scheduling is load balancing. Even if, the to-
tal scheduling overhead is considerably less than the total
work, load imbalance makes parallel computation unfavor-
able. The improvement by coarsening the task granularity
may sometimes worsen load imbalance, that is, a set of pro-
cessors cannot be divided into fully utilized processors re-
sulting in underutilized processors.

Lazy-task creation [1] is an efficient method of over-
coming the grain-size problem in parallel computing. By
lazy-task creation, a parent task inlines its children, making
the granularity of tasks coarse. While inlining its children,
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a victim makes parent continuations available for stealing
by any other idle processors. In lazy-task creation, the cost
of task creation is low, almost equal to that of a procedure
call, which enables efficient parallel task capability by work
stealing. Because of inlining tasks and stealing parent con-
tinuations, the granularity of tasks is coarsened without the
loss of parallelism or load balancing.

The background of this research is a fine-grain-thread
library, StackThreads/MP. This library adopts the lazy-task
creation technique. In StackThreads/MP, idle workers steal
tasks from the bottommost stack. We found that this strat-
egy, which is a work stealing strategy of the original Stack-
Threads/MP, results in a large steal overhead in the program
of the Unbalanced Tree Search (UTS) [2], [3] benchmark. In
such a case, the steal overhead increases rapidly when the
number of processors is more than two. In Cilk, this prob-
lem does not occur because Cilk’s workers steal work from
the head of a queue efficiently by the THE [4] protocol.

To reduce the steal overhead, we propose a work steal-
ing strategy that steals some threads from the bottom of a
victim’s logical stack. This strategy is to control the gra-
nularity of stolen threads by aggregating them. First, we
have implemented a fixed-length strategy of work stealing
in which a thief requests to steal a fixed number of tasks.
We found that this strategy works more efficiently than the
bottommost first strategy in the UTS benchmark with a long
critical path. This strategy, however, does not perform bet-
ter in some representatives of regular workloads such as
Strassen’s matrix multiplication, and even worse in Sparse-
LU factorization, in which Sparse-LU is a non-recursive al-
gorithm.

Another basic idea is to control the granularity for bet-
ter load balancing depending on the number of task parents
in the stack. The dynamic-length strategy of work stealing
uses run-time information to determine the number of tasks
that thieves can steal from the bottom of a logical stack. Be-
cause this strategy divides the logical stack fairly between
the portion of the victim and the portion of the thief, it will
work as the bottommost first strategy when the amount of
sources in a logical stack is equal to or less than two tasks.
According to experiments, we found that this work stealing
performs well in irregular workloads such as in UTS bench-
marks, as well as in the cases of regular workloads such as
Strassen’s matrix multiplication, FFT and Sparse-LU factor-
ization.

In this paper, we present some experimental results of
extended work stealing strategies for efficient fine-grain task
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scheduling. We report the experimental results of multiple
work stealing strategies on both regular and irregular work-
loads.

Our contributions are as follows:

1. Although our proposed work stealing mechanism is
rather simple, the experimental results show that it
works reasonably well for both irregular workloads
such as UTS and regular workloads such as Strassen’s
matrix multiplication, and FFT.

2. In our paper, we present a detailed experiment on and
an analysis of our proposed work stealing mechanism.
Although the proposed mechanism seems simple, to
our best knowledge, no author has presented such de-
tailed results yet.

The rest of this paper is organized as follows. In Sect. 2,
we present some related research works. In Sect. 3, we dis-
cuss both the fixed-length and dynamic-length work stealing
strategies. By using a model, we show that these strategies
promote busy workers. We describe some experiments with
some benchmark programs and present the results of evalu-
ation in Sect. 4. We conclude this work in Sect. 5.

2. Related Works

Lazy-task creation [1] is an efficient method of overcoming
the grain-size problem in parallel computing. By lazy-task
creation, a child task is inlined by its parent, making the
granularity of the task coarse. If the lazy-task creation tech-
nique is to increase the average run-time task granularity,
proposed strategies should control load-balancing granula-
rity.

We used the UTS [2], [3], [5] benchmark as the irreg-
ular and imbalance workloads in the experiments. Olivier
and Prins developed the UTS benchmark using OpenMP [6]
for shared memory computers and using UPC [7] for both
shared memory and distributed memory computers.

In the UTS implementation by UPC, UPC partitions
the memory-allocated stack into two regions. The first re-
gion is a region in which a thread pushes nodes created lo-
cally. The other region is a region in which a thread holds
released nodes. These released nodes are available for work
stealing [8].

UPC implemented work stealing so that stolen nodes
are released nodes in the shared stack region. Because this
region of a shared stack may be accessed concurrently by
local and remote threads, the threads require locking so
that we must introduce an additional overhead. Work ag-
gregation [3], [5] and multiple work stealing strategies share
the idea of paying off overheads. Work aggregation uses
a task-chunking technique designed to increase granula-
rity when creating tasks. The idea of work aggregation is
similar to that of the fixed-length work stealing strategy.
In both work-aggregation and fixed-length work stealing,
we conducted manual tuning to determine the number of
nodes/tasks stolen per steal operation. Moreover, work ag-
gregation may lead to less or even no load balancing when

the aggregated node is large, but the dynamic multiple work
stealing strategy includes a work stealing mechanism for
stealing half of the existing tasks from the victim’s logical
stack. This is for adjusting the number of stolen threads dur-
ing the stealing time.

Cilk [4], [9] is a parallel language extension for the
C language. It also works on the basis of lazy-task cre-
ation. Each worker in Cilk maintains a double-ended queue
called a ready queue. When a parent task creates a child
task, the parent inserts a continuation at the tail of its ready
queue. Any other thread steals the continuation from the
ready queue head using a randomized work stealing algo-
rithm [10]. The work stealing scheduler of Cilk operates un-
der the work-first principle that minimizes the work over-
head by trading the work overhead with a longer critical
path. This principle assumes that the average parallelism
is larger than the number of processors available. The key
optimization of Cilk is that it uses THE protocol to mini-
mize the cost of mutual access to a queue; extended work
stealing strategies minimize the steal overhead as an effect
of multiple steals.

StackThreads/MP [11] is a fine-grain thread library that
uses lazy-task creation similar to Cilk. Cilk uses the fast-
clone and slow-clone compilation output approaches, and
StackThreads/MP uses only a single compilation output and
an efficient polling mechanism [12] to support work steal-
ing. In the original strategy of StackThreads/MP, a victim
selects the bottommost thread from a logical stack to be
stolen by a thief. The proposed strategies increase the num-
ber of stolen tasks such that a victim attempts to select a
number of chained tasks from the bottom of the logical stack
for a single steal operation.

Tascell [13] is a parallel programming framework. It
includes a multithreaded library and languages. The multi-
threaded framework of Tascell is similar to that of Stack-
Threads/MP in that both of them use backtracking-based
work stealing.

Although some authors have analyzed and suggested
multiple steals for parallel computation, as we have ob-
served recently, there are no real implementations and
experimental results of multiple steals for lazy-task cre-
ation have been reported. For example, Berenbrink and
Friedetzky [14] analyze the stability of natural work steal-
ing, whereas Hendler and Shavit in [15] proposed a Steal-
Half work queue. In their paper, Hendler and Shavit also
proved that StealHalf provides better load distribution. Al-
though Hendler and Shavit presented stealHalf and an ex-
tended deque, they did not present real implementation and
evaluation results. Hence, it still opens questions whether
their proposal is realistic to be implemented and proven to
improve performance in multithreaded computation. The
dynamic multiple work stealing strategy differs from Steal-
Half in what they are working on. StealHalf works on an
extended deque implemented with cyclic arrays.

Dinan et al. [16] presented scalable work stealing that
implements a split task queue [17]. In a split task queue,
Dinan et al. split a single-shared queue into local access only
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and shared access portions. By this split task queue, a thief
steals a chunk of tasks from a shared queue. This work steal-
ing mechanism is similar to the mechanism of work stealing
in the UPC [8] above.

Dynamic multiple work stealing differs from StealHalf
and the StealHalf in a split task queue in that we make use of
a lazy-task queue in which we apply multiple work stealing.

3. Dynamic Multiple Work Stealing Strategy

In this section, we present a dynamic multiple work stealing
strategy. The background and motivation of our research are
StackThreads/MP. In the following subsection, we describe
StackThreads/MP.

3.1 StackThreads/MP Fine-Grain Thread Library

StackThreads/MP is a thread library. It shares the same idea
and intention as Pthreads in that both provide multithreaded
programming [11]. Unlike Pthread that is suited to coarse-
grain parallel programming, StackThreads/MP is intended
for fine-grain parallel programming. As a thread library,
StackThreads/MP provides a number of APIs to a Stack-
Threads/MP run time system to create fine-grain threads and
then multiplex these threads to a worker. Herein, we use
workers to refer to OS threads/processes and threads to re-
fer to threads created by StackThreads/MP [18].

In StackThreads/MP, workers are a bunch of OS
threads or processes that have a shared memory address
space. In StackThreads/MP, it is possible to arrange a num-
ber of workers into a small number of worker groups [19].
Such a group of workers enables work stealing between
workers grouped together. In Fig. 1, we represent threads
as circles, and workers as rounded rectangles.

Creating a new thread in StackThreads/MP is similar
to calling a function. In addition, the workers of Stack-
Threads/MP record information for created threads into a
table. One important aspect of creating threads being sim-
ilar to making a function call is that it is possible to create
threads recursively in the same way that a C program may
call a function recursively. When a worker creates threads
recursively, we will find frames of threads chained within
the stack, as shown in Fig. 2 (a).

Whenever a worker loses threads by having them
stolen, its related stack frames are not removed from their
original location. Figure 2 (b) shows that when a thread is
created, a new stack frame is pushed on top of the stack, and

Fig. 1 Worker-thread relationship.

when a thread is stolen, its stack frame remains in its orig-
inal position; hence, the thief’s Frame-Pointer should point
to the original position. We call this original work steal-
ing approach of StackThreads/MP as the bottommost first
work stealing strategy. From the experimental results, we
use st org to refer to the bottommost first strategy.

3.2 Extended Work Stealing Strategies

Now, we discuss extended work stealing strategies. In the
fixed-length work stealing strategy, a thief attempts to steal
a fixed number d of chained tasks from the bottom of a
victim’s logical stack. If the number of a victim’s tasks is
equal to or more than the specified number, the thief steals
a fixed number of the stacked tasks at the same time. In
the dynamic-length work stealing strategy, the number of
threads that a thief steals is half the number of existing
threads from a victim.

In the implementation, we made a simple modifica-
tion to StackThreads/MP. The calling of the function
st suspend() is twice. This is similar to that of the original
StackThreads/MP. But the modification is simply passing
n total threads − d in the first call, and passing d in the sec-
ond call. However, we should pay careful attention when
computing d for a dynamic length. Computing the integer
d, which might be rounded off, may not result in the victim
incorrectly restarting half-top stack frames. The total num-
ber of threads at both the victim and the thief restart must be
as large as that when the victim accepts a steal request.

Algorithm 1: A thief attempts to steal a bunch of tasks
from any victim. It is performed in an infinite loop until
the thief detects termination. First, the thief attempts to lock
the steal port (lock steal port) of a randomly selected vic-
tim (select random victim()). If successful, the thief sends
a steal request (send steal request()) and wait for a reply
from the victim. The steal request, which is sent, contains
an empty pointer to a context list r, which the victim must re-
ply to after filling r with the context stolen thread. Whatever
the reply from the victim is either a nonempty pointer of ex-
ecution context or I HAVE NO TASK, the thief unlocks the
steal request port (unlock stealing port). If r is a nonempty
pointer, the thief restarts r. Idle workers will sleep (usleep())
for a duration of 100 µs after failing to obtain work from the
victim.

Algorithm 2: The thread local storage n total threads
denotes the number of threads in a victim’s logical stack.
Victims use it as run-time information. All victims compute

Fig. 2 (a) Chained threads in stack frames. (b) A new frame is pushed
when a thread is created, and frames remain at the original position when
stolen.
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Algorithm 1 Extended work stealing strategy on thief side
COUNTER = 0
loop

COUNTER++
select random victim()
lock stealing port()
send steal request(r)
if (r � I HAVE NO TASKS) then

unlock stealing port()
restart(r)

else
unlock stealing port()

end if
if (COUNTER ≥ LIMIT) then

usleep(sleepingduration)
RESET COUNTER

end if
if (detected termination) then

exit()
end if

end loop

Algorithm 2 Extended work stealing strategy on victim side
r = steal received()
if (dynamic) then

d = n total threads/2
if (d < 1) then

reply(I HAVE NO TASK)
return

end if
else if (static) then

d = constant
if (n total threads -1 < d) then

reply(I HAVE NO TASK)
return

end if
end if
suspend(c,n total threads - d)
suspend(r,d)
reply(r)
restart(c)

the number of stolen threads, that a thief must steal, in line
3 for a dynamic length work stealing strategy, and in line 9
for a fixed-length work stealing strategy. For the dynamic-
length work stealing strategy, d = �n total threads/2�,
whereas for the fixed-length work stealing strategy d =
constant. As shown in algorithm 2 and Fig. 3, the extended
work stealing strategies are as follows. A victim uses a
polling mechanism to listen for a steal request. When a vic-
tim LWP1 receives a steal request from an idle worker in
the first line of algorithm 2, the victim computes d and se-
lect d tasks from the bottom of its logical stack. If there
are more than d tasks in the logical stack, then, in line
16 of algorithm 2, the victim LWP 1 suspends (suspend())
n total threads − d tasks to the bottom of its logical stack;
otherwise, the victim sends the thief an I HAVE NO TASK
message. As the result, the data structure c of context t lists
the execution context of all n total threads − d suspended
tasks, as shown in Fig. 3 (a). Next, in line 17 of algorithm 2,
LWP 1 suspends d tasks. The 2nd suspension lists the con-

Fig. 3 Extended work stealing strategies. Assume that the worker has
received a steal request. (a) The threads above the target threads are sus-
pended and detached. (b) The target threads are suspended (c) After target
threads have been stolen, the victim restarts c and (d) thief restarts r.

Fig. 4 Extended work stealing strategy in task graph (a) a thief sends a
steal request to victim (b) thief has more tasks to execute.

texts of d suspended tasks in r, as shown in Fig. 3 (b). LWP
1 gives the execution context listed in r to the thief, i.e. LWP
2. Finally, LWP 1 restarts c and LWP 2 restarts r to continue
the execution, as shown in Figs. 3 (c) and 3 (d).

Using the extended work stealing strategies, a thief
steals more tasks from a victim. In Fig. 4 (a), an idle thief
sends a steal request. After work stealing is performed as
shown in Fig. 4 (b), the thief has more tasks to execute. By
this strategy, the time spent for work can be expected to be
considerably larger than the time spent for stealing. In addi-
tion, we provide a differential equation model [20] to explain
that our strategies promote busy workers in Sect. 3.4.

3.3 Controlling Load Balance Granularity

Controlling load-balancing granularity is important in that
a small load-balancing granularity incurs a large steal over-
head. Faxen introduced the load-balancing concept in his
paper [21]. However, we redefine load-balancing granula-
rity in Eq. (1). The load-balancing granularity gsteal( j) de-
fines the execution time of a bunch of tasks from jth steal
operation. We use Eq. (1) to emphasize that gsteal( j) may
vary. In Eq. (1), TS is the total execution time without a
steal overhead and an idle time. In Figs. 5 (a) and 5 (b), load
balancing granularity can be measured as the distance be-
tween two steal requests. It is intuitively understood, that
the number of steal operations, Nsteal, is inversely propor-
tional to load-balancing granularity. Therefore, the smaller
the gsteal( j), the larger the steal overhead.

TS =

Nsteal∑

j=1

gsteal( j) (1)

The task granularity gtask(i) in Eq. (2) has a relation to
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(a) Uniform workload and gsteal( j)

(b) Non uniform workload and varying gsteal( j)

Fig. 5 Illustration of execution profile with work stealing.

load-balancing granularity. We define task granularity as
the execution time of a single task. We use Eq. (2) to em-
phasize that the workload can be distributed nonuniformly.
The tasks shown in Fig. 5 (a), have a uniform workload. The
tasks shown in Fig. 5 (b), have a nonuniform workload and
a nonuniform gsteal( j). In Figs. 5 (a) and 5 (b), idle occurs
after a thief fails in several steal attempts. If the distribution
of gtask(i) were uniform, then it would be easy to estimate
the ratio Ntask/Nsteal such that gsteal( j) = Ntask/Nsteal×gtask(i)
would be ideal. However, gtask( j) value can be markedly dif-
ferent from each other. Therefore, manual tuning to find the
optimal Ntask/Nsteal is effective. Otherwise, the ratio should
be decided dynamically at runtime for the ideal gsteal( j). Our
proposed dynamic-length work stealing is one of the solu-
tions to this problem.

TS =

Ntask∑

i=1

gtask(i) (2)

3.4 Analytical Model of Extended Work Stealing Strate-
gies

In this subsection, we describe an analytical model of work
stealing. We use the model presented by Mitzenmacher [20].
We use this analytical model to show that multiple steals
increase the number of busy processors. Moreover, a dy-
namic multiple-steal strategy not only increases the number
of busy processors but also doubles the number of prospec-
tive victims without increasing the steal threshold. Using
the steal threshold, we specify that a victim is required to
have i stacked threads such that a thief is allowed to steal
i − 1 threads.

In his paper [20], Mitzenmacher defined ni(t) to be the
number of processors with exactly i tasks at a time t. He
also defined pi(t) = ni(t)/n to be the fraction of processors
with i tasks where n is the total number of processors, as
well as the nonincreasing series si(t) =

∑∞
k=i pk(t) as a state

of processors. This state of processors can be interpreted
as mi(t)/n; which is the fraction of processors that have at
least i tasks at a dicrete time, where mi is the number of

(a) State of multiprocessor at initial time

(b) State after P1 steals one task from P0

(c) State after P1 steals two/half tasks
from P0

Fig. 6 Multiprocessor state. At the initial time, only P0 has works, i.e.,
four works in its stack; other processors are empty. After P1 steals one
work from P0, the fraction of busy processors S 1 increases; however S 2

remains 0.25. It does not add potential victims. By multiple steals, after
P1 steals two works from P0, S 1 and S 2 increase up to 0.5; hence, this
increases the probability of stealing from S 2 if the steal threshold remains
at i = 2.

processors with at least i tasks.
We now consider the first fraction, i.e. s0. The fraction

of s0 is a fraction of those processors with at least 0 tasks,
which means all processors. This value must be 1. Busy
processors are all those included in s1. However, only those
processors in fraction s2 can be prospective victims. In fact,
fraction s2 is the larger fraction but with the smallest steal-

threshold. Now, we have the vector state
−→
S = {s0, s1, s2, . . .}

that denotes the state of a multiprocessor system in a discrete
time.

Figure 6 (a) shows an example of multiprocessors con-
sisting of four processors. At the initial time, the system has
only one processor with at least one task; hence, s1 = 0.25.
After a thief steals one thread/task from a victim, only s1

increases. Unless workers create a lazy task, it would not
increase s2, as shown in Fig. 6 (b).

Let us consider the worst case of work stealing. The
worst case is that after a worker steals a small-granularity
thread, the worker does not create a lazy task. After a worker
steals a small work and arrives at s1, the worker does not go
to s2. Soon the worker becomes empty and goes back to per-
forming repeatedly load balancing. This eventually results
in excessive steals. In Cilk, whose workers steal works effi-
ciently by THE protocol, efficiency is sometimes lost in crit-
ical path only. However, in StackThreads/MP whose victims
are involved in unwinding stack frames, excessive steals in-
creases steal overhead.

Fixed-length work stealing can be considered as
multiple-stealing with a threshold of i tasks [20]. Here, al-
though the fixed-length strategy promotes processors with
a higher fraction (s2, s3, . . .), it does not increase the num-
ber of prospective victims because the steal threshold also
increases. On the other hand, the workloads of threads can
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be extremely different from each other. In such a case, it is
difficult to predict the appropriate number of stolen threads.
A fixed-length strategy may sometime result in either over-
steal that eventually increases the steals, or failure to steal
that eventually increases the idle. Therefore, manual tuning
is still effective to determine the optimal number of stolen
threads.

In contrast to that in the dynamic-length work steal-
ing strategy, the number of tasks that a thief steals from the
fraction sd is determined dynamically as the bottom-half of
the number of active tasks in the victim’s logical stack. In
this case, the probability for a successful steal remains s2,
which can be larger than sd. Because multiple steals are per-
formed, by this strategy, si increases for 1 ≤ i ≤ d, as shown
in Fig. 6 (c). Hence, this strategy promotes busy workers,
i.e. this increases the number of processors that busy as we
show evidences in the performance evaluation result section.
Rbusy increases and at the same time Rsteal decreases. Such
extended work stealing strategies reduce the overhead in de-
livering the steal request significantly; it also reduces idle
with the lack of polling [12], which is in contrast to the orig-
inal work stealing strategy of StackThreads/MP.

Finally, there is no single strategy that suits all prob-
lems. In applications in which the tree is balanced such as
the Fibonacci number, the dynamic length strategy has com-
parable performance to the bottommost strategy. Because
of oversteal, the dynamic-length strategy increases a small
steal, whereas stealing the bottommost thread is the most ef-
ficient strategy for increasing task granularity. Although the
dynamic-length strategy may oversteal threads, the threads
can be restolen. As long as all workers remain busy most of
the execution time, steal and idle are reduced. This eventu-
ally will result in acceptable performance.

4. Experiment

In this section, we describe some experiments. As bench-
marks in these evaluations, a subset of benchmarks from the
Barcelona OpenMP Tasks suite [22] were adopted. Two bi-
nomial trees of the UTS were selected as the representatives
of an irregular workload. We selected Strassen, Sparse-LU,
and FFT as representatives of regular workloads. We added
Strassen, Sparse-LU, and FFT just to see which strategy per-
forms well or poorly on certain applications. We also eval-
uate the Fibonacci number. The evaluation for this bench-
mark is intented to evaluate overheads in depending on num-
ber of stolen threads.

In our evaluations, we used GCC 4.4.3, Intel C Com-
piler 11.1 and GCC 2.8.1. We used GCC 4.4.3 as a com-
plete compiler for GCC OpenMP [6]. GCC 4.4.3 was used
as the back end for Cilk. To compile all benchmarks with
the StackThreads/MP, GCC 2.8.1 is used. We compiled all
benchmarks with a -O3 compiler switch.

4.1 Experimental Configuration

We conducted some experiments on a machine with two

6168 AMD Opteron CPUs. Each CPU has 12 cores, 12 ×
512 KB L2 Cache and 6 M shared L3 Cache. The machine
is installed with Linux CentOS 5.3 as its operating system.
The machine is configured with 12 GB RAM.

4.1.1 UTS Benchmark

The UTS problem is a problem of counting the number of
nodes explored in an implicit tree. The use of execution
threads of UTS makes tree exploration in a depth-first search
manner. Since UTS generates an unbalanced tree, as bench-
mark, UTS makes a convincing model for analyzing load
imbalance and irregular parallelism that exist in many ap-
plications.

UTS constructs a tree by generating nodes in a parallel
and recursive way. The UTS benchmark applies the SHA-
1 computation to a 20-byte descriptor of the parent node to
obtain a new 20-byte descriptor for each generated child.
UTS uses this 20-byte descriptor to calculate the probability
function of nonleaf nodes that have m children. Hence, to
construct a tree at some depth levels, UTS processes nodes
recursively until no more nodes can be generated. In the
UTS, each node corresponds to a task. Hence, nodes with-
out children are fine-grain tasks, whereas nodes with chil-
dren are non fine-grain tasks. As the result, load imbalance
affected the distributions of these two types of node.

Load imbalance in the UTS benchmark depends on pa-
rameters m and q. In a binomial tree, these parameters spec-
ify that a node in an unbalanced tree has m children with a
probability q. The parameters shown in Table 1 were used
in our experiments.

The tree of UTS is much different from the tree of
Fibonacci. In UTS, the granularity of nodes is not equally
distributed in that some of the nodes are fine-grained and the
remaining nodes are coarse-grained. The distribution of Fi-
bonacci task granularity is a uniform distribution in that its
individual nodes have a small granularity. When one exe-
cutes a Fibonacci task using a single processor, one will find
that a single processor overhead is large. It will be different
when we execute UTS using a single processor. Then the av-
erage task granularity of the execution will not be too small.
As the result, the single processor overhead in UTS will not
be as large as in the Fibonacci. Hence, the issue of UTS is
not the small-task granularity but the small load-balancing
granularity. This small load-balancing granularity is due to
a small subtree located at the bottom of a tree or a subtree.

Olivier performed some implementations of UTS.
The implementations include OpenMP [5] and UPC [2],
[7] implementations. We compare the performance of the
OpenMP implementation of UTS to that of the lazy-task

Table 1 Parameters of binomial tree, root branching factors b0, and pa-
rameters of a node that probably has m children with a probability q.

Type b0 m q Tree size (in nodes)

A 2000 8 0.124875 4112897

B 2000 3 0.333333 30399116
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creation implementation using StackThreads/MP and Cilk.
In StackThreads/MP and Cilk implementations, we im-
plemented UTS such that a thief steals nodes in logical
stacks. For their C elision code, we replace each thread
creation/task spawn with a procedure call. The difference
between Cilk and StackThreads/MP is that we implemented
inlet for Cilk to accumulate subtree sizes, whereas we use
loop-for for StackThreads/MP to accumulate subtree sizes
after the synchronization point.

4.1.2 Fibonacci Benchmark

The Fibonacci benchmark is a benchmark for computing the
Fibonacci number. One algorithm for computing this is the
recursive algorithm. A node that computes the Fibonacci n
creates two children. The first node computes Fibonacci n−
1 and the last node computes Fibonacci n − 2. Each node in
this benchmark has a small workload, and a large overhead.
Therefore, it is difficult to achieve good scalability in this
benchmark without cutting-off the task.

4.1.3 Strassen Matrix Multiplication

Strassen’s matrix multiplication computes a matrix dot
product [C] = [A]· [B] using Strassen’s algorithm.
Strassen’s algorithm divides the matrices A, B, and C into
four quadrants and then performs seven matrix dot products
and four additions to submatrices. This algorithm can be
recursively applied to four submatrices so that we can have
recursive-parallel-task generation. In these experiments, the
matrix sizes are 1024×1024, 2048×2048, and 4096×4096
of double precision. It is clear that the larger the problem
size, the higher the degree of parallelism.

4.1.4 Sparse-LU Factorization

Sparse-LU computes sparse matrix LU factorization. Even
though this is a matrix computation in which the parallelism
is regular and uses a nonrecursive algorithm, because of
sparseness in the matrix, the workloads among the proces-
sors are unbalanced. Because Sparse-LU lacks parallelism
in a stack, and is also a coarse-grained regular loop paral-
lelism, then we do not expect better performance with con-
trol of load-balancing granularity. The matrix size used in
this experiment is the size of 50 blocks of 100 floats of sub-
matrix.

4.1.5 Fast Fourier Transform

The fast Fourier transform algorithm computes one-
dimensional discrete Fourier transform using the Cooley-
Tukey algorithm recursively. At the first stage, the FFT al-
gorithm precomputes the matrix coefficient W in a divide-
and-conquer manner. After obtaining the matrix coefficient
W, FFT computes the factors r of length n. At the final
stage, recursively, the FFT divides DFT into r smaller DFTs
of length n/r and multiply them by twiddle factors. FFT ap-

plies this algorithm to a vector of the complex data type. In
these experiments, the vector sizes are 32 M and 64 M of the
complex data type.

4.2 Methodology

We evaluated the five benchmarks discussed above. In
the evaluation, we compared the fixed-length and dynamic-
length work stealing strategies (st sta and st dyn) to the
original bottommost first work stealing strategy (st org) of
StackThreads/MP. For the fixed-length strategy of work
stealing for StackThreads/MP, we conducted manual tun-
ing to determine the number of task tasks a thief steals. In
the UTS benchmark, we found that 20 stolen threads are
optimal, whereas in other benchmarks, we stopped at two
threads since increasing this number will result in load im-
balance, thereby giving a negative impact.

4.3 Performance Evaluation Result

4.3.1 Serial Program Execution Time and Work Overhead

We measured the sequential execution time as a baseline for
scalability measurement; for the throughput measurement,
we used the single-threaded execution time as its baseline.
For the UTS benchmark, we made performance comparison
between Cilk, the Intel OpenMP task, the GCC OpenMP
task, and StackThreads/MP, whereas for the other bench-
marks, we performed a performance comparison between
StackThreads/MP and the Intel OpenMP task.

In these evaluations, we used the equivalent OpenMP
task using StackThreads/MP. Figure 7 shows the sequen-
tial execution times and single processor overheads for dif-
ferent implementations and strategies. The single proces-
sor overhead of the Intel OpenMP task appears to be the
highest. Nevertheless, note that the Intel OpenMP task has
the shortest serial execution time. The GCC OpenMP task
shows a low single processor overhead in that GCC 4.4.3
uses a technique limiting the number of queued tasks. Stack-
Threads/MP with all strategies and Cilk showed a low single
processor overhead. Note that, this uniprocessor overhead
depends on the application. For example, the uniprocessor
overhead of a Fibonacci is high, as shown in Fig. 8. In a par-
allel Fibonacci, the overhead is high in that the overhead of
a task spawn (Cilk) and thread creation (StackThreads/MP)
is much larger than the computation in individual nodes of a

Fig. 7 Sequential execution times and single processor overheads in the
UTS benchmark of different strategies and implementations.



1572
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.6 JUNE 2012

Fig. 8 Single processor overheads in Fibonacci number (n = 30). This
overhead is larger than the computation core of a node in which the
Fibonacci procedure involves only an addition operation.

Fig. 9 Speedups of UTS benchmark of different strategies and imple-
mentations. In this evaluation, m = 8 q = 0.124875 is used.

Table 2 Execution profile of UTS type A for the bottommost first strat-
egy, fixed-length, and dynamic-length work stealing strategies.

Strategy Busy Steals Idle Switch frm mgt

st org 6758903 3623421 264845 497716 1445588

st sta 4619911 403476 182164 339500 416425

st dyn 4713164 379168 171128 437727 227515

Fibonacci.

4.3.2 Overheads and Scalability

We discuss the scalability comparison first. Figure 9 shows
the speedups on UTS and the different types of work stealing
strategy. Unless in the case of the GCC OpenMP task, only
the bottommost first strategy in StackThreads/MP showed
poor performance. Cilk, in which workers steal works ef-
ficiently from the head of a deque (bottommost task) us-
ing THE protocol, did not experience the problem as that in
StackThreads/MP.

A high steal overhead had the original Stack-
Threads/MP performed poorly. Not only is the steal over-
head large, the overhead for managing stack frames also af-
fects the performance of the original StackThreads/MP. We
fixed the problem so that the overhead becomes low.

We conducted performance profiling and broke down
the sum of the total execution time of 24 core proces-
sors, as shown in Table 2. We found that the steal over-

Fig. 10 Breakdown of total execution time for UTS in two AMD
Opteron 6168 CPUs. All components are normalized the total running time
of 24 workers.

Fig. 11 Steal overhead trend line curves. As the number of workers is
increased the steal overhead increases. The proposed strategies decrease
this overhead significantly.

head dominated the execution time in the original Stack-
Threads/MP. Equations (3)–(7) show formulations of Rbusy,
Ridle, Rframe mgt, Rswitch, and Rsteal respectively. In some equa-
tions, we used the symbol C to indicate that the time spent
is an overhead, i.e., C(i)

steal to denote the steal overhead by the
processor i.

Ttotal = Σ(T (i)
busy +C(i)

steal + T (i)
idle +C(i)

frame mgt +C(i)
switch)

Rbusy = ΣT (i)
busy/Ttotal (3)

Ridle = ΣT (i)
idle/Ttotal (4)

Rframe mgt = ΣC
(i)
frame mgt/Ttotal (5)

Rswitch = ΣC
(i)
switch/Ttotal (6)

Rsteal = ΣC
(i)
steal/Ttotal (7)

We clarify now that the cause of unsatisfactory perfor-
mance by StackThreads/MP in UTS is the overheads be-
ing much larger than the granularity of a small subtree.
In Eq. (7), ΣC(i)

steal increases linearly with increasing num-
ber of processors. Therefore, in Fig. 10, the steal overhead
for st org is 28.7%. Figure 11 shows the trend of the steal
overhead. We observed that the steal overhead increased
markedly as the number of workers increased beyond 2.
It got worse because the probability q of a node that has
m children is low, inducing the binomial tree to generate
many small subtrees. Stealing a small subtree makes work-
ers go away from s1 and to become empty. This will reduce
Rbusy and increase Rsteal in Eqs. (3) and (7). In addition, the
overhead in managing stack frames was somewhat high. In
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st org in Fig. 10, this overhead was 11.48%. This is because
the space that the worker used for many stack frames was
considerably large, in that UTS is a deep-recursive-task gen-
eration.

Extended work stealing strategies improved perfor-
mance in which the busyness to work, steal overhead, and
stack frames management overhead are improved signifi-
cantly. In Fig. 10, the steal overhead dropped to 6.7% and
6.3% in st sta and st dyn, respectively; the frame manage-
ment overhead dropped to 6.9% and 3.9% in st sta and
st dyn, respectively. Overheads decreased because the vic-
tim did not unwind or manage long frames since the victim
transferred them to the thieves.

Recall that the extended work stealing strategies in-
crease si for 1 ≤ i ≤ d. An increase in si means that the
fraction of busy workers, s1, increases, in contrast, the 1− s1

decreases. As the result, Rbusy = ΣT (i)
busy/Ttotal increases and

Rsteal = ΣC
(i)
steal/Ttotal decreases following the trajectory of

1 − s1.
Figure 12 shows the speedup for the second binomial

tree (type B) in Table 1. The tree is deeper than the first tree
(type A) so that we can see its result in Fig. 9. However,
the binomial tree B has more tasks generated than tree A.
Comparing Figs. 9 and 12, the dynamic-length work steal-
ing strategy shows an improvement in tree B, whereas the
bottommost first work stealing strategy exhibits a degrada-
tion.

We report that StackThreads/MP with extended work
stealing outperforms Cilk in UTS because Cilk experiences
a large critical path overhead. Figures 13 and 14 respectively
show the throughput for processing binomial tree A and bi-
nomial tree B of UTS by different scheduling schemes and
implementations. Extended work stealing strategies show
the best result in that they give good scalability. In this
evaluation, throughput is achieved using 24 cores from two
AMD Opteron 6168 CPUs. In those figures, we can see
that the extended work stealing strategies have outperformed
Cilk. Figure 9 shows that Cilk experienced deceleration as
the number of workers increases from 8 to 24. In Fig. 12, in
which UTS type B has more parallelism than UTS type A,
Cilk exhibits better scalability. This is not surprising since

Fig. 12 Speedup of UTS benchmark for different strategies and imple-
mentations. In this evaluation, m = 3 q = 0.333333.

the tree lacks parallelism. In a case that lacks parallelism,
Cilk spends most of its time on the slow clones which con-
tributes to the high critical path overhead. It is likely that the
dynamic-length work stealing strategy will perform better as
the number of processor cores increases.

We present the overhead and performance evaluation
on the Fibonacci number benchmark. To obtain a long ex-
ecution time, the input parameter n is 40. In this evalua-
tion, the length of stolen threads was varied. As shown in
Fig. 15, busy, steal and idle were measured in accordance
with the length of stolen threads. In the figure, steal and idle
increase, and busy decreases so that busy was lower than
steal and idle. When the stolen threads are 16, busy, steal

Fig. 13 Throughput of different strategies and implementations on UTS.
In this result, binomial tree A is used, which generates more than 4 million
nodes.

Fig. 14 Throughput of different strategies and implementations on UTS.
In this result, binomial tree B is used, which generates more nodes.

Fig. 15 Busy, steal, and idle at Fibonacci n = 40.
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Fig. 16 Speedup at Fibonacci n = 40, in st sta, d = 2.

Fig. 17 Speedups of different work stealing strategies and implementa-
tions in Strassen’s algorithm relative to serial program execution time.

and idle are 0.158, 0.43 and 0.4, respectively. In Fig. 16, we
show the result of scalability evaluation on this benchmark.
With 24 processor cores and bottommost first scheduling,
the speedup in the Fibonacci number is 1.90. If the num-
ber of stolen threads is increased up to two, the performance
is still the same. According to data in Fig. 15 the perfor-
mance will be lost when the number of stolen threads is in-
creased further. However, in dynamic-length work stealing,
the speedup in the Fibonacci benchmark is 1.86.

4.3.3 Evaluation in Other Benchmarks

In the following evaluations, speedups are also measured
on the basis of serial program execution time. Figure 17
shows the speedup of Strassen’s algorithm using different
strategies of work stealing and Intel OpenMP task. From
the curves, we found that the dynamic-length work stealing
strategy performs as well as the bottommost first strategy
of work stealing. However, the fixed-length strategy has a
lower performance than the bottommost first strategy in the
original StackThreads/MP. In this evaluation, the number
of stolen threads is two. The performance will even worsen
if we increase the number of stolen threads statically up to
two because of the small s3. Figure 18 shows evidence of
this. In the results, we stop at 16 of the 24 available workers.
Improvement can be achieved by increasing the matrix size.
Increasing the matrix size of Strassen will increase not only
s1 but also si for i ≥ 2. In other words, it generates more
parallelism in stacks. Figure 19 shows the data on busy,
idle, steal, switch, and frame management overhead. Over-
head increases only in st sta, in which the number of stolen
threads is two. Note that busy in Fig. 19 includes the work

Fig. 18 If the problem size is increased the parallelism of recursive
Strassen’s computation is increased. This will improve the scalability of
the extended strategy. In this figure, the number of stolen threads is two.

Fig. 19 Data on busy, steal, idle, switch, and frame management over-
head of different strategies in Strassen’s matrix multiplication. The ob-
tained value is normalized the total time of 16 processors.

Fig. 20 Speedups of different strategies and implementations in Sparse
LU relative to serial program execution time.

overhead.
Now, we discuss the performance comparison in

Sparse-LU matrix factorization. As in Fig. 20, the fixed-
length work stealing strategy fails to scale performance.
This is because Sparse-LU did not create many tasks in
stacks so that si = 0 for i > 2, where it is impossible
to steal more than one thread. Nonetheless, the dynamic-
length work stealing strategy could adopt many number of
existing threads in a victim. This strategy showed compa-
rable performance to the bottommost first strategy used in
the original StackThreads/MP. Figure 21 shows the data on
busy, idles, steals, switch, and frame management overhead.
It is not surprising that the idle and steal overhead in st sta
are large. Finally, the Intel OpenMP task showed the best
result in this Sparse-LU matrix factorization in that the Intel
Compiler is well known as a robust compiler. However, this
result of Intel has nothing to do with the issues discussed
here. Note that busy in Fig. 21 includes work overhead.
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Fig. 21 Data on busy, steal, idle, switch, dan frame management over-
head of different strategies in Sparse-LU factorization. The obtained value
is normalized to the total time of 20 processors.

Fig. 22 Speedups of different work stealing strategies and implementa-
tions in fast Fourier transform. In this evaluation, the problem size is 64 M
of the complex data type.

Fig. 23 Speedups of different work stealing strategies and implementa-
tions in fast Fourier transform relative to serial program execution time. In
this evaluation, the problem sizes are 32 M & 64 M of the complex data
type.

Fig. 24 Data on busy, steal, idle, switch, and frame management over-
head of different strategies in fast Fourier transform. The obtained value is
normalized to the total time of 20 processors.

Finally, Fig. 22 shows the results of evaluating the fast
Fourier transform benchmark. The results look like the
those of Strassen in that they are both recursive algorithms.
Improvement can be achieved by increasing the problem
size. This is because doing so increases not only s1 but also
si for i ≥ 2. The dynamic work stealing strategy achieves

comparable performance on 20 processor cores. Figure 23
shows the scalability improvement because the average par-
allelism increases as the problem size increases. Figure 24
shows the data on busy, idles, steal, and frame management
overhead. In the st sta case, in which the number of stolen
threads is two, the steal overhead is 13.5%. This overhead
will increase if the number of stolen threads increases. In
the st dyn case, the overhead is 11.9%; the steal overhead in
st sta is 13.4%. Note that busy in Fig. 24 includes the work
overhead.

5. Conclusion

By using the bottommost first strategy in the case of deep-
recursive and unbalanced tree such as the UTS benchmark,
the steal overhead in StackThreads/MP increased. In ad-
dition, the frame management strategy, in which Stack-
Threads/MP uses a heap sort, contributed to a high over-
head. We fixed these problems using extended work stealing
strategies to steal multiple tasks at a time, so that the steal
overhead decreased from 28.7% to 6.7%–6.3%; the frame
management overhead decreased from 11% to 6.9%–3.9%.

We demonstrated the performance of dynamic-length
and fixed-length strategies of work stealing, and compared
it to that of the bottommost first strategy used in the origi-
nal StackThreads/MP. We showed that both the dynamic-
length and fixed-length strategies brought more improve-
ments to the UTS throughput than the bottommost first strat-
egy. StackThreads/MP with extended work stealing strate-
gies were more scalable than Cilk performed. In UTS, Cilk
runs many slow clones that must increase the critical path
overhead.

In Strassen’s matrix multiplication, we showed that
the fixed-length work stealing strategy experienced perfor-
mance degradation as the number of the stolen tasks is in-
creased. Moreover, even more in the case of Sparse LU ma-
trix factorization, this strategy did not scale performance at
all. We recommend to use the dynamic-length work stealing
strategy.

We showed that both the above mentioned extended
work stealing strategies performed better in a UTS case,
which highly demands load balancing. We prove that
the dynamic-length strategy performed better in a recur-
sive/nested parallelism algorithm. Unfortunately, the fixed-
length strategy failed to perform in a nonrecursive algo-
rithm, whereas the dynamic-length work stealing strategy
showed satisfactory performance as the bottommost first
strategy. Hence, controlling load-balancing granularity au-
tomatically through a dynamic-length strategy is useful for
handling the two types of algorithm mentioned above.
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