
Hierarchical Entity Resolution using an Oracle
Sainyam Galhotra

University of Chicago

sainyam@uchicago.edu

Donatella Firmani

Sapienza University

donatella.firmani@uniroma1.it

Barna Saha

UC San Diego

bsaha@eng.ucsd.edu

Divesh Srivastava

AT&T Chief Data Office

divesh@research.att.com

ABSTRACT
In many applications, entity references (i.e., records) and entities

need to be organized to capture diverse relationships like type-

subtype, is-A (mapping entities to types), and duplicate (mapping

records to entities) relationships. However, automatic identification

of such relationships is often inaccurate due to noise and heteroge-

neous representation of records across sources. Similarly, manual

maintenance of these relationships is infeasible and does not scale

to large datasets. In this work, we circumvent these challenges by

considering weak supervision in the form of an oracle to formulate

a novel hierarchical ER task. In this setting, records are clustered in

a tree-like structure containing records at leaf-level and capturing

record-entity (duplicate), entity-type (is-A) and subtype-supertype

relationships. For effective use of supervision, we leverage triplet

comparison oracle queries that take three records as input and

output the most similar pair(s). We develop HierER, a querying

strategy that uses record pair similarities to minimize the num-

ber of oracle queries while maximizing the identified hierarchical

structure. We show theoretically and empirically that HierER is

effective under different similarity noise models and demonstrate

empirically that HierER can scale up to million-size datasets.

CCS CONCEPTS
• Information systems→ Entity resolution; Entity relationship
models.

KEYWORDS
Ontology construction, type hierarchy, entity resolution

ACM Reference Format:
Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava.

2022. Hierarchical Entity Resolution using an Oracle. In Proceedings of the
2022 International Conference on Management of Data (SIGMOD ’22), June
12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3514221.3526147

1 INTRODUCTION
In many applications, records are represented in diverse formats

like images, unstructured and structured text and these records need

to be organized to capture complex relationships. For example, e-

commerce websites like Amazon organize product listings from

different sellers by identifying duplicate products, which are shown

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3526147

Type-hierarchy

Duplicate listings

Is-A relationship

Figure 1: Example product listing with duplicates on the
right, is-A relationship mapping record to the type node on
the top and subtype-supertype hierarchy on the left.

Beverages

Tea Coffee

Whole bean GroundInstant

Record id Title Price Brand
1 Narasu's / Narasus Extra Strong Spray Dried Instant Coffee 100g 11.99 Narasu
2 Hawaii Selection/ Ice Coffee 100% Kona/ Spray Dried Instant/ 1.5 oz (43g) 15.99
3 Peet's Coffee Major Dickason's Blend, Dark Roast Ground Coffee, 18 oz 9.98 Peet
4 Twinings English Breakfast Tea Bags 12.99 Twinings
5 Taylors of Harrogate English Breakfast, 20 Teabags 34.95 Taylors
6 Native Organic Instant Freeze Dried Coffee, 3.17 Oz (Pack Of 2) 11.49 Native
7 One Love Tea – Berry Bliss Yerba Mate – 3 Oz Loose Leaf Tea Tisane 12.99 One Love
8 Waka Coffee Quality Instant Coffee, Colombian, Freeze Dried 9.26 Waka
9 Peet's Coffee Dickason's Blend, Dark Roast Whole Beans 9.99 Peet
10 Bigelow Caffeinated Green Tea, 40-count 21 Bigelow
11 Twinings Breakfast Tea, 100 Count 5.33 Twinings
12 Twinings of London English Breakfast Tea Bags, 100 Count 24.99 Twinings
13 Bigelow Green Tea with Lemon Tea Bags 28-Count Boxes 24.74 Bigelow
14 Stash Tea Fruity Herbal Tea 9.99 Stash

Figure 2: Example collection of products along with a seed
type-hierarchy constructed by a domain expert.

under the ‘other sellers’ option in Figure 1 and arrange them in the

form of a taxonomy to enable better search and recommendations.

In this example, the different listings in the other sellers category

denote the record-entity relationship (also known as co-reference or

duplicate relationship), type categorization of a product at the top

of the webpage denotes the is-A relationship and the type hierarchy

denotes the type-subtype or hypernym relationship.

The process of de-duplication or entity resolution identifies

record-entity relationships and has been widely used for data in-

tegration and cleaning [18] for more than 50 years. Hierarchical

arrangement of types based on hypernym and is-A relationships is

useful to construct taxonomies or ontologies for knowledge graph

construction and management. Assigning records to the identi-

fied taxonomy is useful for diverse applications like recommenda-

tion [39], categorization [47], and search [67].

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

414

https://doi.org/10.1145/3514221.3526147
https://doi.org/10.1145/3514221.3526147

1 2 8 6 3 9 10 13 5 4 12 11

u1 u2

u3

u4

u5 u6

u7

u8

u9 u10

e1 e2 e3 e4

e5 e6 e7 e8 e9 e10

u11

14

7

e11 e12

u12

Figure 3: Ground truth hierarchy with dark gray nodes de-
noting entities and light gray nodes denoting type-nodes.
Some internal nodes are: 𝑢11 = beverages, 𝑢7 = caffeinated
beverages, 𝑢12 = non-caffeinated beverages.

Even though the benefits of constructing a type hierarchy are

widely acknowledged, in practice themajority of subtype-supertype

relationships are maintained manually by domain experts. Manual

maintenance of such relationships is labor-intensive as the type

hierarchy evolves whenever new products are introduced/discon-

tinued. Automatic identification of type nodes and is-a relationships

in the hierarchy is also challenging due to presence of noise and

heterogeneity of representation across data sources (sellers in the

Amazon example).We demonstrate some hierarchical ER challenges

with the following example.

Example 1.1. Consider a retail website that sells different grocery
items provided by different sellers. Figure 2 shows images and

textual descriptions of 14 records consisting of different types of

beverages. To categorize these products, a domain expert manually

constructs a simple type-subtype based hierarchy that contains

tea/coffee where the coffee products can be further categorized

into whole bean, ground and instant coffee (Figure 2). However,

this hierarchy is incomplete and does not contain the following

information. (a) Tea products can be further categorized as black

tea and green tea. (b) Instant coffee products can be categorized into

spray-dried and freeze-dried instant coffee. (c) Some products are

duplicates of each other, e.g., records 4, 11 and 12 refer to Twinings

English breakfast tea and assigning all these records as siblings of

record 5 loses this information. Figure 3 presents the ground truth

hierarchy that captures all relationships with product records as

leaf nodes, dark gray nodes as entity nodes (all records under this

internal node refer to same entity), and light gray nodes as type

nodes (capturing hypernym relationships). Among the type nodes,

𝑢3–𝑢6, correspond to the internal nodes denoting different types of

coffee in the initial hierarchy constructed by the expert.

We now focus on this example to discuss the challenges of prior

automated and manual techniques to construct such hierarchies.

Automatic Construction. To automatically construct a set of

types and subtype-supertype relationships, prior techniques have

proposed to leverage co-occurence patterns of hypernyms [37, 52].

However, certain type-nodes are often not mentioned in textual

descriptions of the records [48] and if the records are collected

from different sources, each source uses a different terminology.

For example, the type-node ‘non-caffeinated beverages’ is never

mentioned in any of the product descriptions in Figure 2. Similarly,

none of the breakfast teas mention ‘black tea’ in any of the titles.

Moreover, certain tokens like “hazelnut” in “hazelnut coffee” denote

attributes like flavor and not a hypernym relationship.

Manual Construction. A domain expert can easily generate a

hierarchy that contains well-known categories. However, such a hi-

erarchy may not capture all hypernym relationships. To determine

specialized type-nodes like spray-dried and freeze-dried instant

coffee in Example 1.1, a domain expert has to be aware of all vari-

ations for different product types. Manual processing of millions

of records to identify their product types and such variations is

infeasible. Moreover, introduction of a new product may require

new types node in the hierarchy. For example, new internal nodes

like ‘caffeinated’ and ‘non-caffeinated’ beverages are added when

tisane/herbal teas (records 7 and 14) are added to the dataset and

the hierarchy. Manual maintenance and evolution of hypernym

relationships is not scalable. However, if only three records are

considered in isolation, say 4, 5, and 13, then a user (or a trained

classifier) can easily distinguish that 4 and 5 are closer to each

other than either of them is to 13. Answering such queries does

not require the context of all variations of types in the constructed

hierarchy. Even though considering record triplets in isolation can

help uncover the hierarchical structure, it is not scalable to compare

all possible triples for million scale datasets.

To handle the limitations of a fully automated or a fully manual

construction, and the challenges of dealing with new products and

evolving hierarchies, we propose to study the problem of organiz-

ing records in the form of a hierarchy that enriches the initial seed

hierarchy (provided by the domain expert)by identifying duplicate

records, and enriching it with is-A and new subtype-supertype re-

lationships. We call this problem as the Hierarchical ER problem. To

deal with the challenges of automated techniques, we propose an

oracle-based approach to compare triplets. An oracle is an abstrac-

tion of a classifier (learned using active-learning based techniques

in the absence of training data) or a domain expert that answers

two types of queries, given below. The recent advancements of

leveraging deep learning based classifiers for ER [11, 20, 46, 49] and

related tasks are also alternative implementation of the oracle.

• “do records 𝑢 and 𝑣 refer to the same entity?” and

• “which pair of records among 𝑢, 𝑣 and𝑤 are most similar?”

Such comparisons reveal the local hierarchical structure with re-

spect to the queried records and can be answered without the

knowledge of other records in the dataset. These oracle models

have been widely popular to study fairness metrics [40], correla-

tion clustering [59] and classification [38, 57], identify maximum

elements [34, 61], top-𝑘 elements [13, 17, 19, 43, 44, 54], informa-

tion retrieval [42], skyline computation [62], and so on. In order to

minimize the oracle workload, our framework prioritizes records

to optimize the number of triplet comparisons.

Related problems and solution techniques. The closest task
in the literature to our problem is Entity Resolution (ER). ER has

been studied for more than 50 years and constitutes a fundamental

component of data integration pipelines [18]. ER typically focuses

on identifying which records refer to the same entity, and ignores

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

415

type information. Some prior ER techniques leverage type informa-

tion of entities to improve ER classification but do not study the

identification of record types for hierarchical arrangement [73, 74].

Another related task in the literature is Hierarchical Clustering.

This has been studied in a variety of application domains including

the construction of phylogenetic trees (ontologies of animal or plant

species) [10, 21, 41] and taxonomies [56, 70, 72]. In such applica-

tions, records refer to different entities, and thus clustering methods

ignore entity resolution. Moreover, these techniques build almost

binary hierarchies, where every node has two (or slightly more

than two) children. Thus, neither ER nor Hierarchical Clustering

techniques can by itself solve our problem effectively.

Limitations of using existing strategies. One approach to solve

hierarchical ER could be to run ER first followed by hierarchical

clustering (or vice versa). However, pipelining the two processes

turns out to be sub-optimal. Let 𝑛 be the number of records.

• Running a hierarchical clustering technique like [21] first

and then post-processing the bottom level in order to detect

entities can require𝑂 (𝑛2) queries for non-binary hierarchies
in the worst case, before even identifying the entities.

• Running a pairwise matching based ER technique like [24]

first and post-processing entities after that to detect types

can be efficient in case of large entities but can require𝑂 (𝑛2)
queries to identify small entity clusters, before even starting

to process types.

Even in the case where all records refer to distinct entities, prior

oracle-based hierarchical clustering techniques [21] require 𝑂 (𝑛2)
queries for non-binary hierarchies.

Our contributions. We develop two algorithms for Hierarchical

Entity Resolution using an Oracle, called Hier-Type and HierER,
• Hier-Type outperforms hierarchical clustering methods by

dealing effectively with type-only hierarchies (i.e., all entities

are of size one) with arbitrary degree distribution;

• HierER solves the hierarchical ER problem and outperforms

pipelined approaches (ER plus hierarchical clustering, in

either order) in the general hierarchical ER setting.

Both Hier-Type and HierER leverage prior information such as the

similarity of records based on image and text features. Even though

computed similarity values can be noisy (e.g., records referring

to different entities can have more similar features than records

referring to the same entity) we show that they can be used effec-

tively to minimize oracle queries. We provide theoretical analysis of

Hier-Type and HierER under two representative similarity noise

models, that we refer to as data error and processing error. The for-
mer model assumes higher noise in certain records, to capture the

possibility of missing or incorrect data. The latter assumes higher

noise in certain record pairs, to capture possible errors in the simi-

larity computation process. Under moderate noise, Hier-Type and

HierER require 𝑂 (𝑛 log𝑛) oracle queries and achieve optimal pro-

gressive F-score with high probability. Experimental results show

that Hier-Type and HierER can scale up to datasets with millions

of records and outperform baseline solutions both in efficiency

and effectiveness. Since asking 𝑂 (𝑛 log𝑛) queries to an expert or

a crowd worker may not be feasible for million scale datasets, we

consider a classifier trained using active learning to act as an oracle.

Such oracles are trained with less than 1000 queries to the crowd-

worker. Finally, in order to allow the possibility that the oracle itself

makes mistakes we also demonstrate empirically the robustness of

our methods when used together with the oracle error correction
method from prior literature [26].

Outline. We formalize the problem statement in Section 2 and

present our solution overview in Section 3. The details of our algo-

rithm are presented in Sections 4-6, which is analyzed theoretically

in Section 7. Section 8 discusses the related work and Section 9

evaluates our technique empirically with other strategies.

2 PROBLEM DEFINITION
In this section, we define the problem statement formally.

Notation. Let 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} be a collection of 𝑛 records and

𝑇 = {𝑡1, . . . , 𝑡𝑘 } be the initial set of type nodes organized in the

form of a hierarchy 𝐻𝑇 . We assume that each type in the seed

hierarchy 𝐻𝑇 contains at least one leaf-level record as an example
1
.

Let 𝐻∗ denote the ground truth of our hierarchical ER problem, i.e.,

a rooted tree containing the type-subtype relationships (including

the type nodes 𝑇), is-A relationships (mapping each entity to a

type) and co-reference (i.e., referring to the same entity, or equality)

relationships and consisting of 𝑛 leaves, each corresponding to a

distinct record 𝑣𝑖 ∈ 𝑉 .𝐻∗ consists of three types of nodes i) records
𝑉 , which are at the leaf-level ii) type nodes 𝑇 ′ ⊇ 𝑇 , and iii) entity
nodes 𝐸. All children of an entity node in the hierarchy 𝐻∗ refer
to the same entity, while a type node consists of a set of entities

(and hence of records). For simplicity of exposition, an entity can

also be thought of as a type consisting of a singleton entity. In this

way, all internal nodes of 𝐻∗ can be thought of as connected by

type-subtype relationships. We use the notion of laminar family of

sets to define the hierarchy 𝐻∗ more formally.

Definition 2.1 (Laminar Family). A family of sets C∗ is laminar

iff ∀𝑋1, 𝑋2 ∈ C∗, either 𝑋1 ∩ 𝑋2 = 𝜙 or 𝑋1 ⊆ 𝑋2 or 𝑋2 ⊆ 𝑋1.

The hierarchy 𝐻∗ corresponds to a laminar family of labelled

sets C∗ such that each set in C∗ is labelled with one of the three

labels: record (r), entity (e) or type (t). Each labelled set is

denoted as ⟨label : 𝑋 ⟩ where 𝑋 ⊆ 𝑉 . According to this notation,
⟨r : {𝑣}⟩ ∈ C∗,∀𝑣 ∈ 𝑉 and ⟨t : 𝑉 ⟩ ∈ C∗. This hierarchy has

an additional constraint that a set labelled ‘entity’ cannot have
a proper superset of label ‘entity’ or ‘record’ and a set labelled

‘type’ cannot have a superset labelled ‘entity’ or ‘record’.
Following this definition, there exists a one-to-one mapping

between internal nodes of the hierarchy and the laminar family of

sets C∗ where an internal node of the hierarchy (say𝑢) is equivalent
to a set 𝐶 ∈ C∗ containing all the leaf-level descendants of 𝑢 and

vice versa. In this formulation, we assume that all type nodes can

not have a single type node as a child in the hierarchy. A type

node that has a single type node as a child is redundant and can

be ignored. However, an entity can have a single entity reference

(record) and hence have only one child.

Example 2.2. The hierarchy in Figure 3 is equivalent to a laminar

family of 38 labelled sets where 14 sets are labelled record, 12 are

1
This assumption is needed as our framework does not compare a type node with

records. Our framework generalizes to the case when 𝐻𝑇 does not contain records if

pairwise queries allow comparing type nodes with records.

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

416

1 2 8 6 3 9 10 13 5

4 12 11

e7

14

7

Figure 4: Constructed Hierarchy with triplet queries only

labelled entity (corresponding to 𝑒1-𝑒12) and 12 are labelled type
(𝑢1-𝑢12). Some of these sets are listed below.

{⟨𝑟 :{1}⟩ ∪ ⟨𝑟 :{2}⟩ ∪ ⟨𝑒 :{1}⟩ ∪ ⟨𝑒 :{2}⟩ ∪ ⟨𝑡 :{1,2}⟩
∪⟨𝑡 :{1,2,6,8}⟩}

The Lowest Common Ancestor (lca) of records 𝑣1, 𝑣2 is the com-

mon ancestor of both 𝑣1 and 𝑣2 that is farthest from the root. If the

lca is an entity node, then 𝑣1 and 𝑣2 refer to the same entity.

Definition 2.3 (Depth). The depth of a node 𝑢 is defined as the

number of edges from the root to 𝑢. The root node has depth 0.

A hierarchy has an interesting property that for any three records

𝑣1, 𝑣2, 𝑣3 ∈ 𝑉 , the lca’s of two pairs of these records are the same

and the lca of the third pair is either the same or a descendant of

the other two lca’s [21]. Without loss of generality, one of the

following hold.

lca(𝑣2, 𝑣3) ≥ lca(𝑣1, 𝑣2) = lca(𝑣1, 𝑣3)

where lca(𝑣1, 𝑣2) > lca(𝑥,𝑦) denotes that lca(𝑣1, 𝑣2) is a descen-
dant of lca(𝑥,𝑦). In case all three lca’s are the same, then 𝑣1, 𝑣2

and 𝑣3 belong to three different descendant-branches of the internal

node corresponding to lca(𝑣1, 𝑣2) = lca(𝑣1, 𝑣3) = lca(𝑣2, 𝑣3) [21].

Example 2.4. Consider the records 1, 4, 12 in Figure 3. We observe

that lca(4, 12) = 𝑒10 is present deeper in hierarchy as compared

to lca(1, 12) = 𝑢7, i.e., lca(4, 12) > lca(1, 12) and lca(1, 4) =
lca(1, 12). For the records (1, 3, 9), we observe that all pairwise

lca’s are same, and thus the three records are present in different

descendant branches of lca(1, 3) = 𝑢4.

Oracle Abstraction. Consider a black box that outputs the relative
arrangement of any triplet of records in the form of a hierarchy.

Definition 2.5 (Triplet Oracle). A triplet oracle is a function 𝑞𝑡 :

𝑉×𝑉×𝑉 → 𝑉∪{𝜙} that takes three records as input and outputs the
farthest record (if any). For an input (𝑣1, 𝑣2, 𝑣3), the oracle outputs
𝑞𝑡 (𝑣1, 𝑣2, 𝑣3) = 𝑣1 if lca(𝑣2, 𝑣3) > lca(𝑣1, 𝑣2) = lca(𝑣1, 𝑣3) and
𝑞𝑡 (𝑣1, 𝑣2, 𝑣3) = 𝜙 if lca(𝑣1, 𝑣2) = lca(𝑣1, 𝑣3) = lca(𝑣2, 𝑣3).

The oracle output is similar to comparing record pair similarities

and returning a record that has the least similarity with the other

two records (similar to an odd-one-out). A pair of records (𝑣2, 𝑣3) is
considered more similar than a pair (𝑣1, 𝑣2), if (𝑣2, 𝑣3) share more

types in common than (𝑣1, 𝑣2).

Example 2.6. Consider a triplet query with records 1, 2, and 3

in Figure 2. Record 3 is considered farthest from 1 and 2 as record

pair (1, 2) share five common types, which include beverages (𝑢11),

caffeinated beverages (𝑢7), coffee (𝑢4), instant coffee (𝑢3), and spray

fried instant coffee (𝑢1). In contrast, record pairs (1, 3) and (2, 3)
share only three of these common types (𝑢11, 𝑢7, and 𝑢4). In other

words, the pair (1, 2) is more similar than the pair (1, 3) and the

pair (2, 3) in terms of their hierarchical similarity (depth of their

lowest common ancestor).

The result of 𝑞𝑡 (𝑣1, 𝑣2, 𝑣3) is the same across any ordering of the

records 𝑣1, 𝑣2 and 𝑣3, e.g., 𝑞𝑡 (𝑣1, 𝑣2, 𝑣3) = 𝑞𝑡 (𝑣3, 𝑣1, 𝑣2). The informa-

tion provided by a triplet query can be combined with the evidence

from other triplet queries to generate the hierarchy over 𝑉 . How-

ever, if we ask only triplet queries, we cannot identify entity nodes

and our best result can be as in Figure 4, that is, without entity nodes

𝑒1, . . . , 𝑒12 and with misinterpretation of 𝑒10 as a type node. To cor-

rectly identify all entity nodes, we consider an oracle that outputs

whether any pair of records refers to the same entity [24, 65, 66].

Definition 2.7 (Equality Oracle). An equality oracle is a function

𝑞𝑒 : 𝑉 ×𝑉 → {𝑇, 𝐹 } that takes two records as input and outputs

𝑞𝑒 (𝑣1, 𝑣2) = 𝑇 (true) whenever 𝑢 and 𝑣 refer to the same entity, and

𝑞𝑒 (𝑣1, 𝑣2) = 𝐹 (false) otherwise.

Example 2.8. In Figure 2, records 4, 11, and 12 refer to the same en-

tity. Therefore, the equality oracle returns T for 𝑞𝑒 (4, 12), 𝑞𝑒 (4, 11),
and 𝑞𝑒 (11, 12) and 𝐹 for other pairwise equality queries.

A recent work [21] showed that any strategy that queries all

(𝑛
3

)
record triples can recover the underlying type-subtype hierarchy

uniquely assuming that the triplet oracle makes no mistakes.
2
Since

the maximum number of equality queries possible are 𝑂 (𝑛2), the
Θ(𝑛3) upper-bound in [21] also holds for hierarchical ER. Equality

and triplet oracles can be considered as an abstraction of a machine

learning classifier or a domain expert that provides high-quality

labels to an input query. We discuss practical implementation of

these oracles in Section 9.

Progressive F-score. A naive way to evaluate performance of

different hierarchical ER strategies is to compare the fraction of

the total Θ(𝑛3) relationships (i.e.,
(𝑛
3

)
triplets and

(𝑛
2

)
equality re-

lationships) that are correctly identified by each of the strategies.

However, such an approach can be infeasible even when 𝑛 is as

small as 10, 000 (medium-sized datasets). Therefore, we extend the

popular metric of comparing F-score of different ER techniques to

our hierarchical setting. In ER, F-score is computed over two types

of pairwise relationships: intra-cluster and inter-cluster. Following

these ideas, we consider co-reference relationships as intra-cluster

and enumerate the different types of inter-entity relationships be-

tween record pairs. We define the notion of t-ancestor relationship
to capture the distance between record pairs and then use it to com-

pute the F-score of the output hierarchy 𝐻 .
3

Definition 2.9 (t-ancestor relationship). A pair of records (𝑢, 𝑣)
satisfies a t-ancestor relationship if their lca is at most t edges

2
[21] also showed that𝑂 (𝑛 log𝑛) queries are sufficient for binary hierarchies.

3
We remind the reader that F-score in the traditional ER setting is defined as the

harmonic mean of precision and recall, and that precision and recall are defined with

respect to the number of correctly identified equality relationships.

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

417

Blocking and
 similarity

 computation

Initialization

Oracle Strategy

Hierarchy
Inference

Equality
 oracle

Triplet
 oracle

u,v Y,N
u,v,w

u,v,w,φ

Records

pairwise
similarity
 values

Figure 5: Our hierarchical ER workflow. The blocks outlined
in red represent our novel contributions, whereas the block-
ing and similarity computation is implemented with the
methods available in the literature.

away from both 𝑢 and 𝑣 ’s entity nodes. 0-ancestor relationship is

equivalent to an equality (i.e., co-reference) relationship.

For example, record pair (1, 14) satisfies a 5-ancestor relationship

because entity node of 1 is five edges away from the lca (𝑢11) and

entity node of 14 is two edges away from the lca. However, the
record pair (1, 14) does not satisfy any 𝑡−ancestor relationship for

𝑡 < 5. We map t-ancestor relationships identified from the output

hierarchy𝐻 to the ground truth hierarchy𝐻∗ and then use those to

compute precision as the weighted fraction of correctly identified

pairwise relationships among the identified relationships and recall

as the weighted fraction of total relationships that were identified.

We discuss the weighting mechanisms in Section 9. F-score is finally

computed as the harmonic mean of precision and recall.

Finally, since evaluating F-score alone at the end of the process

cannot distinguish between strategies that achieve higher F-score

early on and strategies that achieve it only at the end, we also

use progressive F-score to compare strategies. Progressive F-score

corresponds to the area under the F-score vs. query sequence curve,

where higher area corresponds to better performance [24, 26].

Problem statement. Now, we define our problem statement of

developing a strategy that adaptively identifies oracle queries based

on previously asked queries and pairwise record similarities.

Problem 1 (Hierarchical ER). Given a collection of records 𝑉 ,
initial seed hierarchy𝐻𝑇 , oracle access to𝐻∗ and a similarity function
𝑠 : 𝑉 ×𝑉 → [0, 1], find an adaptive querying strategy that maximizes
the progressive F-measure of the recovered hierarchy.

Problem 1 assumes that the oracle answers every query correctly.

However, in practice humans make mistakes and to deal with noise

in oracle response, we leverage prior techniques from ER litera-

ture [26]. Pairwise similarity values can be calculated using textual

descriptions and image features. Finding the best similarity func-

tion is outside the scope of this work, but it is important to note that

random or adversarial similarities would not be helpful to optimize

the oracle queries. We provide theoretical analysis of our method

for different noise models and use well-known similarity functions

in our experiments to demonstrate its robustness.

3 OVERVIEW
We present an overview of our workflow for the hierarchical ER

problem in Figure 5. Modules are described below.

Blocking and Similarity. To reduce the number of pairs consid-

ered for similarity computation, we perform blocking [53]. Blocking
is a widely used operation in ER literature to efficiently generate a

small set of candidate pairs so that similarity values are computed

only for this small set of candidates. Standard blocking (also known

as token-based blocking) is one of the most popular mechanisms

that generates a block for each token in the input set of records [53].

Similarity values may not be directly interpretable as probability

distributions over the possible oracle responses. For practical pur-

poses, calibration approach in [24, 69] can be used to map values

𝑠 (𝑣1, 𝑣2) to probability distributions 𝑝 (𝑣1, 𝑣2) and 𝑝 (𝑣1, 𝑣2, 𝑣3), for
the equality and triplet oracles respectively. Details about the block-

ing method and similarity functions used in our experiments are

provided in Section 9.

Example 3.1. Consider the records from Figure 2. The different

blocks identified by standard blocking correspond to individual

tokens like a block for token ‘Peet’ contains records 3 and 9. The

different blocks are ranked based on TF-IDF scores and low scoring

blocks are dropped. Blocks corresponding to frequent tokens like

‘tea’, ‘coffee’ have a low score and are ignored for candidate pair

enumeration. Therefore, record pairs (1, 3), (1, 14) are not identified
as candidates because these record pairs do not co-occur in any of

the high-scoring blocks. The identified candidate record pairs are

used by subsequent stages for hierarchy construction.

Initialization. The initialization module in our workflow con-

structs a candidate hierarchy 𝐻 that can be used downstream to

guide the querying strategies. Construction of 𝐻 is based solely

on the similarity scores 𝑠 : 𝑉 ×𝑉 → [0, 1] and requires no oracle

queries. We provide detailed discussion in Section 4 and prove that

𝐻 has high F-score under low noise of similarity values (Section 7).

Inference. The inference module in our workflow provides tools

to infer relationships from previously asked triplet and equality

queries, without asking new oracle queries. Note that inferring

type-subtype relationships is the major challenge in this module, as

it is known from previous ER literature [65, 66] that equality rela-

tionships can be easily inferred via transitive closure.
4
We provide

detailed discussion in Section 5.

Oracle strategy. This module has the goal of prioritizing oracle

queries by leveraging (i) the candidate hierarchy from the initializa-

tion step to give higher priority to queries that yield higher F-score

increment and (ii) the inference engine to identify inferable rela-

tionships for free. We provide implementations of Hier-Type and

HierER approaches in Section 6.

HierER strategies. Given the workflow in Figure 5, Hier-Type
and HierER can be thought of as oracle strategies that leverage the

initialization and inference methods and focus on the following

principles to maximize progressive F-score.

• Internal node discovery. Hier-Type and HierER prioritize queries
that enable the discovery of new internal nodes. Indeed, identifying

the tree structure, specifically the internal nodes between the root

node and the leaf nodes corresponding to the processed records is

important to provide optimal progressive behavior.

• Large entities. Hier-Type and HierER give high priority to

queries enabling the discovery of new children of high-degree

entity nodes. This principle has also been used in previous ER

4
E.g., if we know that 𝑣1 refers to the same entity as 𝑣2 , and 𝑣2 refers to the same

entity as 𝑣3 , then we can infer that 𝑣1 refers to the same entity as 𝑣3 without asking

the corresponding oracle query.

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

418

Algorithm 1 generate-similarity-hierarchy

Require: records 𝑋 , similarity 𝑠 , degree 𝛼

1: if |𝑋 | == 1 then return X

2: 𝐻̄𝑋 ← new-node()
3: if |𝑋 | ≤ log𝑛 then
4: P ← greedy-partition(𝑋, 𝑠, 𝛼)
5: else
6: P ← robust-partition(𝑋, 𝑠, 𝛼)
7: for𝐶 ∈ P do
8: 𝐻̄𝑐 ← generate-similarity-hierarchy(𝐶)
9: 𝐻̄𝑋 .add-children(𝐻̄𝐶)
10: 𝐻̄𝑋 ← merge-internal(𝐻̄𝑋)
11: return 𝐻̄𝑋

C={{1,2,6},{4,11,12}}

X={4,11,12}X={1,2,6}

X={1,2,4,6,11,12}

X={11,12}X={1,6}

1 6

2

11 12

4

1 6

2
11 12 4

Figure 6: Example candidate hierarchy (with 𝛼 = 2) where the
internal node corresponding to {4, 11, 12} is merged with its
child {11, 12} by merge-internal. The hierarchy incorrectly
places (1, 6) closer than (1, 2) due to noise in similarity values.

literature [24, 65] since asking queries in non-increasing order of

entity sizes provides the maximum gain in progressive recall.

• Connectivity. Hier-Type and HierER prioritize queries that

grow the hierarchy in a connected fashion. Indeed, ensuring that

the processed records at any given time form a single connected

hierarchy (rather than growing multiple disjoint hierarchies in

parallel) allows for the inference of more relationships with the

same number of queries.

4 INITIALIZATION
We now present a top-down algorithm (Algorithm 1) to construct

a candidate hierarchy 𝐻𝑉 capturing type relationships from the

similarity values 𝑠 : 𝑉 ×𝑉 → [0, 1].
Algorithm 1 takes a collection of records 𝑋 ⊆ 𝑉 as input along

with pairwise similarities 𝑠 and an optional parameter 𝛼 (default

value 𝛼 = 2) denoting the minimum degree of type labelled nodes

in the ground truth hierarchy. It outputs a laminar representation

of a hierarchy 𝐻𝑋 containing records in 𝑋 at the leaf-level. If 𝑋 is

a singleton set, it is returned as the leaf level of the hierarchy (line

1). Whenever |𝑋 | > 1, 𝐻𝑋 is initialized with a new node (line 2) as

the root of the hierarchy (which is equivalent to 𝑋 in the laminar

representation). 𝑋 is then partitioned into 𝛼 clusters (denoted by

P) by greedy-partition if |𝑋 | ≤ log𝑛 and robust-partition
otherwise (lines 3-6). The partitions P capture the different children

branches of the root 𝐻𝑋 . The candidate hierarchy on each partition

𝐶 ∈ P is identified by recursively invoking Algorithm 1 and the root

node of these branches 𝐻𝐶 is added as a child to the root node 𝐻𝑋

(lines 7-9). Some internal nodes in the ground truth hierarchy may

have degree more than 𝛼 . To identify such nodes, merge-internal
post-processes 𝐻𝑋 to consolidate internal nodes that have higher

likelihood of referring to the same node. This procedure processes

Algorithm 2 robust-partition

Require: records 𝑋 , similarity 𝑠 , degree 𝛼

1: Select subsets 𝑆, 𝑆′ ⊆ 𝑋 randomly such that |𝑆 | = |𝑆′ | = Θ(log𝑛)
2: for 𝑣1 ∈ 𝑆 do
3: for 𝑣2 ∈ 𝑆 \ {𝑣1 } do
4: 𝐶𝑜𝑢𝑛𝑡 (𝑣1, 𝑣2) ←

∑
𝑣
3
∈𝑆′ 1{𝑠 (𝑣1, 𝑣2) > 𝑠 (𝑣1, 𝑣3), 𝑠 (𝑣2, 𝑣3) }

5: if 𝐶𝑜𝑢𝑛𝑡 (𝑣1, 𝑣2) > |𝑆′ |/(2𝛼) then
6: 𝐴+ ← 𝐴+ ∪ {(𝑣1, 𝑣2) }
7: else
8: 𝐴− ← 𝐴− ∪ {(𝑣1, 𝑣2) }
9: C ← 𝜙

10: while |C | < 𝛼 do
11: 𝐶′ ← select a random record from 𝑆 (say 𝑣1)

12: for 𝑣2 ∈ 𝑆 do
13: ACount(𝑣1, 𝑣2) =

∑
𝑣
3
∈𝑆 1{(𝑣1, 𝑣3) and (𝑣2, 𝑣3) ∈ 𝐴+ or𝐴− }

14: if ACount(𝑣1, 𝑣2) > |𝑆 |/2 then
15: 𝐶′ ← 𝐶′ ∪ {𝑣2 }
16: 𝑆 ← 𝑆 \𝐶′, C ← C ∪𝐶′
17: 𝛽 ← min𝐶𝑖 ∈C |𝐶𝑖 |
18: for 𝑣3 ∈ 𝑋 \ ∪𝐶𝑖 ∈C𝐶𝑖 do
19: assign-count(𝑣3,𝐶𝑖) =

∑
𝑡≤𝛽 1{𝑠 (𝑣3,𝐶𝑖 [𝑡]) > 𝑠 (𝑣3,𝐶 𝑗 [𝑡]), ∀𝑗 ≠ 𝑖 }

20: 𝐶𝜂 ← arg max𝐶𝑖 ∈C assign-count(𝑣3,𝐶𝑖)
21: 𝐶𝜂 ← 𝐶𝜂 ∪ {𝑣3 }
22: return C

parent-child relationships in bottom-up manner and integrates two

internal nodes if the probability of a merged node is higher than the

probability of split internal nodes. Such probabilities are estimated

by considering triplets with these internal nodes as lca and their

calibrated probability distribution
5
.

greedy-partition . is a greedy algorithm to identify the different

branches of the set𝑋 . This algorithm is same as the greedy k-center

algorithm [31] where each branch is initialized by a seed node and

remaining nodes are assigned to the closest seed nodes. Given a set

of records 𝑋 , it initializes the first branch by randomly choosing a

leaf level record as a seed and all records in 𝑋 are assigned to the

first seed. The subsequent seed nodes are identified by choosing the

record that has minimum similarity from its assigned seed record.

All records in 𝑋 are then re-assigned to the identified branches

where each record is assigned to the closest seed node. Notice that

the identified minimum similarity record may be inaccurate due

to noise in similarity values which can lead to noisy hierarchy

construction. To improve the robustness of the partitioning algo-

rithm, we propose robust-partition subroutine that is proven to

be accurate when the different branches contain more than log𝑛

records.

Example 4.1. Consider the records 𝑉 from Figure 2. Figure 6

shows the recursive tree for 𝑋 = {1, 2, 4, 6, 11, 12} ⊂ 𝑉 constructed

by greedy partition. In the first iteration, the greedy partition al-

gorithm initializes the first branch with record 2 and then chooses

record 11 for the second branch as it has the lowest similarity with 2.

After identifying these seed nodes, all other records are assigned to

these branches. Therefore, 1, 6 are assigned to the branch containing

2 and others are assigned to 11. In the subsequent stages, {1, 6, 2}
is partitioned to form the left sub-tree and {4, 11, 12} is partitioned
to form the right sub-tree. The internal node {11, 12} is merged

with its parent by merge-internal due to the high-probability of

referring to the same entity. Note that this hierarchy is not accurate

5
The calibration of similarity values is performed in practice to estimate probability

values. We leverage prior techniques for this [24, 69].

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

419

due to the noise in similarities (image similarity of (1, 6) is higher

than that of (1, 2)).

robust-partition. This mechanism is a robust adaptation of

greedy−partitionwhich considers similarity ofmultiple record pairs

during branch assignment. Algorithm 2 presents the pseudocode

which operates in three main steps. In the first step, we consider

two samples of Θ(log𝑛) records (say 𝑆 and 𝑆 ′). Every record pair

(𝑣1, 𝑣2) ∈ 𝑆 × 𝑆 is assigned a score equal to the number of triangles

formed by (𝑣1, 𝑣2) with nodes in 𝑆 ′ such that 𝑠 (𝑣1, 𝑣2) is greater
than the similarity of other edges of the triangle (line 4). Using

these count values, each edge is labelled intra-branch (𝐴+) or inter-
branch (𝐴−). In the absence of noise, edge labels 𝐴+ and 𝐴− are

accurate but due to noise in similarity values, the labels may be

incorrect. To correct the labelling, we calculate agreement score

(ACount) of each edge (𝑣1, 𝑣2) ∈ 𝑆 ×𝑆 which is equal to the number

of times, edges (𝑣1, 𝑣3) and (𝑣2, 𝑣3) have same labels for different

𝑣3 ∈ 𝑆 (line 13). The nodes in 𝑆 are partitioned into 𝛼 clusters by

thresholding the agreement score of edges (lines 10-16). We later

show that the labels identified by this two-step procedure are robust

to noise in similarity. Once a partitioning of 𝑆 is identified, all the

remaining records in 𝑋 are assigned to one of the partitions by

comparing their similarity to different points in these partitions

(using assign-count, lines 19-21).

5 INFERENCE
We now provide a method to infer relationships from previously

asked triplet and equality queries, without asking new oracle queries.

A given set of queries𝑄 ⊂ 𝑉 ×𝑉 ×𝑉 may not be enough to arrange

all involved records in the form of a unique hierarchy. However,

we can construct a collection of hierarchies such that all triplet

relationships that are either queried or can be inferred
6
from 𝑄

can be answered from one of the constructed hierarchies. To better

understand this behavior, we mathematically characterize the in-

formation available from the following example triplet queries. We

use the notation lca(𝑥,𝑦) > lca(𝑢, 𝑣) to denote that lca(𝑥,𝑦) is a
descendant of lca(𝑢, 𝑣) in the hierarchy.

Consider a query 𝑞1 ≡ 𝑞𝑡 (1, 2, 6) that returns 6. It is equivalent

to a hierarchy consisting of three leaf-level records. To interpret

𝑞1 mathematically, we define three variables corresponding to the

lca’s of involved record pairs (1, 2), (1, 6) and (2, 6). Using these

variables, 𝑞1 can be represented as follows.

lca(1,2) > lca(1,6) = lca(2,6)

This inequality characterizes a relation between the lca of record

pairs (1, 2), (1, 6) and (2, 6). Each query can be written in the form of

such inequality constraints over at most

(𝑛
2

)
lca variables. Consider

another query 𝑞2 ≡ 𝑞𝑡 (1, 6, 11) = 11,

lca(1,6) > lca(1,11) = lca(6,11)

Using the inequalities of 𝑞1 and 𝑞2, we can infer that

lca(1,2) > lca(1,6) > lca(1,11)

With this evidence we can place the four records 1, 2, 6 and 11 on

the same branch (Figure 7(a)). This example describes the merge

operation over two hierarchies where the node 11 is inserted into

6
A triplet is considered inferrable, if its oracle response can be inferred from one of

the prior queries.

the first hierarchy based on response to query 𝑞2. However, if the

query 𝑞2 is not asked and instead 𝑞3 ≡ 𝑞𝑡 (1, 2, 11) returns 11 then,

lca(1,2) > lca(1,11) = lca(2,11)

In this case we cannot infer if lca(1, 6) > lca(1, 11). Therefore,
we cannot merge the hierarchies corresponding to 𝑞1 and 𝑞3 at the

moment, but more queries like (1, 6, 11) will get enough evidence to

merge the hierarchies following the same procedure. Following this

notation, an equality query of the form 𝑞4 ≡ 𝑞𝑒 (𝑢, 𝑣) = 𝑇 reveals

that 𝑢 and 𝑣 refer to the same entity and is the same as merging

the nodes corresponding to 𝑢 and 𝑣 in H . All such relationships

can be inferred via transitive closure (see [65, 66] for more details).

Using these properties, we now present an approach to maintain

the collection of hierarchies H over the queries 𝑄 where a node

may be present in multiple hierarchies and all equivalent copies

of a node are connected by equivalence edges. For example, lca of

records 𝑣1 and 𝑣2 in one hierarchy is equivalent to lca of 𝑣1 and 𝑣2 in

another hierarchy. The collection of hierarchiesH is sequentially

updated with the addition of each query to 𝑄 .

The inference algorithm considers a collection of hierarchiesH
and a new query 𝑞 ≡ 𝑞𝑡 (𝑥,𝑦, 𝑧) as input and outputs an updated col-
lection of hierarchies. First, a new hierarchy 𝐻 consisting of three

leaf level records 𝑥,𝑦, 𝑧 is inserted into the collectionH and a list of

modified hierarchies is initialized with 𝐻 . This list contains all the

hierarchies that have been modified due to the insertion of 𝑞. Addi-

tionally, we maintain a mapping of hierarchies to a set of records

that have been newly added into the hierarchy (newly-added(H))
since it was last processed by the inference algorithm. The algo-

rithm then tries to merge each of the modified hierarchies with

other hierarchies already present in H (following the procedure

described above). The merge operation then returns a new list of

modified hierarchies which are considered for subsequent iterations

of merge and the process continues until all have been processed.

6 ORACLE STRATEGIES
In this section, we present oracle querying strategies to solve Prob-

lem 1. First, we present auxiliary methods and then use them to

discuss HierER algorithms that optimize progressiveness.

6.1 Auxiliary Methods
We define subroutines that are used by the oracle strategies.

identify-branch. Our first auxiliary method takes as input a leaf

level record 𝑣 and an internal node 𝑢 of the hierarchy 𝐻 that does

not contain 𝑣 yet and returns the branch of 𝑢 where 𝑣 should be

inserted. This helps to identify relative position of 𝑣 with respect

to 𝑢 and narrow down the search for the exact location to insert 𝑣 .

Example 6.1. Consider a hierarchy 𝐻 (as shown in Figure 7(a))

over the records {1, 2, 6, 11}. Running identify-branchwith record
𝑣 = 8 and internal node 𝑢 denoting the root node of 𝐻 , would yield

the left branch as the output because 8 should be added to the left

branch of 𝑢 according to the ground truth.

It considers all children branches of 𝑢 as candidates to search

for 𝑣 ’s location and iteratively queries a triplet containing 𝑣 and

two leaf-level records (𝑙1 and 𝑙2) belonging to different candidate

branches (lines 4-5). The pair (𝑙1, 𝑙2) has the property that lca(𝑙1, 𝑙2) =

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

420

≡+

1 2

6

1 26 1

611

11

(a) Two queries can merge.

+

1 12 2

6 11

(b) Can not infer new relationships.

Figure 7: Collection of hierarchies for two different sets of queries, where the dashed lines denote equivalence edges and solid
lines capture ancestor-descendant relationships.

𝑢. If a query (𝑣, 𝑙1, 𝑙2) returns 𝑙1 then lca(𝑣, 𝑙2) > lca(𝑙1, 𝑙2), imply-

ing 𝑣 belongs to the same branch as 𝑙2. Similarly, the respective

branch is also identified if the oracle returns 𝑙2 or 𝑣 . However, if the

query returns 𝜙 , then 𝑣 does not belong to the branches correspond-

ing to 𝑙1 and 𝑙2. In this case, the querying procedure continues with

other pairs of branches. If the response to first 𝑡 queries is 𝜙 , 𝑣 is

attached as a separate branch to 𝑢. 𝑡 is used as an early stopping

threshold to not explore all children branches. If 𝑡 ≥ ⌈|𝐶 |/2⌉ and the
algorithm returns the addition of a new branch then 𝑣 is guaranteed

to belong to the subtree rooted at 𝑢. We also consider an extension

of this method, such that if a pair of internal nodes (𝑢,𝑢1) ∈ 𝐻 is

given as input, where 𝑢1 is a child of 𝑢, then 𝑢1 is considered as

the first candidate in the list 𝐶 containing 𝑢.children() to check
if 𝑣 is present in the same branch as 𝑢1. If 𝑣 is seen to be present

in this branch then identify-branch(𝑣,𝑢1, 𝑡) is used to return the

branch of 𝑣 . This extension is particularly useful if our techniques

expect 𝑣 to be inserted between (𝑢,𝑢1).
Find Sibling. The find-sibling subroutine takes a leaf-level

record 𝑣 as input and identifies a sibling of 𝑣 in a hierarchy 𝐻 .

find-sibling queries 𝑣 with an internal node 𝑢 (using identify
-branch subroutine) to identify the relative position (branch) of 𝑣

with respect to 𝑢. The node 𝑢 is chosen such that the maximum

size of the components formed by removing 𝑢 and its edges from

𝐻 is minimized. Following the response of identify-branch(𝑢, 𝑣)
it identifies the partition that 𝑣 belongs to and thereby reduces

the search space with the update procedure (line 5). This recursive

procedure stops when a single element is left in the set of candidates.

This algorithm is similar to binary search and requires 𝑂 (𝛼 log𝑛)
queries where internal nodes have degree less than 𝛼 .

Example 6.2. Consider a hierarchy 𝐻 (as shown in Figure 7(a))

over the records {1, 2, 6, 11}. Running find-sibling with record

𝑣 = 8 would yield the record 6 as its sibling by recursively running

identify-branch subroutine.

Calculate Benefit. The benefit of a record 𝑣 characterizes the
gain in recall if 𝑣 is inserted into the hierarchy. Insertion of 𝑣 can

lead to one of the following two cases. (a) 𝑣 is attached to an ex-

isting internal node in the hierarchy (as a new branch) (b) inser-

tion of 𝑣 discovers a new internal node to which 𝑣 is attached.

benefit-triplet calculates the benefit of attaching 𝑣 to an in-

ternal node, say 𝑢, which is defined as the expected gain in recall

per query if 𝑣 is attached to 𝑢. Mathematically, benefit(𝑢, 𝑣) =

𝑝𝑢→𝑣 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑔 (𝑢 → 𝑣) where 𝑝𝑢→𝑣 denotes the probability that 𝑣

is attached to 𝑢 and 𝑟𝑒𝑐𝑎𝑙𝑙𝑔 (𝑢 → 𝑣) is the gain in recall per query.

The gain in recall per query is measured in terms of the new

relationships identified after inserting 𝑣 divided by the number

of queries required to attach 𝑣 to 𝑢. For triplet queries, 𝑝𝑢→𝑣 is

estimated from identify-branch(𝑣,𝑢) with a difference that the

similarity values are used to estimate the likelihood instead of oracle

queries. Using this benefit calculationmechanism, benefit-triplet
subroutine sorts all internal locations of the hierarchy 𝐻 in non-

increasing order of their benefit. Similarly, benefit-equality reuses
the benefit calculation method in [24] to sort all the entity nodes

in decreasing order of benefit for pairwise queries. This method

returns top-𝜏 entity nodes that have high benefit (where 𝜏 = log𝑛).

We use the same parameters as [24]. We present the pseudocode of

benefit-triplet and benefit-equality in the full version [25].

6.2 HierER algorithms
Algorithm 3 presents the pseudocode for Hier-Type that generates
a hierarchical arrangement of records capturing type-subtype rela-

tionships and ignores equality relationships. It is initialized with a

candidate hierarchy (𝐻) generated by Algorithm 1 and the records

𝑉 are sorted in non-increasing order of expected cluster size, where

expected cluster size of a record 𝑣 , 𝐸 (𝑣) = ∑
𝑢 𝑠 (𝑢, 𝑣) [24]. The algo-

rithm then proceeds in two phases. The first phase (lines 2-5) itera-

tively inserts records into the processed hierarchy 𝐻 (initialized as

the seed hierarchy𝐻𝑇) to achieve high progressive benefit by grow-

ing large clusters. This phase is initialized with a set of processed

records 𝑃 , a set of tentatively processed records 𝑃𝑡 and a hierarchy

𝐻 over 𝑃 ∪ 𝑃𝑡 . The records 𝑉 are sequentially inserted into 𝐻 in

non-increasing expected cluster size using Hier-TypeInsertion.
At the end of this phase, all the records are placed in the form of a hi-

erarchy𝐻 but the exact location of the records 𝑃𝑡 may not have been

verified, due to the early stopping criterion of identify-branch
to attach a new branch. Such unverified nodes are re-processed in

the second phase using find-sibling to find their exact location

in the hierarchy. We now describe Hier-TypeInsertion in detail.

Hier-TypeInsertion phase. Algorithm 4 takes a leaf-level record

𝑣 , hierarchies 𝐻 and 𝐻 , sets of processed records 𝑃 and 𝑃𝑡 as in-

put and outputs the updated 𝐻 and the processed nodes. It first

sorts all the locations in 𝐻 in non-increasing order of benefit and

maintains a list 𝑆 of these candidates. Each internal node is queried

sequentially in this sorted order with an additional constraint that

all internal nodes discarded by previous queries are not considered

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

421

Algorithm 3 Hier-Type

Require: records𝑉 , seed hierarchy 𝐻𝑇 , similarity 𝑠

1: 𝐻̄ ← generate-similarity-hierarchy(𝑉)
2: 𝐿 ← get-expected-cluster-size(𝑉)
3: 𝑃 ← leaves(𝐻𝑇), 𝑃𝑡 ← 𝜙 , 𝐻 ← 𝐻𝑇

4: for 𝑣 ∈ 𝐿 do
5: 𝐻, 𝑃, 𝑃𝑡 ← Hier-TypeInsertion(𝑣,𝐻, 𝑃, 𝑃𝑡 , 𝐻̄)
6: for 𝑣 ∈ 𝑃𝑡 do
7: 𝑟𝑜𝑜𝑡 ← 𝑢 such that 𝑢 ∈ 𝐻 \ 𝑃𝑡 , 𝑢 = 𝑣.𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ()
8: 𝐻 ← find-sibling(𝑣, 𝑟𝑜𝑜𝑡)
9: return 𝐻

Algorithm 4 Hier-TypeInsertion

Require: record 𝑣, Hierarchy 𝐻 , Processed records 𝑃 , 𝑃𝑡 , candidate hierarchy 𝐻̄

1: 𝐵 ← benefit-triplet(𝑣,𝐻, 𝑃)
2: 𝑖 ← 1

3: 𝑆 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 − 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (𝐻)
4: for 𝑏 ∈ 𝐵 ∩ 𝑆 do
5: 𝑜, 𝑡 ← identify-branch(𝑣,𝑏, 𝜏 − 𝑖)
6: 𝑖 ← 𝑖 + 𝑡
7: 𝑆 ← 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑆, 𝑜)
8: if |𝑆 | = 1 then
9: Insert 𝑏 as a sibling of 𝑆

10: break

11: if 𝑖 ≥ 𝜏 then
12: Attach 𝑣 to the candidate with lowest depth

13: 𝑃𝑡 ← 𝑃𝑡 ∪ {𝑣 }
14: return 𝐻, 𝑃, 𝑃𝑡
15: break

16: if 𝑖 ≥ 𝛾 then
17: 𝑢 ← find-sibling(𝑣, 𝑆,𝐻)
18: break

19: 𝐻 ← expand-branch(𝑣,𝐻, 𝐻̄)
20: 𝑃 ← 𝑃 ∪ {𝑣 }
21: return 𝐻, 𝑃, 𝑃𝑡

as candidates. The queries involving 𝑣 are asked until one of the

following three conditions is satisfied. (i) a unique location to insert

𝑣 is identified (lines 8-10). (ii) the number of queries involving 𝑣

exceeds 𝛾 , where 𝛾 refers to the estimate of queries required by

find-sibling to insert 𝑣 (lines 16-18). In this case, the benefit

based querying is ignored and find-sibling subroutine is used to
process 𝑣 . (iii) the number of queries involving 𝑣 exceeds 𝜏 (early

stopping threshold, set to log𝑛). In this case, 𝑣 is attached to the

internal node that belongs to 𝑆 , is present closest to the root node

(lines 11-15), and 𝑣 is marked tentative (line 13).

Once the record has been inserted, the expand-branch method

identifies more internal nodes on the branch from the root node to

𝑣 . It considers the branch from the root to 𝑣 in the initialized hier-

archy 𝐻 to identify new internal nodes (say 𝑢) that have not been

identified in𝐻 . It then selects the records 𝑣 ′ such that lca(𝑣, 𝑣 ′) = 𝑢

in 𝐻 and inserts 𝑣 ′ into the hierarchy 𝐻 .

Extension to HierER. HierER uses the equality oracle in addition

to the triplet oracle to identify equivalence relationships. HierER
proceeds similar to Hier-Type with a difference that it calculates

the benefit of 𝑣 with respect to triplet queries (same as Hier-Type)
and equality queries (same as Hybrid [24]). The sorted list of all

candidate locations to insert 𝑣 are then sorted in non-increasing

order of benefit. The record 𝑣 is queried in non-increasing order of

benefit, until it reaches one of the stopping conditions (same as the

stopping criteria in Hier-Type). For an equality oracle query, the

entity cluster for 𝑣 is identified if 𝑞𝑒 returns True. This algorithm

0.00 0.25 0.50 0.75 1.00
Random Variable

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

16-21
13-16
6-13
0-6

(a) phyogenetic

0.00 0.25 0.50 0.75 1.00
Random Variable

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

0-1
2
3

(b) camera

Figure 8: Similarity distributions for pairs at different depths
of lca.
is particularly beneficial when the dataset contains a large cluster

of records referring to the same entity.

7 THEORETICAL ANALYSIS
We now analyze the query complexity and progressiveness of our

algorithm under different similarity noise models, motivated by

real world datasets. We show that HierER recovers the hierarchy in
less than 𝑂 (𝑛 log𝑛) queries for most realistic settings. We present

extensions of these results to analyze progressiveness and proofs

in the full version [25].

We empirically observed that similarity of a pair of records is

distributed normally with the mean varying based on the depth

of lca(𝑢, 𝑣). This noise model is motivated by real world datasets,

phylogenetic and camera (See Section 9 for more details). Figure 8

shows the similarity distribution of pairs at different depths (after

curve fitting) in the hierarchy. More formally,

Definition 7.1 (Similarity distribution). The similarity of a pair

of records (𝑢, 𝑣), denoted by 𝑠 (𝑢, 𝑣) with depth(lca(𝑢, 𝑣)) = 𝑑 , is

sampled independently according to a normal distribution with

mean 𝜇𝑑 and variance 𝜎2
.

However, the similarity distribution of certain pairs is erroneous

due to presence of noise in records. We study two different types

of noise in pairwise similarities.

Processing error considers independent noise in similarities.

Definition 7.2 (Independent edge/processing error). Given a pair

of records (𝑢, 𝑣) such that depth(lca(𝑢, 𝑣)) = 𝑑 . The pairwise

similarity 𝑠 (𝑢, 𝑣) is distributed normally with mean 𝜇𝑑 and variance

𝜎2
with probability 1 − 𝑝 and mean 𝜇 ′, where |𝜇 ′ − 𝜇𝑑 | ≥ 𝜖 with

probability 𝑝 .

The probability 𝑝 captures the fraction of record pairs that have

erroneous similarity values and 𝜖 captures the degree of error. We

show the probability of attaching a leaf-level record 𝑣 to an internal

node 𝑥 is estimated accurately with a high probability whenever 𝑥

contains at least 16log𝑛/(1 − 2𝑝)2 leaf-level records in the subtree.

Therefore, 𝑢 is queried incorrectly with at most 16log𝑛/(1 − 2𝑝)2
nodes in the tree. Using this intuition, we show the following result.

Theorem 7.3. For a collection of records 𝑉 , Algorithm HierER
constructs 𝐻∗ in 𝑂 (𝑛 log𝑛/(1 − 2𝑝)2) with a probability of 1 − 1/𝑛
if 𝑝 < 0.5 and 𝜎2 < 𝜇/10, where 𝜇 = min{𝜇𝑑 − 𝜇𝑑′} for all 𝑑, 𝑑 ′.

Edge-error model assumes that different pairs of records are

noisy independently with probability 𝑝 . However, pairwise similar-

ities are dependent on features of records which are often noisy for

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

422

all records 𝑢 ∈ 𝑉 that contain noisy tokens e.g. all herbal tea’s are

confused with caffeinated teas because of absence of token ‘caffeine’

from their descriptions. The systematic data error model captures

such dependent noise between records.

Definition 7.4 (Data error). A leaf level record 𝑢 ∈ 𝑉 has node

error if pairwise similarity of all record pairs (𝑢, 𝑣) ∀ 𝑣 ∈ 𝑉 \ {𝑢} are
sampled according to a normal distribution with mean 𝜇 ′ and vari-

ance 𝜎2
where 𝜇 ′ is the depth of lca(𝑢, 𝑣) in a noisy hierarchyH ′.

H ′ denotes the modified hierarchy where 𝑢 is attached arbitrarily

to any internal node other than its true location in 𝐻 .

To further generalize this noise model to define similar noise in

a collection of nodes, we propose the systematic noise model.

Definition 7.5 (Systematic data error). An internal node 𝑢 is con-

sidered to have systematic data error if the similarity value of 𝑞

fraction of the leaf level records under 𝑢 (say𝑊) are noisy with

data error. Among𝑊 , 𝛼 fraction are connected arbitrarily in the

noisy hierarchyH ′ and the remaining 1 − 𝛼 fraction (say𝑊1) are

present under the same internal node 𝑥 ≠ 𝑢, where 𝑥 ∈ H .

Under this noise model, we show that whenever 𝑢 has more

than
16

(1−𝛼)𝑞 log𝑛 leaf level nodes, in expectation, initial 16 log𝑛 of

the erroneous set𝑊1 require at most 𝑂 (𝑛) queries to be processed.

However, remaining nodes in𝑊1 would be compared with only two

internal nodes in the hierarchy, one of which is the true internal

node. Therefore, all the remaining nodes in𝑊1 require at most

𝑂 (1) internal-node queries to identify the correct location in the

hierarchy.

Theorem 7.6. For a collection of records 𝑉 , if an internal node 𝑢
suffers from systematic data error with 𝑞 < 0.5 and 𝛼 = Θ(log𝑛/𝑛),
then HierER algorithm constructs𝐻∗ in𝑂 (𝑛 log𝑛) triplet comparisons
with a probability of 1 − 1

𝑛 .

8 RELATEDWORK
We now discuss the prior techniques that are related to hierarchy

construction or oracle based querying strategies.

Hierarchy Construction. The problem of recovering a hierar-

chy over a collection of records is closely related to taxonomy

construction [7, 35, 45, 50, 51, 60], phylogeny construction [21],

and hierarchical clustering [14, 16, 22]. Much of the prior work on

taxonomy construction focuses on building a type hierarchy over

textual data by first identifying a pairwise hypernym-hyponym

relation between records and then cleaning the noise to induce a

hierarchy. All these techniques are completely automated and do

not leverage any supervision in the form of oracle queries, leading

to sub-optimal quality [56]. Recent techniques [56] assume that all

the internal nodes of the hierarchy are known a priori and a seed

sub-hierarchy is given to initialize the pipeline. Prior hierarchical

clustering techniques [14, 16, 22] use pairwise record similarities

and do not leverage oracle queries to construct a binary hierarchy.

Phylogeny (Evolutionary trees) construction has been widely

studied with the objective to organize the evolution of species in

the form of a hierarchy [6, 9, 12, 32, 58]. Most of the internal nodes

of a phylogeny have degree 2 with a few exceptions having de-

gree 3. In this setting, a recent oracle based querying strategy [21]

studied triplet querying strategies to generate binary hierarchies.

Emberiza
pallasi

Emberiza
schoeniclus

Emberiza
pusilla

Emberiza
aureola

Emberiza
rustica

Emberiza
melanocepha

la

Pinicola
Enucleator

Figure 9: Example ground truth hierarchy structure for the
Phylogenetic dataset. The center of each diagram corre-
sponds to the root node and all the subsequent levels are
placed in the form of concentric circles with the outermost
circle corresponding to the leaf level nodes.

This algorithm uses FindSibling subroutine and guarantees hier-

archy construction within 𝑂 (𝑛 log𝑛) query complexity for binary

trees but may require 𝑂 (𝑛2) queries for non-binary hierarchies

as it does not leverage pairwise similarities to guide the querying

algorithm. Other hierarchical clustering techniques [29] optimize

for a clustering objective to generate binary hierarchies.

Entity Resolution is one of the fundamental components of data

integration which has evolved from rule based techniques [23]

to learning based techniques and recently, crowdsourcing based

techniques. There has been a lot of work on different aspects of

ER (we refer the reader to [18, 28] for a more detailed survey on

ER). In this work, we focus on crowdsourced ER techniques [24, 30,

33, 63–66]. These techniques consider access to machine generated

pairwise probabilities, capturing their likelihood to refer to the

same entity and an equality oracle. These techniques are helpful

to identify parent of leaf level nodes in the hierarchy. Learning-

based entity resolution techniques [20, 46, 49] focus on answering

equality of record pairs, which is abstracted as an oracle in this

work and can not be used as a strategy to solve problem 1.

Oracle based querying techniques. Prior work has extensively

studied the use of comparison queries, which is a generalization

of triplet queries. Comparison queries consider four records (say

𝑣1, 𝑣2, 𝑣3, 𝑣4) as input and compare the relative distance between

(𝑣1, 𝑣2) with that of (𝑣3, 𝑣4). Such queries have been used to study

correlation clustering [5, 59], classification [38, 57], top-𝑘 selec-

tion [13, 17, 19, 34, 43, 44, 54, 61], skyline computation [62] and

many other machine learning tasks. Many empirical crowdsourcing

studies have shown the ability of crowd members to answer such

queries accurately [5]. An independent line of work [8, 68, 71] stud-

ies game theoretic mechanisms to decide task assignment among

crowd workers. Such optimization is delegated to the implementa-

tion of an oracle and is orthogonal to our work.

9 EXPERIMENTS
In this section, we test the effectiveness of HierER on a diverse

set of real-world datasets and answer the following questions. Q1:
What is the end-to-end quality vs query complexity trade off for

HierER as compared to other baselines? Q2: Is HierER sensitive to

noise in the dataset? Q3: Is HierER scalable to large-scale datasets?

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

423

Table 1: Dataset description.

Dataset n Depth Average degree Max degree Largest Entity

Phylogenetic 1039 21 2.01 4 1

DMOZ 100K 5 274.3 17K 1

Cars 16.5K 2 330 1800 1800

Camera 30K 3 5 91 91

Amazon 30K 7 8.46 760 1

Geography 3M 5 8K 35K 1

9.1 Setup
Before presenting the results, we describe the different datasets,

experiment setup and the baselines considered in the evaluation.

Datasets. We consider six different real-world datasets consisting

of hierarchies of varying depth, average degree and shape. Figure 9

shows the shape of one such hierarchy.

• Phylogenetic dataset contains scientific names of bird and in-

sect species alongwith textual descriptions collected fromWikipedia.

The hierarchy corresponds to the phylogenetic tree obtained from [55].

• DMOZ [1] is an open-content directory of web pages along

with a hierarchy that organizes these webpages according to their

categories like art, science, mathematics, etc. The dataset contains

a dump of the text on the web page along with the ground truth.

• Cars comprises images of different models of cars. We generate

textual descriptions using Google’s vision API [2] and hierarchy is

constructed based on their make and model.

• Camera [15] is a collection of specifications of cameras collected

from over 25 retail companies and the hierarchy corresponds to the

brand-model categorization.

• Amazon [36] contains descriptions of products and the amazon

catalog ontology is used as the ground truth.

• Geography dataset [4] contains names of cities across the world

and the internal nodes of the hierarchy correspond to their state,

country and continent.

Experimental Setup. We implemented all techniques in Java and

the code was run on a server with 64GB RAM. For blocking and

pairwise similarity calculation, we considered tokens in the textual

descriptions of the records. We performed meta-blocking [53] over

the records, partitioned the edges of each record in the graph into

log𝑛 buckets based on similarity and identified 100 triples per

record from each bucket. This procedure ensures that 𝑂 (𝑛 log𝑛)
total pairs of records are enumerated after blocking. For evaluation,

we considered exponential decay in weights, i.e. weight of (𝑖 + 1)-
ancestor relationship is half the weight of 𝑖-ancestor relationship.

To calibrate pairwise similarity of records into triplet probability,

we follow the procedure described in [24, 69].We construct 100×100

buckets of equal width by considering a two-dimensional partition-

ing of similarities. A triplet (𝑢, 𝑣,𝑤) is mapped to a bucket cor-

responding to (max{𝑠 (𝑢, 𝑣), 𝑠 (𝑢,𝑤), 𝑠 (𝑣,𝑤)}, min{𝑠 (𝑢, 𝑣), 𝑠 (𝑢,𝑤),
𝑠 (𝑣,𝑤)}). We sampled log𝑛 samples from each bucket to calcu-

late their probability mapping. See [24, 69] for more details.

Oracle implementation. Due to low-training data requirements

for random forest classifiers as compared to deep-learning based

techniques [49], we used a random forest classifier trained with

active learning for cars, geography and camera datasets as an

oracle. This procedure required less than 920 queries for cars,
560 for camera and 380 for geography dataset. The trained model

achieved more than 0.95 F-score for all three datasets. For other

datasets, we consider a simulated oracle model that used ground

truth hierarchy to generate responses.

Baselines. To evaluate the effectiveness of our techniques, we

consider the following pipelined baseline strategies that perform hi-

erarchical clustering and entity resolution separately as a two-step

procedure. (i) Average Linkage (denoted by AverageLink) is an Ag-

glomerative clustering technique. We used the sklearn package [3]

to construct the hierarchy and then run triplet queries bottom up

to merge neighboring internal nodes. (ii) HiExpan denotes the au-
tomated taxonomy construction technique from [56] that uses the

initial seed hierarchy to generate other internal nodes assuming

access to all internal nodes in the hierachy. We added the internal

nodes to run this algorithm. (iii) InsSort considers the extension
of the insertion sort algorithm [21] for non-binary hierarchies to

generate a hierarchy, followed by hybrid [24] to identify equal-

ity relationships. (iv) The pipeline that performs ER followed by

hierarchical clustering has almost zero F-score at the end of ER

phase when the datasets contain singleton entities and therefore

suffer from poor progressiveness. Instead, we consider Hybrid as
an adaptation of the state-of-the-art entity resolution strategy [24]

that treats each internal node as a candidate cluster for its benefit

calculation. In addition to these baselines, we plot the ideal curve

that is assumed to know the ground truth but is required to gener-

ate the hierarchy based on evidence from triplet or equality oracle

queries. It is allowed to leverage the ground-truth to optimize for

progressiveness. This strategy is used as an empirical lower-bound

to construct the hierarchy. We consider a variant (denoted by Ide-

alTr) that denotes the ideal strategy for type-hierarchy generation

and is allowed to use triplet queries only. To verify insertion of

a new branch at any internal node, ideal requires 𝑂 (𝛼) queries,
where 𝛼 is the degree of the internal node. Since some datasets have

a very high 𝛼 , we use a threshold 𝜃 = log𝑛 to insert the branch.

Variations. We use HierER to denote our Hierarchical algorithm

that uses both pairwise and triplet queries for hierarchy construc-

tion. Additionaly, we consider the following variations. (b) HierTr.Eq
is a sequential pipeline that uses triplet queries to generate a type-

hierarchy (Hier-Type) and then uses equality queries to identify

entity nodes. HierTr is the hierarchical algorithm that uses only the

triplet queries for type-hierarchy construction using Hier-Type
and does not identify entity nodes. (c) HierER-Nb is the same as

HierER but does not perform benefit calculation for querying. It

processes records in a randomized order.

Evaluation Metrics. We compare the performance of techniques

by measuring progressive F-score. We consider all the identified

pairwise relationships in the constructed hierarchy and map those

to the relationships of the ground truth hierarchy to evaluate their

contribution. Note that enumerating all

(𝑛
2

)
pairs is not feasible for

million scale datasets. However, we observe that the contribution

of a record 𝑢 to the pairwise relationships is the same as that of 𝑣

whenever 𝑢.parent = 𝑣 .parent. Using this property, we identify

the super nodes of records that refer to the same leaf level cluster

and then consider pairwise relationships between these super nodes

to calculate the overall F-score. This optimization is highly efficient

as the internal nodes are generally much fewer than 𝑛.

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

424

 0

 0.2

 0.4

 0.6

 0.8

 1

5K 10K

(a) phylogenetic

F
-s

c
o
re

#queries

Ideal

 0

 0.2

 0.4

 0.6

 0.8

 1

2M 4M 6M

(b) dmoz

F
-s

c
o
re

#queries

HierER

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2M 0.4M 0.6M

(c) amazon

F
-s

c
o
re

#queries

Hybrid

 0

 0.2

 0.4

 0.6

 0.8

 1

20M 40M 60M

(d) geography

F
-s

c
o
re

#queries

InsSort AverageLink HiExpan

Figure 10: F-score vs #queries comparison for datasets where all records refer to distinct entities. In these datasets, HierER
performs similar to its pipelined variants HierTr.Eq and HierTr since equality oracle does not provide any information.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20K 40K

(a) cars

F
-s

c
o

re

#queries

Ideal

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20K 40K

(b) camera

F
-s

c
o

re

#queries

HierER HierTr.Eq Hybrid

 0

 0.2

 0.4

 0.6

 0.8

 1

20K 40K

(a) cars

F
-s

c
o
re

#queries

InsSort

 0

 0.2

 0.4

 0.6

 0.8

 1

20K 40K

(b) camera

F
-s

c
o
re

#queries

AverageLink HiExpan

Figure 11: F-score vs #queries comparison for datasets with
high-degree entity nodes.

9.2 Result Quality
Figures 10 and 11 compare the F-score of HierER with other base-

lines on multiple datasets. Across all datasets, HierER achieves

the highest progressive F-score and is closest to the ideal curve.
InsSort and Hybrid achieve poor progressive F-score. These tech-

niques require more than 5× the queries required by HierER to

achieve comparable F-score across all large scale datasets. AverageLink
generates a hierarchical clustering over the records without any

oracle queries. This hierarchy achieves non-zero F-score but themis-

takes in the constructed hierarchy are not corrected by additional

queries. Additionally, it does not run on million scale datasets like

Geography. HiExpan performs better than AverageLink for most

datasets but does not achieve high F-score. It is sensitive to the

initial structure provided as input and does not generalize if it does

not contain all levels of the hierarchy. Due to the presence of noise

in datasets, such automated techniques do not achieve high F-score.

We observe different behaviors across datasets. In phylogenetic
dataset, the ideal requires < 2𝑛 queries as majority of the inter-

nal nodes have two children and require less than 2 queries to

be inserted. For each leaf level record, InsSort requires 𝑂 (log𝑛)
queries to identify its location in the processed hierarchy. There-

fore, InsSort requires𝑂 (𝑛 log𝑛) queries and has poor progressive
recall. HierER performs better than InsSort but requires much

more queries than the ideal strategy. We examined the pairwise

similarity values of records and observed that more than 85% of

the records suffer from data error in similarity computation. Due

to high noise in similarity values, HierER could not identify the

existence of many internal nodes in the initial stages of resolution.

This delay in identifying all internal nodes of the hierarchy affects

the progressiveness. However, the overall complexity of HierER is

around 𝑂 (𝑛 log𝑛). The nodes that do not suffer from error require

2K

4K

6K

0 2 3 4 10

(a) Processing error

#
q
u
e
ri
e
s

a

HierER

1K

2K

3K

4K

0 5 10 15 20

(b) Data error

#
q
u
e
ri
e
s

Percentage

Theory

Figure 12: Query complexity for varying similarity noise.

fewer than two queries to get inserted but the nodes with data

error require 𝑂 (log𝑛) queries. Hybrid requires more queries than

InsSort due to the noise in similarity values. For Hybrid, the nodes
that do not suffer from any noise require fewer than five queries to

get inserted but some erroneous nodes require𝑂 (𝑡) queries, where
𝑡 is the number of internal nodes in the hierarchy.

Among other datasets, most internal nodes have degrees much

higher than 2. HierER achieves near-optimal progressive F-score

and performs much better than all other baselines. Poor perfor-

mance of Hybrid and InsSort is due to the high degree of internal

nodes. For a given internal node (of degree 𝛼), InsSort queries

the branches randomly, which requires 𝑂 (𝛼) queries to identify

the correct branch. In contrast, Hybrid is beneficial for less noisy
records but due to high degree of internal nodes, queries required

to identify a new branch dominate the overall complexity.

Comparison with theoretical results. Among different datasets,

we observe that the gap between ideal and HierER is highest for
Phylogenetic dataset due to presence of noise in similarity values.

To validate the effect of noise, Figure 12 considers synthetic simi-

larities and compares the query complexity with the theoretically

proven bounds in Section 7. Figure 12(a) simulates processing error,

where each pairwise similarity (𝑠 (𝑢, 𝑣)) is sampled independently

according to a normal distribution with mean 𝜇 (𝑢,𝑣) and variance

𝜎2
. As discussed in Section 7, 𝜇 denotes the difference in expected

similarity for pairs connected at different depths. To simulate dif-

ferent levels of noise, we considered 𝜎2 = 𝑎𝜇2
for varying values

of 𝑎. The query complexity of HierER is the same as that of ideal
(roughly 2𝑛) for 𝑎 < 3. For higher noise, the query complexity

increases but it plateaus at𝑂 (𝑛 log𝑛). Figure 12(b) shows the query
complexity vs data error tradeoff in phylogenetic dataset. In this

experiment, a random sample of the nodes are simulated to be er-

roneous such that all pairwise similarities containing these records

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

425

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2M 0.4M

F
-s

c
o

re

#queries

IdealTr
0

0.1
0.2

(a) cars

 0

 0.2

 0.4

 0.6

 0.8

 1

2M 4M 6M

F
-s

c
o

re

#queries

IdealTr
0

0.1
0.2

(b) dmoz

Figure 13: Varying oracle error

 0

 0.2

 0.4

 0.6

 0.8

 1

0.15M 0.3M

F
-s

c
o
re

#queries

HierER
HierTr.Eq

HierER-Nb

(a) cars

 0

 0.2

 0.4

 0.6

 0.8

 1

2M 4M

F
-s

c
o

re

#queries

HierER
HierTr.Eq

HierER-Nb

(b) dmoz

Figure 14: Comparison between variants of HierER

are erroneous. In this case, we observe that the query complexity

of the technique is directly proportional to the error.

Variants of the querying strategy. Figure 14 compares the pro-

gressive quality of HierER with a sequential strategy HierTr.Eq
and a variant that does not use benefit calculation (HierER-Nb).
HierER is better than the pipelined strategy (HierTr.Eq) for the
cars dataset, where many records refer to the same entity. Such

clusters of records can be quickly identified using equality oracle

queries. However, HierER and HierTr.Eq have comparable pro-

gressive quality for dmoz due to absence of any pair of records that

refer to the same entity. The no-benefit variant queries records

in a randomized order and has the worst progressive quality as

compared to the HierER and HierTr.Eq.

Oracle error. The experiment in Figure 14 assumes that the oracle

answers all queries correctly. However, some oracle queries can be

more difficult, leading to errors. In this experiment, we considered

independent triplet error where each triplet is erroneous with prob-

ability 𝑝 . To develop robust HierTr, we leverage the random graph

toolkit [26] for each oracle query. Figure 13 shows the impact of

noise in oracle answers on the queries required to construct the

hierarchy. It shows that HierTr identifies the hierarchy correctly

whenever error is less than 0.3 and the query complexity increases

by 𝑂 (log𝑛), due to the redundancy introduced by [26].

Running Time. Table 2 compares the running time of HierER to

reach 0.90 F-score as compared to other baselines. HierER has lower
running time than other techniques formost large scale datasets due

to the linear dependence of running time on the number of queries

required. HierER requires less than 2 minutes on phylogenetic
dataset and finishes in less than 12 hrs for geography dataset.

9.3 Ablation Analysis
In this section, we test the effectiveness of the default settings by

varying blocking methods (Figure 15(a)) and classification tech-

niques (Figure 15(b)).

Blocking. The default setting of HierER uses standard blocking for
building blocks followed by TF-IDF based weighting mechanism

Table 2: Running Time Comparison

Dataset HierER InsSort Hybrid AverageLink
Phylogenetic 1min 40sec 1min 50sec 1min 53sec 2min 10sec

DMOZ 1hr 23min 4hr 47min 6hr 20min 3hr 17min

Cars 45min 3hr 25min 5hr 30min 3hr 5min

Camera 52min 2hr 47min 3hr 35min 3hr 10min

Amazon 1hr 5min 3hr 27min 3hr 55min 3hr 40min

Geography 11hr 35min 30hr 35min 34hr 35min Did Not finish

 0

 0.2

 0.4

 0.6

 0.8

 1

50K 100K

F
-s

c
o

re

#queries

StBl-Wt
QgBl-Wt

StBl-Uf
QgBl-Uf

(a) Blocking

 0

 0.2

 0.4

 0.6

 0.8

 1

25K 50K

F
-s

c
o
re

#queries

RF
LR

(b) Classifier

Figure 15: Ablation analysis with varying blocking and clas-
sification methods on cars dataset.

for meta-blocking (denoted by StBl-Wt in Figure 15(a)). We tested

it with three variants (a) Q-gram based blocking [53] with TF-IDF

weights (QgBl-Wt) (b) Q-gram based blocking with uniformweights

(QgBl-Uf), and (c) standard blockingwith uniformweights (StBl-Uf).

Figure 15(a) shows that changing block building strategy from StBl

to QGBl does not impact solution quality because QgBl is expected

to perform better than StBl in datasets with spelling mistakes and

cars dataset does not contain such mistakes. However, changing

the block weights from TF-IDF to Uniform weights worsens the

overall performance. These observatios are consistent with prior

studies on blocking [27, 53] which show the benefits of TF-IDF

weighting of blocks.

Classification. The default setting of HierER uses a random forest

classifier, which has 0.97 F-score on cars dataset. Figure 15(b) com-

pares the progressiveness of using random forest (RF) and logistic

regression (LR) employed with HierER’s querying strategy. The

logistic regression classifier (F-score=0.82) is less accurate than Ran-

dom Forest classifier on this dataset. Due to higher error rate in the

oracle response of LR, it requires more queries to correct mistakes

(as discussed in the oracle error paragraph above). Additionally,

HierER’s error correction mechanism is not able to correct all the

mistakes made by LR and converges at a lower final F-score than

random forest.

10 CONCLUSION
In this paper, we formalize the Hierarchical Entity Resolution prob-

lem using an Oracle. We propose HierER, an efficient query order-

ing strategy that leverages pairwise record similarities to prioritize

triplet and equality oracle queries. We prove that HierER constructs
the ground truth hierarchy in 𝑂 (𝑛 log𝑛) queries under reasonable
assumptions of processing and data error models. We empirically

demonstrate its effectiveness over various real world datasets.

ACKNOWLEDGEMENTS
This work was supported by NSF grants #2127309, 1652303, 1909046,

and HDR TRIPODS 1934846 grants, a SEED PNR FLOWER grant

2021 and an Alfred P. Sloan Fellowship

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

426

REFERENCES
[1] Dmoz https://dmoz-odp.org/.

[2] Google vision api https://cloud.google.com/vision.

[3] Scikit-learn https://scikit-learn.org/stable/modules/clustering.html.

[4] World cities database https://simplemaps.com/data/world-cities.

[5] Raghavendra Addanki, Sainyam Galhotra, and Barna Saha. How to design robust

algorithms using noisy comparison oracle. arXiv preprint arXiv:2105.05782, 2021.
[6] Alfred V. Aho, Yehoshua Sagiv, Thomas G. Szymanski, and Jeffrey D. Ullman.

Inferring a tree from lowest common ancestors with an application to the opti-

mization of relational expressions. SIAM Journal on Computing, 10(3):405–421,
1981.

[7] Mohit Bansal, David Burkett, Gerard DeMelo, and Dan Klein. Structured learning

for taxonomy induction with belief propagation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1041–1051, 2014.

[8] Jonathan Bragg and Daniel S Weld. Optimal testing for crowd workers. In Pro-
ceedings of the 2016 International Conference on Autonomous Agents & Multiagent
Systems, pages 966–974, 2016.

[9] Gerth Stølting Brodal, Rolf Fagerberg, Christian NS Pedersen, and Anna Östlin.

The complexity of constructing evolutionary trees using experiments. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 140–151.
Springer, 2001.

[10] Daniel G Brown and Jakub Truszkowski. Fast error-tolerant quartet phylogeny

algorithms. In Annual Symposium on Combinatorial Pattern Matching, pages
147–161. Springer, 2011.

[11] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. Creating

embeddings of heterogeneous relational datasets for data integration tasks. Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data, Jun 2020.

[12] Vaggos Chatziafratis, Rad Niazadeh, and Moses Charikar. Hierarchical clustering

with structural constraints. arXiv preprint arXiv:1805.09476, 2018.
[13] Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi.

Crowdsourcing for top-k query processing over uncertain data. IEEE Transactions
on Knowledge and Data Engineering, 28(1):41–53, 2015.

[14] Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire

Mathieu. Hierarchical clustering: Objective functions and algorithms. In Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 378–397. SIAM, 2018.

[15] Valter Crescenzi, Andrea De Angelis, Donatella Firmani, Maurizio Mazzei, Paolo

Merialdo, Federico Piai, and Divesh Srivastava. Alaska: A flexible benchmark for

data integration tasks, 2021.

[16] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In

Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 118–127, 2016.

[17] Susan Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Top-k and

clustering with noisy comparisons. ACM Trans. Database Syst., 39(4), December

2015.

[18] Xin Luna Dong and Divesh Srivastava. Big data integration. Morgan & Claypool,

2015.

[19] Eyal Dushkin and Tova Milo. Top-k sorting under partial order information. In

Proceedings of the 2018 ACM SIGMOD International Conference on Management of
Data, pages 1007–1019, 2018.

[20] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad

Ouzzani, and Nan Tang. Distributed representations of tuples for entity resolution.

PVLDB, 11(11):1454–1467, 2018.
[21] Ehsan Emamjomeh-Zadeh and David Kempe. Adaptive hierarchical clustering

using ordinal queries. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 415–429. SIAM, 2018.

[22] Brian Eriksson, Gautam Dasarathy, Aarti Singh, and Rob Nowak. Active clus-

tering: Robust and efficient hierarchical clustering using adaptively selected

similarities. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 260–268, 2011.

[23] Ivan P Fellegi and Alan B Sunter. A theory for record linkage. Journal of the
American Statistical Association, 64(328):1183–1210, 1969.

[24] Donatella Firmani, Barna Saha, and Divesh Srivastava. Online entity resolution

using an oracle. PVLDB, 9(5):384–395, 2016.
[25] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. Hier-

archical entity resolution using an oracle. In https://hierarchicaler.github.io.
[26] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. Robust

entity resolution using random graphs. In Proceedings of the 2018 ACM SIGMOD
International Conference on Management of Data, pages 3–18, 2018.

[27] Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. Effi-

cient and effective er with progressive blocking. The VLDB Journal, pages 1–21,
2021.

[28] Lise Getoor and Ashwin Machanavajjhala. Entity resolution: theory, practice &

open challenges. PVLDB, 5(12):2018–2019, 2012.
[29] Debarghya Ghoshdastidar, Michaël Perrot, and Ulrike von Luxburg. Foundations

of comparison-based hierarchical clustering. In Advances in Neural Information

Processing Systems, pages 7454–7464, 2019.
[30] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan

Rampalli, Jude Shavlik, and Xiaojin Zhu. Corleone: hands-off crowdsourcing for

entity matching. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pages 601–612, 2014.

[31] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance.

Theoretical Computer Science, 38:293–306, 1985.
[32] Ilan Gronau, Shlomo Moran, and Sagi Snir. Fast and reliable reconstruction of

phylogenetic trees with indistinguishable edges. Random Structures & Algorithms,
40(3):350–384, 2012.

[33] Anja Gruenheid, Besmira Nushi, Tim Kraska, Wolfgang Gatterbauer, and Donald

Kossmann. Fault-tolerant entity resolution with the crowd, 2015.

[34] Stephen Guo, Aditya Parameswaran, and Hector Garcia-Molina. So who won?

dynamic max discovery with the crowd. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 385–396, 2012.

[35] Amit Gupta, Rémi Lebret, Hamza Harkous, and Karl Aberer. Taxonomy induction

using hypernym subsequences. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pages 1329–1338, 2017.

[36] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution

of fashion trends with one-class collaborative filtering. In proceedings of the 25th
international conference on world wide web, pages 507–517, 2016.

[37] Marti A Hearst. Automatic acquisition of hyponyms from large text corpora. In

Coling 1992 volume 2: The 15th international conference on computational linguis-
tics, 1992.

[38] Max Hopkins, Daniel Kane, Shachar Lovett, and Gaurav Mahajan. Noise-

tolerant, reliable active classification with comparison queries. arXiv preprint
arXiv:2001.05497, 2020.

[39] Jin Huang, Zhaochun Ren, Wayne Xin Zhao, Gaole He, Ji-RongWen, and Daxiang

Dong. Taxonomy-aware multi-hop reasoning networks for sequential recom-

mendation. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, pages 573–581, 2019.

[40] Christina Ilvento. Metric learning for individual fairness. arXiv preprint
arXiv:1906.00250, 2019.

[41] Sampath K Kannan, Eugene L Lawler, and Tandy J Warnow. Determining the

evolutionary tree using experiments. Journal of Algorithms, 21(1):26–50, 1996.
[42] Ehsan Kazemi, Lin Chen, Sanjoy Dasgupta, and Amin Karbasi. Comparison based

learning from weak oracles. arXiv preprint arXiv:1802.06942, 2018.
[43] Rolf Klein, Rainer Penninger, Christian Sohler, and David P Woodruff. Tolerant

algorithms. In European Symposium on Algorithms, pages 736–747. Springer,
2011.

[44] Ngai Meng Kou, Yan Li, Hao Wang, Leong Hou U, and Zhiguo Gong. Crowd-

sourced top-k queries by confidence-aware pairwise judgments. In Proceedings
of the 2017 ACM SIGMOD International Conference on Management of Data, pages
1415–1430, 2017.

[45] Zornitsa Kozareva and Eduard Hovy. A semi-supervised method to learn and

construct taxonomies using the web. In Proceedings of the 2010 conference on
empirical methods in natural language processing, pages 1110–1118, 2010.

[46] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.

Deep entity matching with pre-trained language models. arXiv preprint
arXiv:2004.00584, 2020.

[47] Yuning Mao, Jingjing Tian, Jiawei Han, and Xiang Ren. Hierarchical text classifi-

cation with reinforced label assignment. arXiv preprint arXiv:1908.10419, 2019.
[48] Yuning Mao, Tong Zhao, Andrey Kan, Chenwei Zhang, Xin Luna Dong, Christos

Faloutsos, and Jiawei Han. Octet: Online catalog taxonomy enrichment with

self-supervision. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2247–2257, 2020.

[49] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,

Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. Deep

learning for entity matching: A design space exploration. In Proceedings of the
2018 ACM SIGMOD International Conference on Management of Data, pages 19–34,
2018.

[50] Roberto Navigli, Paola Velardi, and Stefano Faralli. A graph-based algorithm for

inducing lexical taxonomies from scratch.

[51] James BOrlin. A polynomial time primal network simplex algorithm forminimum

cost flows. Mathematical Programming, 78(2):109–129, 1997.
[52] Alexander Panchenko, Stefano Faralli, Eugen Ruppert, Steffen Remus, Hubert

Naets, Cédrick Fairon, Simone Paolo Ponzetto, and Chris Biemann. Taxi at

semeval-2016 task 13: a taxonomy induction method based on lexico-syntactic

patterns, substrings and focused crawling. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016), pages 1320–1327, 2016.

[53] George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. Compar-

ative analysis of approximate blocking techniques for entity resolution. PVLDB,
9(9):684–695, 2016.

[54] Vassilis Polychronopoulos, Luca De Alfaro, James Davis, Hector Garcia-Molina,

and Neoklis Polyzotis. Human-powered top-k lists. InWebDB, pages 25–30, 2013.
[55] Cristina Roquet, Sébastien Lavergne, and Wilfried Thuiller. One tree to link them

all: a phylogenetic dataset for the european tetrapoda. PLoS currents, 6.

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

427

https://dmoz-odp.org/
https://cloud.google.com/vision
https://scikit-learn.org/stable/modules/clustering.html
https://simplemaps.com/data/world-cities
https://hierarchicaler.github.io

[56] Jiaming Shen, Zeqiu Wu, Dongming Lei, Chao Zhang, Xiang Ren, Michelle T

Vanni, Brian M Sadler, and Jiawei Han. Hiexpan: Task-guided taxonomy con-

struction by hierarchical tree expansion. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 2180–2189,
2018.

[57] Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and Adam Tauman Kalai.

Adaptively learning the crowd kernel. In Proceedings of the 28th International
Conference on International Conference on Machine Learning, pages 673–680, 2011.

[58] Jakub Truszkowski, Yanqi Hao, and Daniel G Brown. Towards a practical o (n

logn) phylogeny algorithm. Algorithms for molecular biology, 7(1):32, 2012.
[59] Antti Ukkonen. Crowdsourced correlation clustering with relative distance

comparisons. In 2017 IEEE International Conference on Data Mining (ICDM), pages
1117–1122. IEEE, 2017.

[60] Paola Velardi, Stefano Faralli, and Roberto Navigli. Ontolearn reloaded: A graph-

based algorithm for taxonomy induction. Computational Linguistics, 39(3):665–
707, 2013.

[61] Petros Venetis, Hector Garcia-Molina, Kerui Huang, and Neoklis Polyzotis. Max

algorithms in crowdsourcing environments. In Proceedings of the 21st international
conference on World Wide Web, pages 989–998, 2012.

[62] Victor Verdugo. Skyline computation with noisy comparisons. In Combinatorial
Algorithms: 31st International Workshop, IWOCA 2020, Bordeaux, France, June
8–10, 2020, Proceedings, page 289. Springer.

[63] Vasilis Verroios and Hector Garcia-Molina. Entity resolution with crowd errors.

In 2015 IEEE 31st International Conference on Data Engineering, pages 219–230.
IEEE, 2015.

[64] Vasilis Verroios, Hector Garcia-Molina, and Yannis Papakonstantinou. Waldo: An

adaptive human interface for crowd entity resolution. In Proceedings of the 2017
ACM SIGMOD International Conference on Management of Data, pages 1133–1148,
2017.

[65] Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. Crowdsourcing algorithms

for entity resolution. PVLDB, 7(12):1071–1082, 2014.
[66] Jiannan Wang, Tim Kraska, Michael J Franklin, and Jianhua Feng. Crowder:

Crowdsourcing entity resolution. arXiv preprint arXiv:1208.1927, 2012.
[67] Jingjing Wang, Changsung Kang, Yi Chang, and Jiawei Han. A hierarchical

dirichlet model for taxonomy expansion for search engines. In Proceedings of the
23rd international conference on World wide web, pages 961–970, 2014.

[68] Peter Welinder, Steve Branson, Pietro Perona, and Serge Belongie. The multidi-

mensional wisdom of crowds. Advances in neural information processing systems,
23:2424–2432, 2010.

[69] Steven Euijong Whang, Peter Lofgren, and Hector Garcia-Molina. Question

selection for crowd entity resolution. PVLDB, 6(6):349–360, 2013.
[70] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q Zhu. Probase: A proba-

bilistic taxonomy for text understanding. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 481–492, 2012.

[71] Jingru Yang, Ju Fan, ZheweiWei, Guoliang Li, Tongyu Liu, and XiaoyongDu. Cost-

effective data annotation using game-based crowdsourcing. PVLDB, 12(1):57–70,
2018.

[72] Chao Zhang, Fangbo Tao, Xiusi Chen, Jiaming Shen, Meng Jiang, Brian Sadler,

Michelle Vanni, and Jiawei Han. Taxogen: Unsupervised topic taxonomy con-

struction by adaptive term embedding and clustering. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2701–2709, 2018.

[73] Dongxiang Zhang, Yuyang Nie, Sai Wu, Yanyan Shen, and Kian-Lee Tan. Multi-

context attention for entity matching. In Proceedings of The Web Conference 2020,
pages 2634–2640, 2020.

[74] Chen Zhao and Yeye He. Auto-em: End-to-end fuzzy entity-matching using pre-

trained deep models and transfer learning. In The World Wide Web Conference,
pages 2413–2424, 2019.

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

428

	Abstract
	1 Introduction
	2 Problem Definition
	3 Overview
	4 Initialization
	5 Inference
	6 Oracle Strategies
	6.1 Auxiliary Methods
	6.2 HierER algorithms

	7 Theoretical Analysis
	8 Related Work
	9 Experiments
	9.1 Setup
	9.2 Result Quality
	9.3 Ablation Analysis

	10 Conclusion
	References

