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1 Abstract 
 

The fundamental goal of forensic genetics is personal identification but 

it is common to obtain inconclusive results from both direct and indirect 

STR-profile comparisons. In such cases, it is necessary looking for 

alternative approaches to generate crucial forensic leads and identify 

unknown perpetrators. 

In this thesis, we propose alternative tools to predict BioGeographical 

Ancestry (BGA) and to identify males sharing the same Y-haplotype by 

utilizing multivariate techniques and Rapidly Mutating Y-chromosome 

short tandem repeats (RM Y-STRs), respectively. 

Concerning ethnic inference, we proposed novel statistical approaches 

(consisting in SLPCA, PLSDA and SVM methods) to group samples 

into BGA-classes, by testing both autosomal STRs (in African 

populations) and microhaplotypes (in U.S. populations). The predictive 

power of such statistics resulted extremely high; in fact, they enhance 

cluster separation providing misleading classifications for genetically 

mixed populations only. 

As to Y haplotype discrimination improvement, we proved the 

efficiency in individualization power of RM Y-STRs – reaching a total 

of 48 markers genotyped – in African populations characterized by high 

levels of endogamy, patrilinearity and population structuring. 

Together, these two innovative approaches converge in demonstrating 

they represent powerful tools to maximize the information inferable 

from biological evidence collected at the crime scene. 
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2 General introduction 
 

2.1 Overview of investigative forensic tools 
 

DNA profiling of biological evidence such as those recovered from 

crime scenes, mass-disaster areas or missing person investigations is 

one of the most challenging topics in forensic sciences. When a crime 

is committed, forensic scientists must follow standardized operative 

protocols (SOPs) consisting in a hierarchical workflow, to obtain the 

individual genetic profile. If there are one or more suspects, the profile 

undergoes a “direct comparison” process, while if there are no suspects 

it undergoes an “indirect comparison” process, which consists in a 

database search – in Italy the database is called Banca Dati Nazionale 

del DNA (Law No. 85 of June 30, 2009 and Presidential Decree No. 87 

of April 7, 2016). Both processes could lead to identify the person who 

left the evidence – match or compatibility – or, unfortunately, results in 

an “information gap”, when no match or no compatibility occurred. 

Through the years, DNA typing has been more and more employed, 

exploiting large sets of genetic markers that can be simultaneously 

analyzed on a single biological sample or trace, even if containing only 

a few copies of DNA [1, 2], to maximize the information inferable from 

the genetic profile. While Short Tandem Repeats (STRs) remain the 

mainstay of forensic analysis [3], several tools have been developed that 

can be used in addition to well-established techniques [4, 5, 6]. Next 

Generation Sequencing (NGS) or Massive Parallel Sequencing (MPS) 

technology could provide a platform that facilitates the use of 

alternative markers in more laboratories. [7, 8]. Currently, this 

technology enables genotyping a large  number  of  Short  Tandem 
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Repeats (STRs) loci in addition to an ever-growing number markers 

such as, for example, autosomal and Y- chromosome Single Nucleotide 

Polymorphisms (SNPs) and mitochondrial DNA (mtDNA) variants. 

This could provide additional information as putative age, alleged 

appearance (visible external characteristics such as hair, eye, and skin 

color [9, 10]), biogeographical ancestry inference [11, 12, 13] and 

potential kinship relationship [14]. 

Among other applications, genetic profile’s capability to distinguish 

biogeographic information among population groups, subgroups and 

affiliations may have several positive pitfalls in leading investigative 

activities and, for this reason, has been largely studied and explored in 

the last decade but, at the same time, represents one of the most 

challenging applications in forensics because it usually shows a broad 

area accuracy [13]. BGA inference is based on the concept that 

individuals belonging to the same population show a genetic similarity. 

Analogously, for kinship inference the genetic sharing is greater the 

closer the kinship scenario is. Current approaches for BGA estimation 

using STRs profiles are usually based on Bayesian methods, which 

quantify the evidence in terms of likelihood ratio, supporting or not the 

hypothesis that a certain profile belongs to a specific ethnic group. To 

date, while autosomal STRs markers are the elective tool for personal 

identification and kinship inference, they have been poorly employed 

as Ancestry Informative Markers (AIMs) as STR alleles which are 

identical by state but not identical by descent occur in different 

populations, mostly because of recurrent mutation (homoplasy). For 

this reason, the more evolutionarily stable SNPs, in the biparental and 

uniparental portions of the genome, are being usually employed to infer 
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the biogeographical ancestry and ethnic origins (generally named as 

BGA) of individuals [13]. 

On the other hand, kinship inference is currently performed by 

comparing autosomal STR profiles of interest and then performing 

familial searching analyses, sometimes (in case of putative paternally 

related males) supported by the analysis of Y-chromosome STR [15, 

16]. Y-STRs represent an invaluable tool for specific forensic purposes 

as unbalanced male-female mixture deconvolution, lineage 

characterization, familial searching, and male suspects exclusion. 

Nevertheless, the lack of allelic recombination of the male-specific 

region of the Y chromosome implies that Y-STR haplotypes may be 

shared by many individuals and, therefore, does not allow 

individualization to the degree that autosomal markers do [17]. 

Developments in Y-chromosome STR analysis continue to be carried 

out [18, 19], as in the case of the identification of new Y-STRs that 

allow for better discrimination between males sharing the same Y-STRs 

haplotype [3, 20]. In fact, these limitations have been partially 

overcome by the identification of 13 Y-STRs characterized by mutation 
-2 

rates higher than 10 mutation/generation, termed rapidly mutating Y- 

STRs (RM Y-STRs) [21, 28]. Recently, 12 additional RM Y-STRs were 

discovered and, together with the previous 13 ones, were proven to 

significantly refine the male relative differentiation capacity [22, 29]. 

Different studies demonstrated the high haplotype diversity and 

discrimination capacity reached by using the RM Y-STRs [23, 24, 25]. 

Nevertheless, few studies [26, 27] have investigated the potentiality of 

RM Y-STRs in distinguishing males sharing the same Y-STRs 

haplotype in regions characterized by high levels of haplotype sharing 

and strong genetic sub-structuring, as the African continent, due to 
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cultural and social factors (i.e., endogamy, population structure and 

patrilocality). 

These innovative applications may represent a powerful and dynamic 

tool for investigative and intelligence applications for law enforcement 

agencies whenever a standard genetic profile is obtained from an 

unknown DNA donor, and they deserve to be further investigated. 
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3 Specific introduction: investigative tools 

considered in this thesis 

3.1 Biogeographical ancestry 
 

Among other forensic applications, genetic profile’s capability to allow 

interference about biogeographic ancestry of unknown persons of 

interest (BioGeographical Ancestry, BGA) represents the most 

problematic character because it has broad area accuracy [13]. For these 

reasons, BGA has been largely explored in the last decade and current 

approaches using STRs profiles are based on Bayesian methods [30,31], 

which quantify the evidence in terms of likelihood ratio, supporting or 

not the hypothesis that a certain profile belongs to a specific ethnic 

group. Bayesian statistics have been applied to estimate the ethnic 

affiliation of unknown genetic profiles obtained with autosomal STRs 

in well-known software such as STRUCTURE [32], the Snipper App 

suite [33] and PopAffiliator 2 [34]. These approaches perform Bayesian 

evaluations by inferring the relationships between the allele frequencies 

of specific populations and the alleles observed in the individuals, 

which are recognized as part of such populations. This is done by 

computing the likelihood values of individuals belonging to each of the 

tested population groups, according to their relative allele frequencies. 

An advantage of these methodologies is that prior information about the 

samples can be considered during the advancement of the analysis [35]. 

In the case of multi-locus genotypes, the power to obtain large amounts 

of data from a single biological sample requires appropriate statistical 

strategies to extract as precise information as possible regarding its 

ancestry. In this context, Multivariate Data Analysis (MDA) techniques 
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may provide useful advantages to infer ethnic affiliation or ancestry of 

unknown subjects’ genetic profiles. These methods may simultaneously 

perform specific and sensitive discriminations among different groups. 

Software based on Likelihood Ratios (LR) traditionally involve the 

comparison of only two alternative hypotheses, while multivariate 

techniques may efficiently evaluate several population groups together. 

However, the likelihood-based methods for BGA estimation overcome 

this issue by computing the likelihood of membership to each of the 

populations under evaluation [35, 36]. The present thesis provides an 

alternative approach to the likelihood ratio method that involves 

Multivariate Data Analysis strategies for the estimation of multiple 

populations ethnic origin. In fact, we employ multivariate 

methodologies such as Sparse and Logistic Principal Component 

Analysis (SL-PCA) [37], Sparse Partial Least Squares-Discriminant 

Analysis (sPLS-DA) [38, 39, 40] and Support Vector Machines (SVM) 

[41, 42] on autosomal STRs data sets and on Microhaplotype (MHs) 

markers data sets. Microhaplotypes are emerging biomarkers of at least 

two Single Nucleotide Polymorphisms (SNPs) associated in multiple 

allelic combinations within 300bp. The multi-allelic nature of MHs 

make them more informative than a Single Nucleotide Polymorphism 

(SNP) locus and useful for forensically relevant applications, including 

mixture deconvolution and ancestry inference on massively parallel 

sequencing platforms [43, 44]. Due to presence of small amplicons and 

low recombination rate, absence of stutter and preferential 

amplification, they are promising candidates for biogeographical 

ancestry (BGA) prediction [45] from both single-source and mixed 

DNA profiles. In fact, biallelic SNPs are not effective in mixtures, 

whereas MHs are and this means that a deconvoluted MH profile in 
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single contributors could be useful for predicting the ethnic origin of a 

minor or major contributor to a mixture. These multivariate techniques 

were selected as they have proven capable of dealing with the type of 

genotypic data generated as it can be easily binarized. Our goal was to 

develop multivariate approaches for the interpretation of DNA profiles 

to better estimate the biogeographical ancestry information of personal 

genetic profiles, by building dynamic and flexible models that could be 

easily modified according to the number of tested populations and the 

number of markers in the profile and the reference panel. Our 

multivariate statistics approach may represent a powerful tool for 

research and investigative purposes. 

 
3.2 Consanguinity 

 
The inference of kinship provides highly accurate information about the 

familial relationship between two people based on their DNA. These 

analyses are commonly performed by using Blind Search Analyses 

(BSAs) and Pedigree construction tool of several conventional software 

[46] used in forensic genetics or by reconstructing parental lineages 

using lineage markers, such as mitochondrial DNA (mtDNA) and Y- 

chromosome markers. Y chromosome STRs (Y-STRs) are widely used 

in forensic genetics, usually in addition to the autosomal STRs (aSTRs). 

The holandric inheritance and the lack of recombination imply that Y 

chromosome haplotypes are usually shared among paternal relatives 

[16, 17]. Nevertheless, the recent identification of rapidly mutating Y- 

STR markers (RM Y- STRs) characterized by a mutation rate higher 

than 10−2/ STR/generation have been proven to be extremely useful in 

distinguishing among close male relatives [21, 22]. Thus far, the most 
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discriminating Y-STR system commercially available for capillary 

electrophoresis is represented by the 25 Y-STR multiplex named 

YfilerTM Plus PCR amplification kit (ThermoFisher Scientific), which 

includes six “first generation” RM Y-STRs (five single copy and the 

two-copy system DYF387S1), while non-commercial multiplex assays, 

including 13 “first generation” RM Y-STRs [28] and the whole set of 

25 RM Y-STRs [29], have been published. In principle, it can be 

expected that with enough RM Y-STRs available, closely, and 

especially distantly related men will be distinguishable through 

observed mutations [16]. 

However, the performance of multiplexes containing RM Y-STRs (e.g. 

Yfiler Plus) in populations characterized by high level of endogamy has 

not been fully investigated so far. 

In this thesis, we investigated familial relationship and paternal lineage 

of 1370 males from African continent, and we assessed the power of 

those novel genetic markers located on Y-chromosome to improve the 

discrimination power of male-specific markers in regions characterized 

by high levels of endogamy. Specifically, we first analyzed the putative 

kinship relationships among these males using 16 autosomal STRs and 

the Blind Search Analysis (BSAs) tool of the Familias software [46]. 

Subsequently, we assessed the male individualization power of “first- 

generation” RM Y-STRs using the RM-Yplex assay developed by [28] 

and then using the novel 30 Y-STR markers developed by [29]. 
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4 Materials and Methods 
 

4.1 Autosomal STRs 
 

4.1.1 Sample 
 

Four different population datasets were selected for this study. All the 

datasets consisted of individual genotypes rather than allele 

frequencies. 

The first dataset consisted of original unpublished genotypes from 

Northern, sub-Saharan and Eastern African populations analyzed for 16 

autosomal STRs loci using the AmpFlSTR® NGM SElectTM PCR 

Amplification Kit from Thermo Fisher Scientific, i.e. 477 Northern 

Africans (from Algeria, Egypt, Libya and Morocco), 431 sub-Saharan 

Africans (from Cameroon and Chad) and 462 Eastern Africans (from 

Eritrea, Ethiopia, Djibouti and Kenya). All the biological samples 

included in this dataset were randomly collected from informed people. 

Despite efforts to avoid the inclusion of relatives during the sampling 

process, the presence of related males in the sample could not be 

excluded due to the unavailability of genealogical information. For each 

subject, the ethnic identity was assessed by self-identification. This 

study ethically complies with the ISFG guidelines for the publication of 

genetic population data [47] and was formally approved by the 

“Reparto Carabinieri Investigazioni Scientifiche di Roma”. 

The second dataset was extracted from the NIST U.S. population 

database and consisted of genotypic data for U.S. African-American (N 

= 342), Asian (N = 97) and Caucasian (N = 361). For this dataset, the 

following 24 markers were selected: D1S1656, D2S441, D2S1338, 

D3S1358,   D5S818,   D6S1043,   D7S820,   D8S1179,   D10S1248, 
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D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, 

D22S1045, CSF1PO, FGA, Penta D, Penta E, SE33, TH01, TPOX, 

vWA. Markers F13A01, F13B, FESFPS, LPL and Penta C, which are 

present in the NIST U.S. population database, were not considered in 

this study since they are usually not included in commercially available 

autosomal STR amplification kits commonly used in forensic 

laboratories. 

The third dataset comprised two central Asian populations genotyped 

for 15 autosomal STRs loci using the AmpFlSTR® IdentifilerTM PCR 

Amplification Kit panel from (Thermo Fisher Scientific) (D3S1358, 

vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, 

TH01,  TPOX,  CSF1PO,  D19S433,  D2S1338,  D16S539),  i.e.  65 

unrelated Afghan and 103 Iraqi (mainly from central and southern Iraq 

provinces). 

The fourth dataset comprised two populations genotyped for 16 

autosomal STRs loci using the AmpFlSTR® NGM SElectTMPCR 

Amplification Kit (Thermo Fisher Scientific) (D10S1248, vWA, 

D16S539, D2S1338, D8S1179, D2S11, D18S51, D22S1045, D19S433, 

TH01, FGA, D2S441, D3S1358, D1S1656, D12S391, SE33), i.e. 209 

unrelated Italian individuals, and 287 Eastern Europeans (223 

Romanian and 64 Moldavian subjects). 

For each dataset, we evaluated the inter-population genetic 

differentiation using the FST statistics (an index of the co‐ancestry for 

randomly chosen alleles within the same subpopulation relative to the 

entire population) to have a convenient metrics to objectively measure 

genetic differentiation among populations when estimating BGA of 

individuals belonging to such populations. FST values were obtained 

using the software STRAF v. 1.0.5 [48]. 
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4.1.2 Autosomal STRs DNA Typing 
 

DNA samples from the first dataset were extracted either from blood 

using a standard phenol-chloroform protocol or from saliva or cell lines 

using the EZ1&2 DNA Investigator Kit (Qiagen) on a BioRobot EZ1® 

Advanced XL Workstation (Qiagen). DNA quantification was 

performed using Quantifiler® Trio DNA Quantification Kit (Thermo 

Fisher Scientific) and/or QubitTM 4 Fluorometer (Thermo Fisher 

Scientific). Multiplex amplification of 16 autosomal STRs (D10S1248, 

vWA, D16S539, D2S1338, D8S1179, D21S11, D18S51, D22S1045, 

D19S433, TH01, FGA, D2S441, D3S1358, D1S1656, D12S391, SE33) 

was performed using the AmpFlSTR® NGM SElectTM PCR 

Amplification Kit (Thermo Fisher Scientific) and 1 ng of genomic 

DNA, according to manufacturer’s protocol. PCR conditions were set 

up on an Applied Biosystem® VeritiTM 96‐Well Thermal Cycler 

(Thermo Fisher Scientific). Amplified DNAs were then 

electrophoresed on the 24-capillary Applied Biosystems®  3500XL 

Genetic Analyzer (Thermo Fisher Scientific), and the fragment analysis 

was performed throughout GeneMapper® ID-X v.1.6 (Thermo Fisher 

Scientific). The authors followed ISFG recommendations and internal 

protocols complying with the requirement ISO17025 for the 

polymorphism analysis and interpretation [49, 50, 51, 52]. 

 
4.2 Y chromosome STRs 

 
4.2.1 Sample 

 
Samples belonging to the first dataset (1370 males from Northern, sub- 

Saharan and Eastern African  populations  previously  analyzed  for 
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aSTRs) were subsequently analyzed for 27 Y-chromosome STRs loci 

using the YfilerTM Plus PCR Amplification Kit (Thermo Fisher 

Scientific). This study ethically complies with the ISFG guidelines for 

publication of genetic data [15, 17] and was formally approved by the 

“Reparto Carabinieri Investigazioni Scientifiche di Roma'' and by the 

“Sapienza Università di Roma'' Ethical committee (Document number 

2755/15). 

4.2.2 27 Y-STRs DNA typing 
 

DNAs were multiplex amplified for 27 Y-STRs (DYS576, DYS389I, 

DYS635, DYS389II, DYS627, DYS460, DYS458, DYS19, GATAH4, 

DYS448, DYS391, DYS456, DYS390, DYS438, DTS392, DYS518, 

DYS570, DYS437, DYS385, DYS449, DYS393, DYS439, DYS481, 

DYS387S1, DYS533) using the YfilerTM Plus PCR Amplification Kit 

(Thermo Fisher Scientific). 

Amplification was performed on an Applied Biosystem® VeritiTM 96- 

Well Thermal Cycler (Thermo Fisher Scientific) according to the 

manufacturer’s protocol utilizing 1 ng of genomic DNA. Amplified 

DNAs were then electrophoresed on the 24-capillary Applied 

Biosystems® 3500xL Genetic Analyzer (Thermo Fisher Scientific) and 

the fragment analysis was performed with GeneMapper® ID-X software 

v.1.4 (Thermo Fisher Scientific). 

Haplotype data were submitted to the Y-chromosomal haplotype 

reference database (www.yhrd. org) [53] (accession numbers 

YA003983, YA 004045, YA 004198 – YA 004207, YA 004351 – YA 

004356, YA 004668 – YA 004669). The contributors successfully 

passed the quality control test. 
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4.2.3 13 RM Y-STRs DNA typing 
 

Among 1370 male samples from the first dataset previously analyzed 

with the Yfiler Plus kit, 240 individuals were reported to share 100 

distinct Y-STR haplotypes. All those 240 males were analyzed for 13 

Rapidly Mutating Y-STRs (RM Y-STRs) – DYF387S1, DYS399S1, 

DYS403S1a/b, DYF404S1, DYS449, DYS518, DYS526a/b, DYS547, 

DYS570, DYS576, DYS612, DYS626 and DYS627 – described by 

[20]. Multiplex amplification of the 13 RM Y-STRs was performed 

using the 13-locus RM-YPlex assay described in [28] and 1 ng of 

genomic DNA. Amplification was set up on an Applied Biosystem® 
 

TM 
Veriti 

 
96‐Well Thermal Cycler (Thermo Fisher Scientific) and, 

subsequently, amplified DNAs were electrophoresed on the 8-capillary 

Applied Biosystems® 3500 Genetic Analyzer (Thermo Fisher 

Scientific). Then, the fragment analysis was performed with 

GeneMapper® ID-X v.1.6 (Thermo Fisher Scientific). 

4.2.4 24 RM Y-STRs + 6 FM Y-STRs 
 

Among 240 male samples from the first dataset previously analyzed 

with the Yfiler Plus and RM YPlex assays, 107 individuals were 

reported to share 50 distinct Y-STR haplotypes. All those 107 males 

were analyzed for further 24 Rapidly Mutating Y-STRs (RM Y-STRs) 

and 6 Fast Mutating Y-STRs (FM Y-STRs) using the RMplex assay 

described in [29]. The PCR reactions of the 30 RM Y-STRs were 

performed on an Applied Biosystem® VeritiTM 96‐Well Thermal 

Cycler (Thermo Fisher Scientific) in two different multiplexes: 
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 1° multiplex made up of 16 Y-STRs: DYF393S1, DYS627, 

DYS570, DYS713, DYS526b, DYF1000, DYS518, DYS1003, 

DYS1012, DYS1005, DYS101, DYS1007, DYR88, DYF404S1, 

DYF387S1,  DYS1013 

 2° multiplex made up of 14 Y-STRs: DYS712, DYS711, 

DYS626, DYF399S1, DYS449, DYS724, DYS547, DYS576, 

DYS612, DYF1002, DYF1001, DYF404S1a, DYS442, 

DYF403S1b 

 
Every multiplex reaction was amplified with the same PCR protocol, 

according to the suggested protocol [29], as follow: 94 °C for 10 min, 

10 cycles of 94 °C for 30 s, 65-1 °C every cycle for 60 s and 72 °C for 

60 s, followed by 25 cycles of 94 °C for 30 s, 50 °C for 30 s and 72 °C 

for 60 s with a final extension step of 60 °C for 45 min. After 

amplification, 1 μL of the PCR product was mixed with 9 μL of Hi-Di 

formamide (Thermo Fisher Scientific Inc.) and with 0.3 μL of ILS600 

size standard (Promega Corporation). This mixture was incubated at 

95 C̊ for 3 minutes and rapidly cooled on ice for 5 minutes. Capillary 

electrophoresis was performed on an ABI 3500XL Genetic Analyzer 

(Thermo Fisher Scientific Inc.) The resulting electropherograms were 

analyzed using GeneMapper® ID-X v.1.6 (Thermo Fisher Scientific). 

 

4.3 Microhaplotypes 
 

4.3.1 Sample 
 

Five different populations were selected for this study. Four populations 

represent the four major United States groups and are composed of 88 

Afro-American (AA), 114 European American (EA), 102 Southwest 
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Hispanic (His), and 43 East-Asian American (EAA), respectively. The 

fifth population comprised 129 admixed individuals (ADMIX); 

precisely subjects that have the mother and the father coming from 2 

different populations or individuals that belong to a genetically admixed 

population (for example as Puerto Rican, Dominican, American Indian, 

Vietnamese, Cuban, Mexican, Jewish and St. Lucia). 

4.3.2 Next Generation Sequencing with Ion S5 

Technology 

NGS data for the 347 subjects belonging to the four US population 

datasets were already available from [45] while the 129 Admixed 

individuals were genotyped using a 74 MH bioassay on the Ion S5TM 

System sequencing platform [44]. 

Preparation of DNA libraries was manually performed in half- reaction 

volume using the Precision ID Library (Thermo Fisher Scientific) kit 

according to the manufacturer’s protocol and as outlined below. 

Amplification of DNA targets was performed using 5 μL of 74plex MH 

primer mix assay (primers were pooled equimolar) or 5 μL Precision 

ID GlobalFilerTM NGS STR Panel v2, 2 μL of 5X Ion AmpliSeqTM Mix 

from the Precision ID Library (Thermo Fisher Scientific) kit, pre- 

quantified reference and mixed samples at 1 ng and 10 ng, and nuclease- 

free water. Thermal cycling was performed on the GeneAmp® 9700 

System (Thermo Fisher Scientific) using the following PCR 

amplification conditions: enzyme activation for 2 min at 99 ◦C, 

amplification for 21 cycles for MHs and 23 cycles for STR Panel v2, 

denaturation for 15 s at 99 ◦C, annealing/extension for 4 min at 60 ◦C, 

and hold at 4 ◦C. 
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To partially digest the ends of MH and STR amplicons, these were 

treated with 1 μL FuPa Reagent and incubated for 10 min at 50 ◦C, 10 

min at 55 ◦C, 20 min at 60 ◦C, and held up to 1 h at 10 ◦C. 

Ion P1 Adaptors and XpressTM Barcodes were ligated to the FuPa 

digested amplicons. 2 μL of Switch solution, 1 μL of diluted Ion 

XpressTM Barcode (barcodes 1–96) and P1 Adapter mix and 11 μL 

digested PCR reaction were mixed and incubated for 30 min at 22 ◦C, 

10 min at 72 ◦C for the panel of MHs and at 68 ◦ C for the Precision ID 

GlobalFilerTM NGS STR Panel v2 and held up to 1 h at 10 ◦C. Each 

DNA library was barcoded with a distinct barcode number to enable 

library pooling. Each library was purified with 1.5X Agencourt® 

AMPure® XP reagent (Beckman Coulter, FL, USA), as recommended 

by the manufacturer. 

Each DNA library was diluted down to 1:100 and quantitated on the 

Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher 

Scientific) following the protocols outlined in the Ion AmpliSeqTM 

Library Preparation for Human Identification Applications User Guide 

and on the Ion Library TaqManTM Quantitation (Thermo Fisher 

Scientific) Kit [54]. After quantification, libraries were pooled in 

equimolar amounts, diluted down to approximately 60 pM, as 

recommended by the manufacturer and run on the 7500 Real-time PCR 

machine using the Ion Library TaqManTM Quantitation Kit. Results 

were analyzed using the HID Real-Time PCR Analysis Software v. 1.2 

(Thermo Fisher Scientific). Barcoded DNA libraries were then pooled 

equivolume. A maximum of 20 DNA libraries was loaded per chip to 

maximize the read depth for the mixed samples. To verify the correct 

input amount of pooled library, 1:10 and 1:100 dilutions of the same 

pool library were prepared. The library-pool was re-quantified to make 
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sure to load the expected library amount into the Ion Chef system. A 

total of 25 μL of approximately 30 pM and 50 pM library-pool for MHs 

and STRs, respectively, was loaded into the Ion ChefTM (Thermo Fisher 

Scientific) system for templating (i.e., ion sphereTM particles 

enrichment reaction), as recommended by the manufacturer. 

The Ion ChefTM system (Thermo Fisher Scientific) was run for template 

preparation using the Ion S5TM Precision ID Chef & Sequencing Kit. 

The process involves emulsion PCR (library amplification), ion 

sphereTM particles recovery and enrichment (carrying target sequence 

template), and chip loading. Final chip loading involves 25 μL of each 

equimolar – pooled library along with required reagents and 

consumables following the manufacturer’s recommendation. For the 

emulsion PCR process, 27-PCR-cycle default protocol was used for 

STR mixtures and the 45-PCR-cycle default protocol for MH mixtures, 

as indicated by the manufacturer. Templated/enriched ion sphereTM 

particles were loaded on the Ion 530TM chip that contains > 30 million 

wells while sequencing was performed on the Ion S5TM platform, 

which allows ~400 bp read  length. Cartridge reagents, wash and 

sequencing solutions, and 2 Ion530TM chip were loaded on the 

instrument and sequencing flows were set to “650” and “850” for STR 

and MH assay sequencing reactions respectively, as recommended by 

the manufacture. 

Sequencing data were processed using the Ion Torrent Suite Software 

v. 5.10.0. For MHs, the TVC Microhaplotyper plugin v. 8.1 (Thermo 

Fisher Scientific) was used to analyze the sequencing reads of each 

library and output display. The plugin was run to locate the MH regions 

within Homo sapiens GRCh37/hg 19 reference genome by unaligned 

BAM files for each barcoded library and a panel of target and hotspot 
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BED file (mh74_targets and mh74_hotspot) to genotype MH loci and 

generate output files. These include the TVC Microhaplotyper plugin v 

8.1 report detailing information on genotype, coverage, allele sequence 

and coverage plot for each MH locus and two TXT files generated per 

each batch result: one filtered TXT file including marker ID, number of 

alleles and allele sequence and one unfiltered TXT file displaying 

marker ID, allele coverage (coverage minus and plus). 

4.4 Statistical analyses: 
 

4.4.1 Kinship analyses 
 

Kinship for the first autosomal STR dataset consisted of 1370 

genotypes from Northern, sub-Saharan and Eastern African populations 

was assessed using the Blind Search Analysis (BSA) module of the 

Familias software v. 3.2.8 [46] to reveal putative presence of close 

relatives and provide, for each alleged kinship, a Likelihood Ratio (LR) 

value. 

We assumed a stepwise mutation model with a mutation rate of 0.001 

and the mutational range fixed to 0.1. The fixation index (FST) value and 

the typing error rate were set at 0.03 and 0.001, respectively, while 

drop-in and drop-out were assumed to be absent. The direct-match, 

parent-child, siblings, second-degree relatives, cousins, and second 

cousins’ relationships were investigated. For each pair of subjects, the 

alleged relationship having the highest likelihood ratio (LR) value was 

assumed to be the right one. Since kinship analysis relies on population 

allele frequencies at the denominator of the LR, we used the Afro- 

American validated autosomal allele frequency database published in 

[55] for all the pairs of subjects. 
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10,000 simulation tests were made for each population/kinship scenario 

to establish LR thresholds. FST= 0.03 and �= 2 x 10-3. Relationships 

above an LR threshold of 102 were considered as strongly supported 

[56, 57], inferred kinship between pairs of subjects with 1<LR<100 

were considered as moderate or weakly supported, while pairs of 

subjects with LR<1 were classified as unrelated. 

4.4.2 Y-STR   pairwise   comparison   and   mutational 

analysis 
 

We compared RM Y-STR haplotypes of males sharing the same Yfiler 

Plus haplotype (100 shared haplotypes, 240 males). The 6 RM Y-STRs 

overlapping between Yfiler Plus and RM-YPlex (i.e., DYS570, 

DYS576, DYS518, DYS627, DYF387S1, and DYS449) were checked 

to assess genotyping consistency between the two PCR assays, while 

the 7 “first generation” RM Y-STR (DYF399S1, DYF403S1a/b, 

DYF404S1, DYS526a/b, DYS547, DYS612, and DYS626) which were 

not included in the Yfiler Plus multiplex, were used to evaluate their 

power in discriminating between pairs of males. Moreover, the 

proportion of pairs of males differentiated by the 7 RM Y-STRs was 

assessed, considering the inferred kinship degree (if any). For each of 

100 groups of males, the number of mutations occurring at each locus 

and for each group of males sharing a Yfiler Plus haplotype was 

counted under the most conservative scenario (i.e., allowing for single 

multi-repeat mutations rather than multiple single-repeat mutations). 

The “phylogenetic” relationships among males belonging to the three 

major clusters (H12, H21, and H69) were depicted through the UPGMA 

clustering method using the Manhattan genetic distance as implemented 

in PAST v. 4.09 software [58]. 
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4.4.3 Forensic parameters 
 

Forensic parameters were calculated for the dataset consisted of Y 

chromosome STRs from Northern, sub-Saharan and Eastern African 

populations were calculated to evaluate the discrimination power 

achieved with Yfiler (17 loci) and Yfiler Plus (25 loci) compared to the 

Yfiler Plus supplemented with seven [28] and twelve [29] additional 

RM Y-STRs loci (32 loci and 37 respectively). 

Y chromosome haplotype sharing was evaluated using the "profile 

comparison" function of GeneMapper ID-X®. Then, the number of 

distinct shared and unique Y chromosome haplotypes was counted, 

where the number of distinct haplotypes corresponds to the sum of 

unique and shared haplotypes. Discrimination capacity (DC) was 

calculated as the ratio between the number of distinct haplotypes and 

the total number of chromosomes in the dataset, while the proportion of 

matching haplotypes (MH) was calculated as the ratio between the 

number of males sharing a Y-haplotype and the total number of 

chromosomes. 

4.4.4 Bio Geographical Ancestry prediction by 

Multivariate Statistical Analyses 

Bio geographical ancestry (BGA) prediction was performed for all the 

individuals belonging to the four autosomal datasets and for the five 

microhaplotype dataset selected for this study. 

Multivariate models were built on the autosomal profiles, where each 

STR profile was converted into a row of zeros and ones by means of an 

in- house code developed in the R software (version 1.1.463) [59, 60] 

statistical environment. In details, for all the tested individuals, a value 
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equal to 1 was reported for the alleles x and y (where x is equal to y in 

case of homozygosity) recorded for a specific marker Z, while a value 

equal to 0 was reported for the other n available alleles of the previously 

cited marker Z. Consequently, the STRs DNA profile of each individual 

was converted into a series of zeros and ones (i.e., binary dataset). Since 

the matrices obtained by using such computational approach turned to 

show many zeros as compared to the number of ones, sparse algorithms 

had to be considered when calculating the multivariate models. 

SL-PCA, sPLS-DA and SVM multivariate techniques were employed 

to obtain reliable models for the estimation of the BGA information of 

unknown genetic profiles. Multivariate modelling and calculations 

were carried out in R (version 3.6.0) [59, 60]. The following functions 

and R packages were used to build in-house R code for computing the 

different models: sparse logistic Principal Component Analysis [37], 

mixOmics [61] and e1071 [62]. In-house developed codes will be 

available to the readers upon requests to the authors. 

Initially, SL-PCA was utilized as an exploratory analysis tool to verify 

the capabilities of multivariate statistics in recognizing specific pattern 

regarding the biogeographical origins of the individuals based on their 

STR profiles, especially when dealing with binary data (as reported 

above). PCA, here employed in the sparse and logistic version reported 

in [37], is one of the most exploited techniques in the field of 

multivariate statistics; it allows to graphically represent the information 

contained into large data matrices by providing useful visual re- 

presentations of data distributions, similarity trends, classes and outliers 

[63]. In practice, PCA evaluates the original data collected for several 

“objects” (i.e., the encoded individuals), by re-modelling them within 

new Cartesian diagrams. The new axes of these diagrams represent 
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the Principal Components (PCs), defined as a linear combination of the 

original variables to make them reciprocally orthogonal. 

After the preliminary evaluation of SL-PCA modelling, sPLS-DA and 

SVM models were applied, to assess their predictive capabilities in 

blind inference of the ethnic affiliation of DNA profiles. sPLS-DA is 

the sparse version of the combination of Partial Least Squares (PLS) 

and Discriminant Analysis (DA) techniques [40, 64, 65]. In practice, 

sPLS- regression finds the factors that capture the greatest amount of 

variance in predictor variables by simultaneously modelling those X 

predictors that optimally correlate the responses of the Y matrix. 

Briefly, the PLS algorithm indicates that the Y responses are 

proportional to the first principal component – named as Latent 

Variable (LV) – except for some residuals; then, residuals turn 

proportional to the second LV, except for new residuals, etc. 

Afterwards, the slopes of the regression line – named as PLS weights – 

are calculated as residual regression coefficients and indicates the 

direction of the first LV. The variables/predictors are not usually 

independent and PLS may provide a bilinear projection model, plus 

some residuals. Because of that, PLS admits that some X-data are not 

correlated to Y-responses; these data can represent noise or redundancy, 

thus indicating that PLS tolerates noisy or redundant data, unlike other 

regression methodologies. On the other hand, LDA is a supervised 

classification method whose goal is to discriminate different classes of 

objects by evaluating the optimal boundaries among them. Originally 

developed by Fisher [38], LDA allows discriminating objects of 

different classes by examining the probability distributions of the 

classes to which the objects may belong. Accordingly, each object is 

classified in the specific class which shows the highest score in terms 
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of probability. Graphically, the probability distributions are expressed 

as ellipses at different probability levels for each class under 

examination. These ellipses are respectively tangential to a point that is 

located half- way among the class centers and a straight delimiter is 

adopted as a boundary to separate the ellipses and, consequently, the 

different classes. LDA provides a linear function of the variables and 

maximizes the ratio between the variances of each class; weights are 

adopted to provide the best classification of the objects so that LDA can 

select the direction achieving the maximum separation among the given 

classes. 

Finally, SVM is a Multivariate Data Analysis (also known as Machine 

Learning) methodology usually adopted for pattern recognition tasks. 

Very concisely, this methodology was developed by Vapnik [42] with 

the aim to provide a decision rule in terms of a special type of hyper- 

planes, defined as “optimal separating hyperplanes” and known as 

“delimiter” or “margin” [41], capable of recognizing and discriminating 

the objects of different sets or classes. The delimiter is optimized as the 

distance between the separating decision boundaries (hyperplanes) and 

the closest objects to these hyperplanes, which are defined as support 

vectors. As reported by Vapnik [42], SVM techniques map the objects 

matrix X into a high-dimensional space called “feature space”; then 

linear or nonlinear functions (such as kernels) may be adopted to build 

an optimal separating hyperplane in this space. 

All the multivariate models were assembled adopting the 70 % of the 

available data as training set and the remaining 30 % of data was 

employed as evaluation set. Repeated double cross-validation 

procedures were performed by applying a venetian blind design and a 

number of data splits equal to 5 (i.e., 80 % of the available data of the 
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training set was employed to build the models), in accordance with [66]. 

Finally, sensitivity and specificity parameters were calculated for all the 

sPLS-DA and SVM models, as follows: (i) sensitivity is equal to the 

proportion of individuals belonging to a specific bio-geographical 

origin that are correctly identified as such, while (ii) specificity is equal 

to the proportion of individuals belonging to another bio-geographical 

origin (with reference to the one that is considered by the model) and 

that are correctly identified as such. 
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5 Results 
 

5.1 Autosomal STRs: 
 

5.1.1 Allele Frequencies Database 
 

Allele frequencies databases are empirically determined from sets of 

randomly selected human samples genotyped for autosomal STRs. 

They represent the basis of population studies in forensic genetics. The 

reliability and the accuracy of the data are largely based on the 

responsibility of the individual contributing research groups and 

centralized quality control and data curation is essential to minimize 

error [47]. 

Allele frequencies for 16 STR loci included in NGM SElected™ kit 

(D3S1358, vWA, D16S539, D2S1338, D8S1179, D21S11, D18S51, 

D19S433,  TH01,  FGA,  SE33,  D10S1248,  D22S1045,  D2S441, 

D1S1656, D12S391 and Amelogenin) were determined in African 

population dataset (including 1370 subjects, see materials and methods) 

subdivided by the three main regions (Northern Africa, N=477; Sub- 

Saharan Africa, N=431; and Eastern Africa, N=462). The three datasets 

have been submitted to online publication [47, 67 STRidER dataset 

reference STR000291] and are reported in Supplementary Table 1. 

5.1.2 Multivariate statistics 
 

SL-PCA, sPLS-DA and SVM multivariate techniques were employed 

to obtain reliable models for the estimation of the BGA information of 

unknown genetic profiles. Multivariate modelling and calculations 
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were carried out in R (version 3.6.0) and RStudio (version 1.1.463) [59. 

60] and results are listed below. 

 
SL-PCA analysis: SL-PCA was first exploited to rapidly investigate the 

main features in the dataset. As expected, good separation was not 

observed for the SL-PCA comparison involving the Northern, the 

Eastern and the Sub-Saharan African individuals (Fig. 1). Among the 

three datasets, the best separation was observed between Northern and 

sub-Saharan samples and this may be due to the fact that the Sahara 

Desert acted as a strong geographic barrier to gene flow between the 

cited populations in the last five thousand years [68]. In contrast, the 

East African samples show full overlap with both North African and 

sub-Saharan African datasets, confirming the extensive gene flow 

existing between these areas. 

In summary, this traditional multivariate procedure allowed us to 

observe the pertinence of more advanced multivariate statistics in 

assessing and recognizing the biogeographical ancestry information by 

evaluating the autosomal STRs DNA profiles, only. Although a fair 

degree of separation was observed, there is still an important overlap 

between all three African regions [71, 72]. 

This could be explained because whenever the populations to be 

compared showed quite similar STR allele frequencies they would be 

expected to return unsatisfactory results. For example, when FST value 

is higher than the conventional 0.001, as in those cases, we sought to 

assay more sophisticated and classification-like multivariate models 

(such as sPLS-DA and SVM techniques, described in the following) to 

possibly obtain satisfactory separations between the populations and 

hence better chances of individual assignment. 
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a) 
 

 

b)    

Fig. 1. SL-PCA PC1 vs. PC2 PCA 2D (a) and 3D (b) Scores Plot. for sub-Saharan 

(blue) vs Northern-African (green) vs Eastern African (red) subjects. 
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sPLS-DA analysis: Based on results provided by PCA modelling, 

sPLS-DA was applied to the same experimental sets to develop useful 

discrimination models (Fig. 2). The predictive models were evaluated 

in terms of Root Mean Square Error in Cross-Validation (RMSECV) 

[69], i.e. the lower the RMSECV value, the higher the discrimination 

power of the model. Moreover, the number of LVs was determined 

through the evaluation of further quality parameters such as the 

Predictive Residual Error Sum of Square (PRESS), Q-residuals, 

Hotelling’s T2, Leverages and Y-Studentized residuals [69]. Sensitivity 

and specificity values were calculated too and are reported in the ROC 

Curve (Fig. 3). 

By applying this model, the three datasets showed a better 

discrimination than PCA one, especially for Northern and Sub-Saharan 

samples which differ mainly along LV1, in agreement with the 

relatively high inter-population genetic diversity observed (FST 

values). The AUC values obtained for the first component are equal to 

0.516, 0.881 and 0.865, for the second component are equal to 0.813, 

0.908 and 0.892, while for the third component are equal to 0.830, 0.934 

and 0.895 for Eastern, Northern and Sub-Saharan samples, respectively. 

These data allow us to affirm that sPLS-DA improves separation of 

autosomal STR profiles in respect of PCA and might represent a useful 

tool for improving the routine estimation of the BGA information. 
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a) 
 

 
b) 

 

 
Fig. 2. PLS-DA LV1 vs. PLS-DA LV2 2D (a) and 3D (b) Scores Plot for sub- 

Saharan (blue) vs Northern-African (green) vs Eastern African (red) subjects. 
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Fig. 3. Receiver Operating Characteristic (ROC) curves outcomes from PLSDA 

analyses using 1, 2 and 3 components for sub-Saharan (blue) vs Northern-African 

(green) vs Eastern African (red) subjects. 
 
 

SVM analysis: SVM was applied and the corresponding sensitivity and 

specificity values are reported in the resulting ROC curves (Fig. 4). 

Among the 407 Eastern Africans, 334 (0.82) were correctly assigned, 

while 30 and 43 were misclassified as Northern and Sub-Saharan 

samples, respectively. Concerning Northern Africa, 366 out of 375 

(0.90) subjects were correctly assigned, while 31 and 11 were 

misassigned as Eastern Africans and Sub-Saharan Africans, 

respectively. Finally, 358 out of 398 (0.90) sub-Saharan Africans were 

correctly assigned, while 35 and 5 were misassigned as Eastern and 

Northern Africans, respectively. 
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Consequently, SVM turned out to be a very powerful model, with high 

specificity and sensitivity values for these ethnic groups, thus proving 

the reliability of multivariate statistics to extract BGA information from 

autosomal STRs DNA genetic profiles. 

 
Figure 4 Receiver Operating Characteristic (ROC) curves outcomes from SVM 

analyses for sub-Saharan (blue) vs Northern-African (green) vs Eastern African 

(red) subjects. 
 

5.1.3   Development of a new BGA predictor software 
 

We are developing an open-source, freely available and user-friendly R 

Shiny app with an intuitive graphical user interface named 

“BGApredictor” (https://bgapredictor.shinyapps.io/BGApredictor/) 

[70] to let the forensic community take practical and operational 

advantage from these new multivariate statistical approaches for BGA 

estimation, overcoming the limits in using R software and packages. 

We are testing and validating the software over the datasets of 

autosomal STRs markers from our recently published studies [67, 71, 

https://bgapredictor.shinyapps.io/BGApredictor/
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72] to made easily usable by any minimally trained analyst, but these 

preliminary results are not included in this thesis. Multivariate models 

are initially calculated on the target populations that have been imported 

into the R Shiny app. In case the genetic profile of a person of interest 

(i.e. POI) has been uploaded, the multivariate models are calculated 

using the matching loci between the POI and the populations under 

exam (Fig. 5). At the end, the user can save any displayed plot. As soon 

as we have completed testing and validation, we will proceed with 

manuscript submission [70]. 
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Fig. 5. Workflow of BGA prediction software. 
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5.2 Y chromosome STRs: 
 

5.2.1 Haplotype Database 
 

a) The complete list of 1370 haplotypes resulting from the analysis 

of 25 Y-chromosome STRs using the Yfiler™ Plus PCR 

Amplification Kit is reported in Supplementary Table 2 along 

with the SNP haplogroup previously defined and here refined for 

homogeneity across studies [68, 73, 74]. As for autosomal STRs, 

we pooled the African sample into three datasets (EA, SA and 

NA) based on ancestry of the individuals sampled and, to a minor 

extent, on their "ethnic/linguistic affiliation". This categorization 

better describes the genetic clustering of observed Y- 

chromosome patterns than categories such as "nation" or 

"geography." 

Then, the three datasets were submitted to the YHRD (Y- 

chromosomal Haplotype Reference Database, https://yhrd.org) 

[53] under the accession numbers YA004351-YA004356 

(release R57 for Northern Africa); YA004198-YA004207 

(release R52 for Eastern Africa) and YA004668-YA004669 

(release R63 for Sub-Saharan Africa). The contributors 

successfully passed the quality control test. 

Among the 1370 subjects analyzed, 240 were found to share 100 

Y-STR haplotypes and were genotyped using the 13 RM Y-STRs 

multiplex PCR system described in [28]. 

https://yhrd.org/
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b) The complete list of 240 haplotypes resulting from the analysis 

of 13 “first generation1” RM Y-STRs with the RM-YPlex [28] is 

reported in Supplementary Table 3. 

Again, 107 out of 240 males kept sharing 50 Y-STR haplotypes 

and were furthermore genotyped using the additional RM Y- 

STRs described in [29]. 

c) The complete list of 107 haplotypes resulting from the analysis 

of 30 “second generation”2 RM Y-STRs using the RMPlex [29] 

is reported in Supplementary Table 4. 

5.2.2 Power of discrimination analyses 
 

5.2.2.1 RM-YPlex assay 
 

We observed fully concordant genotyping results between Yfiler™ 

Plus and RM-YPlex for the 6 RM Y-STRs which are included in both 

multiplexes (i.e., DYS570, DYS576, DYS518, DYS627, DYF387S1 

and DYS449). 

Comparing males sharing the Yfiler™ haplotypes, we observed a total 

of 126 mutations at seven RM Y-STRs (DYS399S1, DYS403S1a/b, 

DYF404S1, DYS526a/b, DYS547, DYS612, and DYS626), most of 

which involved a single repeat (Table 1). The number of observed 

mutations is significantly related (r= 0.93, p=0.0008) to the mutation 

rates that have been recently reported in the mutation rate update by 

Neuhuber [27]. Overall, two markers, DYF399S1 (43 mutations) and 

DYF403S1a (25 mutations), accounted for more than half (54.0%) of 

 
 

 

1 7 out of 13 are novel rapidly mutating markers, the remaining 6 are already comprised in Yfiler 
Plus multiplex. 
2 16 out of 30 are novel rapidly mutatin markers, the remaining 14 are already comprised in RM- 
YPlex multiplex. 
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the observed mutations. These two markers have been consistently 

reported as those with the higher mutation rates among the first- 

generation RM Y-STRs in populations from different geographic areas 

[20, 25, 27, 75, 76]. On the opposite side of the mutational range, we 

observed a low number of mutations for DYS403S1b (2 mutations) and 

DYS626 (5 mutations). Consistently, both markers have recently been 

downgraded from RM Y-STRs to “fast-mutating” microsatellites 

(mutation rates 5 × 10-3 – 1 × 10-2). Besides this general agreement 

between the number of observed mutations and previously reported 

mutation rates, we observed an increased mutability for DYS612, which 

resulted to be the second most mutable locus in both northern and 

eastern Africa (9 and 7 mutations observed, respectively, Table 1). 

Since the observed mutations occurred on several different SNP- 

defined chromosomal backgrounds, reasons for such an apparent 

difference in relative mutation rates seem unrelated to haplogroup 

affiliation and/or increased allele length. Since DYS612 is a complex 

trinucleotide repeat with interruptions in the repeat motif 

[(CCT)5(CTT)1(TCT)4(CCT)1(TCT)n], homogenizing mutations 

predisposing to higher mutation rates of longer homogeneous repeat 

tracts could be a possible explanation that requires further 

investigations. 
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The analysis of the 13 RM Y-STRs here analyzed allowed us to 

improve the discrimination power substantially, with respect to the 25 

Yfiler™ Plus markers (Table 3 and Figure 4). Specifically, the number 

of shared haplotypes decreased from 100 to 51 and the number of males 

sharing a haplotype decreased from 240 (17.5% of the total) to 109 

(8.0%). Overall, the number of distinct haplotypes increased from 1230 

to 1312. The discrimination capacity correspondingly increased from 

0.898 to 0.958 (Table 3) while the proportion of males sharing a 

haplotype decreased from 17.5% to 8.0%. These differences in 

discrimination capacity among Y-STR multiplexes became also more 

apparent when the Yfiler™ system based on 16 conventional Y-STRs 

loci is considered. 

5.2.2.2 RMPlex assay 

Subsequently, we deepened with the investigation of the RM markers 

included in the RMPlex assay (Table 2) [29]. Here, we observed 

concordant genotyping results between most of the markers already 

comprised in Yfiler™ Plus and RM-YPlex assays (i.e., DYF387S1, 

DYF399S1,  DYF404S1,  DYS449,  DYS518,  DYS526b,  DYS547, 

DYS570, DYS576, DYS626 and DYS627) with the exception of 

DYS612 and DYF403s1 markers, where we observed differences in the 

allele calling. 

Concerning DYS612 marker, the alleles in Yfiler™ Plus and RM- 

YPlex assays are always called with 6 repeats more than in the RMPlex 

assay, because of a change in the nomenclature at this complex locus. 

Differently, for DYF403s1 locus, by using the previous RM-YPlex 

multiplex, we consistently missed the xx.1 interallele, which is clearly 

present in all the profiles obtained with the novel multiplex. This 
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systematic difference is due to a new design for the primers used for 

this multi-copy STR. 

Nevertheless, using the additional sixteen RM Y-STRs (DYF1000, 

DYF1001, DYF1002, DYF393S1, DYR88, DYS442, DYS711, 

DYS712,   DYS713,   DYS724.   DYS1003,   DYS1005,   DYS1007, 

DYS1010, DYS1012    and DYS1013) we achieved the highest level 

of haplotype’s discrimination (Table 3). 

We observed a total of 66 independent mutations involving all the loci 

analyzed with the exception of DYS442 and DYS1013. This is not 

unexpected for the DYS442 marker, which is categorized as fast 

mutating (FM) instead of rapidly mutating, because of its relatively low 

mutation rate (equal to 7.4 x 10-3). In contrast, we were surprised not to 

observe any mutation on DYS1013 because it was recently upgraded 

from fast-mutating [22] to rapidly-mutating Y-STR [27] as its mutation 

rate was recalculated as 10.8 x 10-3 instead of the previously calculated 

9.9 x10-3. 

We observed a positive correlation between the mutation rate and the 

number of mutations that occurred at each marker (r = 0.729, P <0.001). 

The highest number of mutations (9 and 10 mutations, respectively) was 

observed in the two loci having the highest mutation rates, DYF1001 

(48 x 10-3) and DYF1000 (35.9 x 10-3). The nature of these 

microsatellites also needs to be taken into consideration, as both consist 

of complex tetra-nucleotide repeats, making them more prone to 

mutation occurrence. On the other hand, the lowest number of 

mutations was observed in the two loci also having the lowest mutation 

rate, the DYS1013 (0 mutations) and the DYS1003 (1 mutation). 

The only marker not perfectly in line with this straight correlation 

between mutation rate and number of observed mutations was 

DYS1012. However, the difficulty in interpreting the results for this 
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marker (primers used in PCR also pair  to portions of autosomal 

chromosomes, leading to the formation of aspecific products) may have 

resulted in either an underestimate of the number of mutations in the 

present study or an overestimate of the mutation rate in previous 

studies.. 

In total, 60 out of 66 mutations observed (91%) involved a single repeat, 

while 6 (10%) involved two or more repeats. 
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1 
0 

0 
2 

0 
3 

30 
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A
frica 

4 
6 

2 
3 

2 (2) 
1 

1 
2 

0 
2 

2 
1 

0 
0 

0 
1 

27 

Sub-Saharan 

A
frica 

1 
0 

3 (1) 
0 

0 
1 

1 
2 

1 
0 

0 
0 

0 
0 

0 
0 

9 
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frica* 
9 

7 
10 (2) 

5 
5 (3) 

7 
4 (1) 

5 
1 

3 
3 

1 
0 

2 
0 

4 
66(6) 

Table 2. M
utational events observed for 16 (second generation) R

M
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-STR
s. 

* O
nly the sixteen “second generation” RM

 Y-STRs not included in Yfiler Plus and RM
Y YPlex assay are considered.

The total num
ber of m

ulti-repeat m
utations (or m

ultiple single step m
utations) is reported within brackets. 
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The discrimination capacity (DC) obtained with the “second 

generation” Y-STRs increased from 0.958 to 0.983, while the 

proportion of matching haplotypes decreased from 0.08 to 0.03. The 

number of distinct haplotypes turned out to be 84: among them 64 

(76%) were unique and only 20 (24%) were shared between subjects 

(from a minimum of two to a maximum of five). Overall, we were able 

to distinguish 1346 distinct haplotypes and only 43 males were still 

found to share the same Y-STRs profile using 48 Y-STRs (Table 3 and 

Figure 6). 

These findings further highlight the capability of RM Y-STRs to 

distinguish males even in sub-structured populations as African ones, 

but at the same time call for the discovery and testing of additional RM 

Y-STRs to fully differentiate Y haplotypes. 

Yfiler™ Yfiler™ Plus Yfiler™ Plus+ 
RM Yplex 

Yfiler™ Plus + 
RMPlex 

(15 Y-STRs) (24 Y-STRs) (32 Y-STRs) (48 Y-STRs) 

DC MH DC MH DC MH DC MH 

Eastern Africa 0.773 0.338 0.887 0.190 0.958 0.078 0.987 0.026 

Northern Africa 0.765 0.371 0.908 0.170 0.960 0.078 0.990 0.021 

Sub-Saharan 
Africa 

0.817 0.283 0.898 0.165 0.956 0.079 0.972 0.049 

Overall 0.784 0.332 0.898 0.175 0.958 0.078 0.983 0.031 

Table 3. Forensic indexes for 16 Y-STR markers (Yfiler™), 25 Y-STR 

markers (Yfiler™ Plus), 32 Y-STR markers and 48 Y-STRs. 
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Figure 6. Discrimination power improvement using different RM Y- 

STR multiplexes. Number of shared haplotypes by using Yfiler™, 

Yfiler™ Plusand Yfiler™ Plus PCR + RMYPlex and Yfiler™ Plus 

PCR + RMPlex in 1370 African males (44 populations and 10 

countries). 

5.2.3   Estimated  kinship  relationships  and  Likelihood 

Ratio threshold values 

Knowledge of the degree of kinship among members of a population 

sample is relevant in forensic analyses. For example, the construction 
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of a DNA database should avoid relatives to guarantee Hardy-Weinberg 

equilibrium (HWE) among loci. Therefore,  after autosomal  DNA 

typing, described in the previous paragraphs, blind search analyses 

(BSAs) of the Familias software v.3.2.8 [46] were performed among 

pairs of males sharing the same Yfiler™ Plus haplotype. Note that, for 

each shared haplotype, the number of pairwise comparisons 

corresponds to n (n-1)/2, where n is the number of subjects sharing that 

haplotype. The total number of pairwise comparisons for each 

haplotype ranges from 1 (for haplotypes shared by two males) to 36(a 

single haplotype shared by 9 males) for a total number of 228 pairwise 

comparisons, resulting from 240 males sharing 100 haplotypes. For 

each pairwise comparison, Supplementary Table 5 shows the most 

likely alleged relationship (if any) and, for LR values > 1, the 

corresponding LR, the estimated inbreeding coefficient, the proportion 

of shared alleles, and proportion of loci sharing 0, 1, or 2 alleles. It 

should be noted that using these approaches, grandparent-grandchild 

(GP), avuncular (AV), and half-sibling (HS) pairs, couldn’t be 

distinguished, since all of them are second-degree relatives sharing 25 

% of their autosomal genome. This is even though members of these 

kinds of pairs are separated by a different amount of meiosis along the 

paternal lineage (GP and HS, two meiosis, AV three meiosis). 

Moreover, it should be noted that, using a relatively low number of 

autosomal STRs, a high rate of false positives (i.e., pairs of unrelated 

subjects inferred to be related) and false negatives (i.e., pairs of related 

subjects inferred to be unrelated) is expected, especially among putative 

cousins and, to a lesser extent, second-degree relatives [77]. The 

simulation performed on the LR distribution under different kinship 

scenarios is in line with this prediction, with false negative rates 
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(averaged across the three regions) for LR > 1 corresponding to 0.48, 

0.29 and 0.12 for second cousins, first cousins and second- degree 

relatives, respectively. Taking these caveats into account, and using the 

verbal scale for reporting the value of observed LRs proposed by [56], 

that is in line with the results of our simulations on the LR distribution 

(Supplementary Table 6), we found a total of 44 pairs whose kinship 

was strongly supported, with LR > 100 and positive predictive values 

(PPV) higher than 0.997 (15 parent-child, 22 siblings and 7 s-degree 

relatives), 26 moderately supported related pairs, with LR values in the 

range 10–100 (two pairs of siblings, PPV ≥ 0.997; 24 second-degree 

relatives, PPV ≥ 0.975), 63 weakly supported related pairs, with LR 

values in the range 1–10 (13 second-degree relatives, PPV ≥ 0.902; 36 

first cousins, PPV ≥ 0.740 and 14 second cousins, PPV ≥0.561) and 94 

putatively unrelated pairs with LR values < 1 (Table 4 and 

Supplementary Tables 5–7). A single direct match was also observed, 

strongly suggestive of a couple of monozygotic twins (LR = 4 × 1025) 

or a sample duplicate. 

The inferred kinship relationships were concordant in 85.1 % of the 

comparisons (194/228 pairwise comparisons) using region-specific or 

NIST allele frequencies database. Most discordant cases were 

characterized by LR values < 5 and affected cousins and second cousins 

(Supplementary Table 5). Overall, these results showed that our kinship 

analysis is robust enough concerning the geographic specificity of the 

allele frequency database used. 

In addition, it is necessary to clarify that the presence of a relatively 

high number of closely related subjects in our global African sample is 

not unexpected. Most of the sampling fieldwork was performed in rural 

areas,  where,  because  of  patrilocality,  small  villages  are  mainly 
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inhabited by related males belonging to the same ethnic group. In fact, 

all the African males that share a Y-STR haplotype were from the same 

country and shared the same binary haplogroup (Supplementary Table 

1). With only two exceptions, haplotype-sharing males were also from 

the same ethnic group. These two exceptions deserve further 

consideration. In the first case, it regards the direct-match comparison, 

describe above. Thus, barring possible mistakes, such as tube 

duplication or exchange, these two males should belong indeed to the 

same ethnic group. In the second case, two haplotype-sharing males 

from Cameroon resulted to be a father-son pair (LR = 12155), a finding 

that also suggested an ethnic group misassignment during the sampling 

phase. 

So, haplotype sharing between males in our sample set seems to be 

indicative (at the very least) of common ethnic affiliation, thus 

representing a relevant investigative lead. The relatively low number of 

second-degree (or closer) relatives identified reveals that close 

relatedness explains only a small proportion of the Y- STR haplotype 

sharing observed. 
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Differentiated 
% 

Undifferentiated 
% 

Overall 

Related  Unrelated 

(LR>1) (LR<1) 

78 79 
58.21% 84.04% 

56 15 
41.79% 15.96% 

134 94 

Total 

157 
68.86% 

71 
31.14% 

228 

Parent- 
Child 

3 
20% 

12 
80% 

15 

Kinship Scenarios 

2nd 
Siblings 

degree 

10 25 
40% 56.82% 

15 19 
60% 43.18% 

25 44 

1st/2nd 
Cousins 

40 
80% 

10 
20% 
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Differentiated 105 93 198 9 15 32 49 
% 78,36% 98,94% 86,84% 60% 60% 72,72% 98% 

Undifferentiated 28 1 29 6 10 12 1 
% 20,89% 1,06% 12,71% 40% 40% 27,27% 2% 

Overall 134 94 228 15 25 44 50 

Table 4. Number and proportion of pairs of males differentiated for 

different degrees of relatedness. 

5.2.4   Male lineage resolution determination 

By considering, the kinship inferred through BSA, we observed, as 

expected, a negative correlation between the degree of relatedness and 

ability of the “first”, primarily, and the “second”, secondly, RM Y-STR 

to discriminate among pairs of males (Table 4). 

The analyses performed with the RM Y-Plex assay [28] were able to 

distinguish 78 out of 134 (58.2%) pairs of related males (LR > 1), in 
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comparison to 79 out of 94 (84.0%) pairs of unrelated males (�2, p < 

10-4). Among related pairs, the proportion of discriminated pairs 

increased from 20.0% to 40.0% for father-son and sibling, and from 

56.8% to 80.0% for second-degree relatives and cousins, respectively. 

The partial inability to discriminate between closely related males using 

the 13 RM Y-STRs markers is well exemplified by the results obtained 

from the three most numerous groups of males sharing a Yfiler™ Plus 

haplotype (haplotypes H21, H12 and H69, consisting of 6, 8 and 9 

individuals, respectively) (Figure 7). Males belonging to haplotype H21 

resulted to be all closely related and none of them was distinct by the 7 

additional RM Y-STRs. In contrast, males sharing haplotypes H12 or 

H69, which were found to be unrelated or distantly related, were 

completely (H12) or mostly (69) distinguished by the analysis of 

additional Y-STRs. 

Fig. 7. Relationships among males sharing Yfiler™ Plus haplotypes 

H12, H21 and H69. (A) Relationships based on the number of mutations 
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observed at 7 additional RM Y-STRs, depicted through an UPGMA 

phylogenetic tree. (B) Heatmaps depicting relationships based on 

kinship are inferred through BSA. 

Subsequently, the analyses performed with the RMPlex assay [29] were 

able to distinguish 27 out of the remaining 55 (48%) pairs of related 

males (LR > 1), in comparison to 14 out of 15 (93.0%) pairs of unrelated 

males (�2, p < 10-4). 

In this case, the proportion of discriminated pairs increased to 60.0% 

for father-son, to 64 % for siblings, to 79.5% for  second-degree 

relatives and to 88.0% for cousins. 

This demonstrates the ability of these novel marker in further 

distinguishing male haplotypes and the major capability in solving male 

pedigrees using a higher number of genetic markers. 

5.3 Microhaplotypes 

5.3.1 Multivariate statistics 

SL-PCA analysis: SL-PCA was exploited to investigate the main 

features in the dataset. While EAA, EA and AA individuals formed 

three well distinct clusters (Fig. 8), both Hispanic and “Admixed” 

datasets showed some degree of overlapping with other populations, 

likely as a consequence of ancient or recent admixture events. 
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a) 

b) 

Fig. 8. SL-PCA PC1 vs. PC2 PCA 2D (a) and 3D (b) Scores Plot for the five US 

populations tested. 

sPLS-DA model: Based on results provided by PCA modelling, sPLS- 

DA was applied to the same experimental sets to develop useful 
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discrimination models. The predictive models were evaluated in terms 

of Root Mean Square Error in Cross-Validation (RMSECV) [69], and 

the number of LVs was determined through the evaluation of further 

quality parameters such as the Predictive Residual Error Sum of Square 

(PRESS), Q-residuals, Hotelling’s T2, Leverages and Y-Studentized 

residuals [69]. 

The PLS-DA approach performs a supervised classification aimed to 

well discriminate all the five population datasets (Fig. 9). Sensitivity 

and specificity values were calculated too and the outcomes from ROC 

curves are reported in Fig. 10. These data allow us to affirm that sPLS- 

DA might represent a useful tool for improving the routine estimation 

of the BGA information of MHs with respect to SL-PCA analysis. 
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a) 

b) 

Fig. 9. sPLS-DA LV1 vs LV2 2D (a) and 3D (b) Scores Plot for the five US 

populations tested. 
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Fig. 10. Receiver Operating Characteristic (ROC) curves outcomes from PLSDA 

analyses for the five US populations tested. 

SVM model: SVM was applied and the corresponding sensitivity and 

specificity values resulted to be 100% for all the five dataset (Fig. 11). 

This approach turned out to be a very powerful technique for the 

evaluation of MH data for all the 5 US populations, providing a 100 % 

accuracy on the tested sample sets and no misclassifications. 

Consequently, SVM revealed to be a very powerful model, with high 

specificity and sensitivity values, for these ethnic groups, thus proving 

once again the reliability of multivariate statistics to extract BGA 

information from microhaplotype data. 
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In fact, compared to autosomal STRs, microhaplotypes have shown a 

better cluster separation, supporting their potential role as ancestry 

informative markers. 

Overall, both PLSDA and SVM approaches significantly improved 

ancestry inference, by enhancing the separation of the five population 

clusters, providing robust classifications, yielding high sensitivity and 

specificity models capable of discriminating the populations 

investigated. 

Figure 11. Sensitivity vs specificity plot for SVM results for the five US populations 

tested. 

5.3.2 Ethnic affiliation prediction 

PLSDA results were used to assess the accuracy of ethnic affiliation of 

four tested individuals – one for each of the 4 main population groups 

in US (i.e. AA, EAA, EA and HIS) in terms of Likelihood Ratio (LR). 

We excluded Admixed because of the peculiarity of this dataset, in fact, 

as  described  in  Materials  and  Methods,  it  is  composed  of  129 
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individuals that belong to Puerto Rican, Dominican, American Indian, 

Vietnamese, Cuban, Mexican, Jewish or St. Lucia populations. 

The resulting LR values provide an indication of how much more likely 

it is to observe the MH profile of interest if it originated from the test 

population at the numerator than if it originated from the other three 

populations at the denominator. In each case, the highest LR was 

observed in correspondence of the correct affiliation, confirming the 

accuracy in BGA prediction (Table 4). Specifically, LR = 1099, LR = 

1062, LR = 104, and LR = 2,3 were obtained for Afro-American, East 

Asian American, European American and Southeast Hispanic, 

respectively. As expected, higher LR values were observed for well- 

genetically defined populations – as Afro-American and East Asian 

American – while the lowest values from Southwest Hispanic, which 

represent the most genetically admixed among the four populations 

tested. 
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Person of Interest Likelihood Ratio Population 

Afro American 

9,3 x 1099 Afro American 

6,8 x 10-214 

1,2 x 10-35 

European American 

East Asian American 

2,3 x 10-67 Southwest Hispanic 

1,6 x 10-94 Afro American 
1,5 x 10-127 European American 

East Asian American
3,1 x 1062 East Asian American
4,4 x 10-54 Southwest Hispanic 

2,6 x 10-9 Afro American 
3,3 x 103 European American 

European American
5,5 x 10-55 East Asian American 
6,5 x 10-2 Southwest Hispanic 

Southwest Hispanic 

1,8 x 10-7 Afro American 

1,7 x 10-1 

9,6 x 10-25 

European American 

East Asian American 

2,3 Southwest Hispanic 

Table 5. LR values for BGA affiliation of four tested individual (one for each of the 

main US population). In bold the highest LR and the relative population affiliation 

obtained. 
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6 Discussion 
 

6.1 Probative value in ancestry estimation: from 

classical to multivariate statistical analyses on 

short tandem repeats (STRs) and 

microhaplotypes (MHs) data 

BioGeographical Ancestry (BGA) has been defined as the heritable 

component of “race” or heritage, which is relevant on any scale of 

resolution [78, 79]. Nowadays, the inference of the BGA of a person or 

trace relies on three ingredients: (1) a reference database of DNA 

samples including ethnic information; (2) a set of loci, which segregate 

dependent on geographical location, i.e., a set of so-called Ancestry 

Informative Markers (AIMs) and (3) a statistical clustering method 

[80]. 

In the present proof-of-concept study, we proposed an alternative 

statistical method to classical analyses to improve the estimation of 

BGA, focusing on the above-mentioned points 2 e 3. 

With reference to the set of loci, we tested the ability in ancestry 

inference of both short tandem repeats (STRs) and microhaplotypes 

(MHs). STRs represent the golden standards for personal identification 

so they are routinely used by the international scientific community in 

forensic caseworks, already included in analytical protocols (usually in 

line with the international standard requirement for testing and 

calibration laboratories; i.e., ISO IEC 17025) and their relatively 

validated allele frequency databases are already available. In contrast, 

MHs are novel markers in forensic routines, composed of two- or more 



62  

single-nucleotide polymorphisms (SNPs) within 300 bp length. The use 

of these two different kinds of unconventional markers for BGA 

estimation has some advantages. STRs profiles, for example, may 

already be available, as forensic experts have conducted classical DNA 

typing analysis with unsatisfactory results (i.e., no direct match, neither 

indirect match searching in national and international databases). The 

advantage of microhaplotypes is found in caseworks where the primary 

source sample is particularly complex (low template DNA, degraded 

DNA or mixtures), such as for unidentified human remains (UHRs) 

found in advanced state of decomposition or putrefaction or samples 

collected from outdoor environment in extreme condition (for example, 

extremely high temperatures, humidity, unfavorable atmospheric 

conditions, proliferation of mold, bacteria or fungi, etc.). In such cases, 

it is necessary to choose shorter (in bp length) markers – such as SNPs 

or, indeed, MHs – to maximize the yield of genetic DNA typing and to 

further enhance the deconvolution capabilities of mixed-DNA source 

samples, providing additional forensically useful information on the 

contributor(s)  detected. 

With reference to the clustering method, we proposed novel approaches 

based on multivariate techniques to group samples into BGA-classes. 

In fact, as explained in Alladio et al. [72], although PCA analysis allows 

to assign an individual to his/her population of origin through a visual, 

intuitive, and easy to interpret approach, it does not provide significant 

divergence between populations, and obviously, it cannot be used alone 

in forensic context because it does not provide an accurate statistical 

estimate of the weight of the evidence. PLS-DA was then applied to 

develop more reliable discrimination models to classify the variables 

and, as a result, it turned noteworthy. 
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As a matter of fact, the results presented in this thesis allowed to observe 

the pertinence of new multivariate statistics in assessing and 

recognizing the biogeographical ancestry information by evaluating 

both the autosomal STRs and microhaplotype DNA profiles. 

As expected, the only cases in which the new multivariate statistics 

returned unsatisfactory results were those in which the populations to 

be compared had fairly similar allele frequencies as consequence of 

recent admixture or common ancestry. 

It is well known that aSTR, because of their very high mutation rate, 

are not the markers of choice for ancestry inference. Notwithstanding , 

good results were obtained using a limited number of STRs in the 

African scenario when the new multivariate statistics were used: the 

AUC values between 0.5 and 0.9 for Eastern Africa and greater than 0.9 

for Northern and Sub-Saharan populations, suggest an excellent 

capacity of discrimination and outstanding discrimination, respectively. 

With respect to MH-profiles results, unsatisfactory results were 

observed for Admixed population only, while the other four US 

population tested (i.e., AA, EA, EAA and HIS) appeared to be well 

discriminated. 

Unlike the results obtained in [22] using conventional PCA statistics, 

the application of the more sophisticated PLSDA was determinant in 

reaching a satisfying level of ancestry inference. In fact, PLSDA assay 

we tested revealed a good separation of Southwest Hispanic with 

respect to the other three main US groups (i.e., AA, EA and EAA). 

The only substantial overlap we observed is restricted to Admixed, who 

share the highest level of ancestry with Afro Americans, European 

American and Southwest Hispanic. This was confirmed by the AUC 

values, which range between 0.5 and 0.6 for Admixed, between 0.6 and 
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0.9 for Southwest Hispanic and greater than 0.9 for the remaining 

populations. 

We then sought to assay the more sophisticated technique of Support 

Vector Machine (SVM) to achieve more satisfactory separations in both 

STRs and MHs scenarios. 

Similarly, for the two types of genetic data, the numerical results for the 

performance of the model (in terms of ROC curves) showed the best 

separation among all the populations. Specifically, the ROC curves 

outcomes for STRs panel turned out to be higher than 0.8 for Eastern 

while greater than 0.9 for Northern and Sub-Saharan Africa; while for 

MHs panel equal to 0.7 for Admixed and greater than 0.9 for the 

remaining US populations. These results show that the SVM is the best 

classification assay as it allows obtaining an even more excellent 

separation among the population tested and assessing the group 

affiliation of the examined DNA profiles, with a high degree  of 

confidence. 

All together these data demonstrate the ability of multivariate statistics 

approaches to predict the population affiliation from both autosomal 

STR and microhaplotype genetic profiles. The predictive power of such 

multivariate techniques turned extremely high – in fact, they correctly 

classify individuals from different ethnic groups by enhancing cluster 

separation and providing no misleading classifications – indicating that 

the adoption of multivariate models may represent a powerful and 

useful tool for the investigative  authorities to ease their decision 

processes when estimating the BGA of individuals. Obviously, 

classification efficiency is higher for more genetically differentiated 

populations, whereas in the case of a profile of an individual of admixed 
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ancestry, the risk of the profile being rejected in constituent populations 

increases [82]. 

Future perspectives include the application of these multivariate 

strategies to discriminate even more locally restricted populations, and 

further research studies are already planned and will be performed using 

Next-Generation Sequencing (NGS)/Massive Parallel Sequencing 

(MPS). The idea is to merge our data and later combine it with other 

forensic genetic markers, such as Y-STRs and SNPs, to achieve even 

finer resolution in ethnic prediction. 

As a matter of fact, in a judicial context the probative value of ancestry 

inference is extremely high and needs further investigation. First of all, 

the range of application of ancestry prediction analysis is extremely 

broad, as it is possible to infer a subject's ethnicity from any biological 

sample found at a crime scene, during mass disasters or missing person 

investigations. In addition, achieving true DNA-based racial profiling 

provides additional, often essential, information that can narrow the 

field of suspects, enabling concrete support for classical investigations. 

This support is greater the finer the resolution of the statistical analysis, 

confirming the need to adopt multivariate techniques in the forensic 

routine of the near future. 

6.2 Y markers: from paternal lineage inference to 

personal identification. 

Y-chromosome STR analysis has become very popular in forensic 

practices for male lineage characterization, unbalanced male-female 

mixture deconvolution, estimation of the number of contributors in 

mixed samples and exclusion of male suspects [15, 17, 83]. The 
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relatively low discrimination power of conventional Y-STR 

multiplexes, due to linkage disequilibrium (LD) among polymorphic 

loci, has been partially overcome by the introduction of rapidly 

mutating Y microsatellites (RM Y-STRs) with mutation rates exceeding 

1 × 10-2/generation. In previous studies [68, 73, 74], we reported an 

unexpectedly high level of haplotype sharing among African males by 

using the Yfiler Plus PCR Amplification kit that is the most powerful 

commercially available system including 19 conventional Y-STRs and 

6 RM Y-STRs. 

In the present study we analyzed for autosomal and Y-chromosome 

STRs 1370 males from northern, eastern and central Africa. Actually, 

the peculiarity of the populations tested – characterized by high levels 

of endogamy and sub-structuring – makes them particularly suitable for 

these studies. 

Firstly, we found out 240 subjects sharing 100 Y-STR haplotypes and 

secondly, throughout Blind Search Analyses (BSA) and Simulation test 

tools of Familias Software [46], we highlighted the hidden familial 

relationships and demonstrated that the discrimination failure obtained 

in previous studies [68, 73, 74] was only partially due to close 

relatedness among males. Specifically, we found a total of 44 pairs 

whose kinship was strongly supported (with LR > 100 and PPV > 

0.997), 26 moderately supported related pairs (with LR values in the 

range 10–100 and PPV ≥ 0.997), 63 weakly supported related pairs 

(with LR values in the range 1–10 and PPV ≥ 0.902) and 94 putatively 

unrelated pairs (LR values < 1) [84]. The relatively low number of 

second-degree (or closer) relatives identified reveals that close 

relatedness explains only a small proportion of the Y- STR haplotype 

sharing observed in our sample set. 
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On the contrary, the presence of a relatively high number of closely 

related subjects is not unexpected. Most of the sampling fieldwork was 

performed in rural areas, where, because of patrilocality, small villages 

are mainly inhabited by related males belonging to the same ethnic 

group. Differences in discrimination power reported for African 

populations using the Yfiler Plus multiplex could be thus explained, at 

least partially, by different sampling strategies. In any case, our analysis 

suggested that the high level of haplotype sharing could not be entirely 

explained by kinship, since about half of the pairwise comparisons 

involved unrelated (or distantly related) males [84]. 

Starting from these results, we deepened the analyses by genotyping the 

additional seven “first generation” RM Y-STR described in [28]. 

Although we substantially improved the discrimination capacity in 

these populations we still failed in distinguishing among most related 

individuals and some putatively unrelated males. The resulting 

haplotype sharing is restricted to males belonging to the same ethnic 

group; thus, it seems to indicate (at the very least) of common ethnic 

affiliation, representing a relevant investigative lead in forensic context. 

Moreover, to overcome these issues we performed the analysis of the 

“second generation” RM Y-STRs [22, 29]. These additional markers 

were found to be necessary to advance further toward the full 

differentiation of males, allowing us to achieve the highest level of 

discriminatory capacity and the fewest number of matching haplotypes, 

even in close kinship scenarios and in sub-structured populations such 

as those in Africa. 

We empirically demonstrated the improved differentiation of males 

sharing Y-haplotypes – close and distant relatives and unrelated too – 

achieved with 48 Y-STRs genotyped, compared to the current state-of- 
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the-art commercially available tools. In addition, via molecular study 

of the mutations occurred for each RM locus, we provided further 

evidence on which loci should be the most relevant to be included in 

the validated and commercially available forensic multiplexes. 

Until additional data from more populations become available, caution 

shall be placed when identifying more mutating markers– and 

consequently when applying mutation rate estimates – established in 

one population, as in ours, to forensic cases involving males suspected 

of paternal lineage from other populations, especially non-African ones 

[85]. 

Overall, our data, converge in demonstrating that RM Y-STRs represent 

a very powerful forensic tool not only for paternal lineage definition, 

but also for personal identification purposes in forensic genetics. We 

also supported the relevance of including additional RM Y-STRs in 

fully validated and commercially available multiplexes. 
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7 Conclusions 
 

7.1 The Importance of alternative forensic tools in 

the investigative stream to narrow down 

suspects 

The fundamental goal of forensic genetics is personal identification or, 

in other words, sample attribution to associate an item of evidence with 

some person or persons. The most common scenarios involve a direct 

comparison, performed between DNA profiles obtained from an 

evidentiary item and a reference sample collected from the Person of 

Interest (i.e. PoI), or an indirect comparison, resulting in national or 

international DNA database searching. 

Unfortunately, it is common to obtain inconclusive results from both 

direct comparisons (STR-profiling fails to produce a DNA-match with 

known suspects) and indirect comparisons (STR-profiling fails to 

produce a DNA-match in forensic DNA databases). In such cases, it is 

desirable to maximize the information inferable from the biological 

materials found at the crime scene to generate crucial leads to identify 

unknown perpetrators or to identify unknown human remains. 

In such cases, the DNA-based inference of appearance traits, the 

biogeographical ancestry (BGA), and chronological age allows to 

narrow the list of putative suspects. 

Among these, BGA inference turns out to be the most aleatory variable, 

characterized by the highest range of uncertainty. The basic idea in 

ancestry prediction is that any two individuals, including those 

apparently unrelated, can share short segments of DNA inherited by a 
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distant common ancestor, and these matching segments of DNA shared 

by two or more people are called identical by descent (IBD). 

Obviously, the percentage of genetic sharing is the higher the closest 

the kinship scenario is. 

The first goal of the present proof-of-concept thesis is to present an 

innovative statistical method for BGA inference. We demonstrated the 

capability of novel multivariate statistics approaches to predict in detail 

the population affiliation of PoIs using both autosomal STR profiles and 

microhaplotypes. Therefore, it can be considered a powerful tool for 

generating unconventional investigative leads and can be easily 

implemented in operational settings [91]. 

Another alternative forensic tool to narrow down potential suspects in 

the forensic field is represented by the use of Rapidly Mutating Y 

chromosome STRs (RM Y-STRs). 

Since Y-chromosome DNA analysis is important in genetic genealogy 

and for population genetic purposes such as personal ancestry 

identification, as well as for the identification of male lineages and 

inferring paternal genetic ancestry [92 – 98], many papers investigated 

the individualization potentiality of highly mutating markers located on 

this chromosome. In general, similarities at Y-chromosome DNA 

markers indicate shared paternal ancestry of individuals and 

populations, whereas differences are used to conclude the absence of 

close paternal relationships [21]. 

Instead, the genetic typing of RM Y-STR set provides near-complete 

paternal lineage differentiation in general populations as well as in sub- 

structured populations with reduced Y-chromosome diversity, due to 

peculiarities in population history or cultural practices [84]. This results 

in the reduction of “adventitious correspondences” or, in other words, 
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in the inclusion of innocent individuals in investigations due to 

adventitious Y-STR haplotype matches [21]. 

The second objective of the present proof-of-concept study was to 

provide additional support on the identification power of both “first” 

and “second” generation RM Y-STRs. Thanks to the results obtained 

with Blind Search Analyses conducted, we proved that the failure in 

distinguishing among males sharing the same RM Y-haplotype is 

limited only to cases of extremely close kinship. 

The analyses of these loci have increased the overall haplotype diversity 

and discrimination power, resulting in lower match probabilities. The 

increased amount of profile information generated from the additional 

loci is beneficial for exclusionary purposes too. 

Thus, all together our findings support the relevance of including RM 

Y-STRs in available multiplexes to maximize the possibility of solving 

patrilineal lineages and to specifically identify the subject of forensic 

investigative interest. 
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