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Abstract: Satellite constellations can provide communication and navigation services to support
future lunar missions, and are attracting growing interest from both the scientific community and
industry. The deployment of satellites in orbital planes that can have significantly different incli-
nations and right ascension of the ascending node requires dedicated launches and represents a
non-trivial issue for lunar constellations, due to the complexity and low accessibility of launches to
the Moon. In this work, a strategy to deploy multiple satellites in different orbital planes around
the Moon in a single launch is examined. The launch vehicle moves along a conventional lunar
escape trajectory, with parameters selected to take advantage of gravity-braking upon encountering
the Moon. A maneuver at the periselenium allows the transfer of the spacecraft along a trajectory
converging to the equilibrium region about the Earth–Moon libration point L1, where the satellites
are deployed. Providing a small ∆V, each satellite is transferred into a low-energy trajectory with
the desired inclination, right ascension of the ascending node, and periselenium radius. A final
maneuver, if required, allows the adjustment of the semimajor axis and the eccentricity. The method
is verified using numerical integration using high-fidelity orbit propagators. The results indicate that
the deployment could be accomplished within one sidereal month with a modest ∆V budget.

Keywords: lunar constellation; low-energy trajectory; single-launch deployment; satellite constella-
tion deployment; small satellites

1. Introduction

Lunar exploration has seen renewed interest in recent years, with the Artemis-1 mis-
sion validating the new NASA Space Launch System and Orion spacecraft, designed to
take humans back to the Moon, and deploying the first CubeSat missions to the cislunar
and translunar space [1–4]. The infrastructure that could support the forthcoming missions,
either manned or autonomous, often relies on distributed satellite systems, such as constel-
lations, that can provide navigation, telecommunication, and data relay services to both
in-orbit and on-ground facilities [5–10].

This deployment represents one of the most critical phases in the implementation of
a satellite constellation, and its complexity is due to the need to distribute the satellites
on different orbital planes, a task that is usually accomplished with dedicated launches.
For constellations operating in low-Earth orbit (LEO), this issue is mitigated by the large
number of launch opportunities available on the market. Unfortunately, this is not an
option yet for lunar constellations, since the number of launches to the Moon is still limited
to no more than a few per year. It should be observed that, when dealing with a small
satellite constellation, limitations on the propellant (mass) budget and on the propulsion
systems characterizing this class of spacecraft further complicate this issue, since traditional
plane change maneuvers are not possible [11,12].

A strategy is proposed here to deploy multiple satellites in different orbital planes
based on a single-launch opportunity equivalent to that of the Artemis-1 mission. This result
is achieved by taking advantage of low-energy trajectories associated with the Earth–Moon
libration point L1 [13].
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Libration points and their associated trajectories have been studied for decades [13–22].
In 1978, the International Sun–Earth Explorer (ISEE)-3 was the first spacecraft to be deployed
to a libration point orbit (LPO) [23], followed in 1991 by the Hiten mission [24], the first
succeeding in an Earth–Moon transfer using a low-energy trajectory. In the late 1960s, Far-
quhar was a pioneer in proposing constellations of satellites located in the neighborhood
of Earth–Moon collinear libration points L1 and L2 [25], devoted to communication op-
erations. A few decades later, Lee et al. extended this design to Earth communication
constellations [26] and, more recently, the use of LPO constellations has been investigated
for lunar navigation services [27–29].

It should be noted that, when compared to LEO ones, LPO constellations allow the
reduction of the fueling effort for station-keeping and the eclipse period but, by virtue of
their larger distance from the ground, they are characterized by larger communication delay
times and higher power consumption. Therefore, LEO constellations could be preferred for
some applications [30,31].

In 2004, Chase et al. observed that a satellite can be transferred from a Lissajous orbit
around the Earth–Moon libration point L1 to an Earth orbit whose inclination and right
ascension of the ascending node (RAAN) depend only on the epoch at the beginning of
the transfer [32]. Based on this fact, they proposed a constellation deployment strategy in
which all the satellites are transferred from the same launch trajectory to the same Lissajous
orbit where station-keeping is performed independently by each satellite waiting for the
right epoch to transfer back to an Earth orbit with the desired inclination and RAAN values.
Operating in the dynamic framework of the circular restricted 3-body problem (CR3BP),
Nadoushan and Novinzadeh proposed a similar solution, in which the satellites are first
transferred to the same halo orbit about the Earth–Moon L1 and are transferred back to
LEO at different times, taking advantage of nodal precession to target the arrival orbital
plane [33].

The single-launch deployment strategy proposed here is developed based on the
characterization of low-energy trajectories which cross the phase space surrounding the
libration point L1, named the equilibrium region [34,35]. Operating in the dynamic frame-
work of the elliptic restricted four-body problem (ER4BP), which is significantly more
accurate than the CR3BP to model the Sun–Earth–Moon system, it is proved that a satellite
can be transferred from a low-energy trajectory to an orbit with desired semimajor axis,
eccentricity, inclination, and RAAN by providing a single ∆V when crossing the equilib-
rium region. If compared to other solutions available in the literature [32,33], this novel
deployment strategy (i) does not require the station-keeping phase around any LPO, and
(ii) allows the selection of the target orbital plane by a single maneuver.

These concepts are applied to design the transfer of multiple satellites departing from
the same trajectory into different lunar orbits with desired semimajor axis, eccentricity, in-
clination, and RAAN. The mission consists of two phases. During the first one, the satellites
are stowed in the launch vehicle, moving along a lunar escape trajectory with parameters
selected such that a powered gravity-braking at the periselenium allows the transfer of
the vehicle and its payload along a low-energy trajectory directed towards the equilibrium
region. The second phase starts when each satellite maneuvers independently to be injected
into a low-energy trajectory approaching the Moon with the desired inclination, RAAN,
and periselenium radius. A final maneuver to adjust the semimajor axis concludes the
deployment. The method is evaluated using numerical tools simulating the deployment of
a lunar constellation of elliptic inclined orbits providing global coverage [30].

The paper is organized as follows. Section 2 collects the theoretical background
on the CR3BP, the equilibrium region, the topological characterization of low-energy
trajectories, and an extension of these solutions to the Sun–Earth–Moon system. In Section 3,
the deployment strategy is developed, and in Section 4, it is verified through numerical
simulations, and the results are compared to other solutions available in the literature.
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2. Low-Energy Captures in the Sun–Earth–Moon System
2.1. The Circular Restricted 3-Body Problem

The CR3BP represents the most common dynamic framework to study the motion
of a spacecraft in the Earth–Moon system. This model is based on the hypothesis that the
mass m of the spacecraft is negligible compared to that of the primaries, the Earth (m1)
and the Moon (m2), and that in the inertial space, the relative trajectory of m2 about m1 is
circular [36].

The dynamic equations of motion for the CR3BP are expressed in a reference frame
Fr = [x̂, ŷ, ẑ], centered at the center of mass of the system O, with x̂ pointing from m1 to m2,
ẑ orthogonal the orbital plane of the primaries and ŷ completing the rectangular reference
frame [37] 

ẋ = vx

ẏ = vy

ż = vz

v̇x = 2vy +
∂U
∂x

v̇y = −2vx +
∂U
∂y

v̇z =
∂U
∂z

(1)

with
U =

1
2

(
x2 + y2

)
+

1− µ

r1
+

µ

r2
(2)

µ =
m2

m1 + m2
(3)

where ri indicates the distance between the spacecraft and the i-th primary. It is worth
recalling that Equation (1) are expressed in terms of units of distance DU = aM and time
TU = 1/ωM, where aM and ωM are, respectively, the mean distance and the orbital angular
speed of the Moon with respect to the Earth.

The CR3BP admits five equilibrium points Li, also named the Lagrange or libration
points [38], and one constant integral of motion, named the Jacobi constant

C = −
(

ẋ2 + ẏ2 + ż2
)
+ 2U (4)

In fact, the Jacobi constant is proportional to the opposite of the total energy E of the
spacecraft; therefore, C decreases as E increases.

Trajectories that can evolve in the neighborhood of both the primaries are characterized
by C < C1, where C1 is the Jacobi constant calculated in L1 = [xL1 , 0, 0, 0, 0, 0]T , the libration
point lying on x̂ between m1 and m2 [13,39]. The deployment strategy proposed in this work
is based on the use of those low-energy trajectories, which verify the condition C = C1− 2h,
where h > 0 is an arbitrarily small constant named the energy level. The characterization
of these solutions is discussed in the following section.

2.2. Characterization of Low-Energy Trajectories Crossing the Equilibrium Region

It is known that the ultimate behavior of low-energy trajectories characterized by a low
energy level h can be predicted based on their state representation inside the equilibrium
region, i.e., the phase space surrounding the libration point L1 [34,40]. The rigorous
definition of the equilibrium region and the representation are developed hereafter using
the Hamiltonian formalism and the results are later applied to design trajectories that, after
crossing the equilibrium region, reach the Moon with desired semimajor axis, eccentricity,
inclination, and RAAN.
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The Hamilton’s equations are given by{
q̇ = ∂H

∂p

ṗ = − ∂H
∂q

(5)

where q = [x− xL1 , y, z]T and p = [vx − y, vy + x− xL1 , vz]T are the position and conjugate
momenta. The Hamiltonian function for the CR3BP is by definition H = −C/2. Aiming at
investigating the dynamics in the neighborhood of L1, the following expression for H can
be conveniently derived from quadratic expansion of Equation (4) about L1 [35]

H(q, p) =
1
2
(p2

1 + p2
2 + p2

3 + 2p1q2 − 2p2q1)−
K
2
(2q2

1 − q2
2 − q2

3) (6)

with K = 1−µ

|xL1+µ|2 +
µ

|xL1+µ−1|2 .

The linear system associated with Equations (5) and (6) is characterized by a sad-
dle–center–center type of equilibrium, having one couple of real eigenvalues (±ρ) and
two couples of complex conjugate ones (±jλ1, ±jλ2). Therefore, according to Morse’s
lemma, the Hamiltonian function can be represented as the sum of three local integrals of
motion, each dependent on a different pair of state variables and associated with one of the
three above-mentioned eigenspaces. This new form of H can be conveniently derived by
applying a canonical transformation [x, y]T = TN [q, p]T , originally proposed by Siegel and
Moser [41], producing

H(x, y) = ρx1y1 +
λ1

2
(x2

2 + y2
2) +

λ2

2
(x2

3 + y2
3) = h (7)

with x1, y1 ∈ R, x2, x3, y2, y3 ∈ C and h > 0 is the arbitrarily small energy level. Equation (7)
is the mathematical representation of the equilibrium region, the phase space in the neigh-
borhood of L1.

Based on a theorem by Moser [42], Conley proved that if a low-energy trajectory is
inside the equilibrium region at a given time t0, then its long-term behavior is fully charac-
terized by its topological location in the equilibrium region and provided the following
classification [34]

• x1(t0)y1(t0) < 0, transit trajectories which evolve alternately around one of the two
primaries, crossing the equilibrium region multiple times

• x1(t0)y1(t0) > 0, bouncing trajectories which never cross the equilibrium region, thus
evolve only around one of the two primaries

• x1(t0) → 0 or y1(t0) → 0, capture trajectories that cross only once the equilibrium
region and then evolve around one of the primaries indefinitely in time

• x1(t0) = y1(t0) = 0, quasi-periodic orbits which never depart from the equilibrium
region.

Within the scope of this research, trajectories transiting from the Earth to the Moon (i.e.,
transits or captures) are of interest. In particular, low-energy captures are attractive because
they do not require any further maneuvering to keep the satellites in the neighborhood
of the Moon, thus ensuring relaxed operation times to perform any eventual corrective
maneuver.

For this class of trajectories, the osculating orbital elements at capture can be char-
acterized, as for the long-term behavior, by their state representation at time t0 when
the trajectory is inside the equilibrium region [40]. Equation (7) can be rearranged as
follows [43]

λ1

2
(x2

2 + y2
2) +

λ2

2
(x2

3 + y2
3) = h(1− ε) (8)

with ε > 0 arbitrarily small. The two constant terms of Equation (8) are named energy
fractions and indicated as h1 = λ1

2 (x2
2 + y2

2) and h2 = λ2
2 (x2

3 + y2
3). The value of the energy
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fractions can be related to those of some osculating orbital elements. For the sake of clarity,
the following expressions for the properties of the canonical transformation TN shall be
recalled: {

y2 = −jx̄2(x, y, vx, vy)

y3 = −jx̄3(z, vz)
(9)

From the conservation of the angular momentum, the following expression for the
inclination i can be derived [44]

cos i =
1√

1 + h2
h1

(10)

Therefore, a target inclination at capture can be fixed by selecting any couple (x2(t0), x3(t0))
verifying Equation (10). By virtue of Equation (9), Equation (10) represents a constraint for the six
state variables in the position space. Moreover, if h is not fixed (i.e., it can be varied within an
admissible range) for a given set of in-plane variables (x, y, vx, vy), the target inclination can be
fixed by selecting only the out-of-plane variables (z, vz).

Another relationship between the energy fractions can be derived based on Tisserand’s
parameter √

a(1− e2) cos i ∝ const. (11)

where a and e are the semimajor axes and the eccentricity of the capture orbit. Introducing
Equation (10) into (11) leads to

a(1− e2) ∝
h1 + h2

h1
=

h
h1

(12)

Equations (10) and (12), which were verified using numerical analysis in a previous
study by the author [44], indicate that fixing the value of the inclination and a combination
of a and e (or equivalently, the desired pericenter distance rp at capture) the energy fractions
h1 and h2-and therefore the values of x2(t0) and x3(t0)-are determined.

In Section 3, the above-mentioned constraints are rearranged in terms of position and
velocity in Fr and implemented to design the deployment strategy.

2.3. Extension to the Sun–Earth–Moon System

The design of low-energy captures by the Moon, as well as the deployment strategy
derived from it, cannot ignore two conditions that are overlooked in the CR3BP model:
neither the eccentricity of the Earth and Moon orbits nor the gravitational field of the Sun
are negligible in the real environment [45,46].

The topological characterization presented in Section 2.2 is here extended to the more
accurate dynamic framework of the elliptic restricted four-body problem (ER4BP) that
is used to model the Sun–Earth–Moon system. The dynamic equations of motion are
developed in a reference frame F (e)

r = [x̂, ŷ, ẑ] centered in the center of mass of the system,
with x̂ pointing from the Sun (m0) to the center of mass of the Earth–Moon system, ẑ
orthogonal to the ecliptic plane and ŷ completing the rectangular frame [47]. Denoting
by rE and θE the distance and the true anomaly of the Earth–Moon center of mass O with
respect to the Sun, the equations can be expressed as follows [48]

x′ = vx

y′ = vy

z′ = vz

v′x = 2vy + τ
(

∂u
∂x + x

)
v′y = −2vx + τ

(
∂u
∂y + y

)
v′z = τ

(
∂u
∂z + z

)
− z

(13)
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where τ = (1 + eM cos θE)
−1, µi =

mi
m0+m1+m2

, m0 is the mass of the Sun, u =
3
∑

i=1

µi
ri

, and the

prime ′ indicates the derivative with respect to θE. Equation (13) are expressed in terms

of the units of distance DU(e) = rE(θE) and time TU(e) =

√
r3

E(θE)
G(m0+m1+m2)

where G is the

gravitational constant.
Because of its dependence on time, the ER4BP does not admit equilibrium points.

Nevertheless, their instantaneous dynamic substitutes can be computed at any given time
considering the corresponding geometric configuration of the primaries [48]. Operating as
in Section 2.2, the set of Equation (13) can be linearized about the instantaneous libration
point L1 of the Earth–Moon system and expressed using the Hamiltonian formalism using
the following Hamiltonian function [49]

H(e) = 1
2
(

p2
1 + p2

2 + p2
3
)
+ p1q2 − p2q1 − K

2
(
2q2

1 − q2
2 − q2

3
)
+

+eMc1 cos θE + µ0
r0

c2
(14)

where r0 denotes the mean distance between the Sun and the center of mass of the
Earth–Moon system and the expressions for the coefficients ci are reported in Appendix A.
It can be observed that the expressions of H and H(e) are equivalent, except for the last two
terms of Equation (14), which represent the effects of the eccentric motion of the primaries
(eM) and the solar gravitational perturbation ( µ0

r0
). Examining in detail the two coefficients,

it is easy to verify that for the Earth–Moon system eM << 1 and in the neighborhood of L1
also µ0

r0
<< 1, so they can be regarded as small perturbations acting onto the CR3BP.

Conley and Easton proved that the basic topological properties of the CR3BP in the
neighborhood of L1 are preserved in the presence of small perturbations [50]. In fact, a
canonical transformation T : (q, p)→ (Q, P), developed in Appendix A, can be introduced
to rearrange Equation (14) to a form equivalent to H plus negligible higher order terms in
the perturbations [49]

H̃(e)(Q, P) =
1
2

(
P2

1 + P2
2 + P2

3

)
+ P1Q2− P2Q1−

K
2

(
2Q2

1 −Q2
2 −Q2

3

)
+ o
(

eM,
µ0

r0

)
(15)

Because H̃(e)(Q, P) is equivalent to H(q, p), all the results derived from the application
of the canonical transformation TN , and in particular the characterization of low-energy
captures, are still valid [51]. Capture orbits with the desired orbital elements can be
designed in the (x, y) coordinates and then converted to position and velocity coordinates in
F (e)

r , applying in order the inverse of the two canonical transformations [Q, P]T = T−1
N [x, y]

and T −1 : (Q, P)→ (q, p).

3. Design of the Deployment Strategy

The constellation deployment strategy designed in this section is developed to allow
the transfer of satellites from the same launch trajectory to different orbital planes about the
Moon. The strategy is organized into two phases. First, the launch vehicle is transferred to
a low-energy trajectory approaching the equilibrium region. Here the satellites are released
from the launcher and, independently, are transferred to low-energy lunar captures with
prescribed orbital elements. The design of the two phases is presented separately and the
design parameters discussed hereafter are summarized in Tables 1 and 2. For the sake of
clarity, the algorithm implementing the design of the deployment strategy, used for the
numerical study in Section 4, is reported at the end of this section (see Algorithm 1).
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Table 1. Summary of free and constrained parameters during the different phases of the deployment.

Phase: Free Constrained

Lunar flyby Ωd ; ωd ; id ad ; ed ; θd
Injection into equilibrium region Vp,a rp,a
Targeting capture parameters vx,er ; vy,er ; vz,er xer ; yer ; zer
Corrections Vp,c rp,c

Table 2. Summary of control and target parameters during the different phases of the deployment.

Phase: Control Target

Lunar flyby Ωd ; ωd ; id rp,a ; ya ; ia
Injection into equilibrium region ∆Vx,a ; ∆Vy,a ; ∆Vz,a xer (Ωc) ; yer ; her
Targeting capture parameters vx,er ; vy,er ; vz,er x1 ; ic ; rp,c
Corrections ∆Vx,c ; ∆Vy,c ; ∆Vz,c ec

Algorithm 1 Deployment strategy design.

(1) Determine the orbital elements Ωd, ωd, id at the initial epoch t0 by solving a two-point
boundary value problem (TPBVP) using the following sets of boundary conditions
• ad, ed, θd at t0
• rp,a, ya, ia at the time of periselenium passage (ta)

(2) Using the orbital elements determined in Step 1, propagate the trajectory of the launch
vehicle to the periselenium and compute the ∆Va to be provided for reducing the energy
level to the desired value her

(3) After Step 2, the satellites are deployed from the launch vehicle and maneuvered
independently; for each satellite
1. select a guess value for xer within a suitable interval
2. propagate the trajectory from the periselenium until it reaches the coordinate xer

and compute the remaining state variables yer, zer, vxer, vyer and vzer
3. solve Equation (17) to determine the ∆Ver to be provided to establish the desired ic

and rp,c at capture
4. propagate the trajectory to the periselenium
5. if the difference between the actual value of RAAN and its target value Ωc is larger

than a prescribed error then repeat from Step 3.1 with a different value of xcr else
proceed to Step 4

(4) Compute the ∆Vc eventually required to correct ec

3.1. Injection to the Low-Energy Trajectory

In the first phase of the deployment strategy the launch vehicle, in which the satellites
to be deployed are stowed, is transferred from its departure trajectory to the equilibrium
region. The initial epoch t0 of the operations is fixed here to the end of the translunar
injection (TLI) maneuver. The position of the spacecraft at t0 depends on the performance
of the launch vehicle and on the launch profile [52]; therefore, it is reasonable to assume that
the semimajor axis ad, eccentricity ed and true anomaly θd at t0 are given. By contrast, the
launch date and the value of the other orbital elements at t0 (the RAAN Ωd, the argument
of perigee ωd and the inclination id) can be selected in the design phase.

The injection into the equilibrium region is performed by taking advantage of lunar
gravity-braking; therefore, the orbital elements Ωd, ωd, and id are selected such that the
departure trajectory reaches the Moon at a minimum distance rp,a, inclination ia and
negative value for the position coordinate ya. In particular, the condition ya < 0 is necessary
for the spacecraft energy to decrease after the flyby (i.e., ya > 0 would result in a gravity-
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assist) while the minimization of rp,a and ia is pursued to maximize the gravity-braking
effect [53].

Once reached, the pericenter rp,a, a ∆Vp,a is provided along the direction of the velocity
to reduce the energy level to a target value her (see Section 3.2), injecting the launcher and
its payload into a low-energy trajectory heading towards the equilibrium region. Finally,
the satellites are released from the launcher and, from now on, they are maneuvered
independently.

3.2. Deployment to the Final Orbit

The characterization presented in Section 2.2 indicates that, once the satellites have
reached the equilibrium region, a small change in the velocity ∆Ver can be implemented
to transfer each one of them to a low-energy capture with desired inclination ic and
periselenium radius rp,c. The components ∆Vx,er, ∆Vy,er and ∆Vz,er shall be selected to
satisfy the following conditions

x1 = ε
h2

h1
= 1

cos2 ic
− 1

tan−1

(
Im(x2)

1 + Re(x2)

)
=

2rp,c

rSOI

y2 = −jx̄2
y3 = −jx̄3

(16)

with ε > 0 arbitrarily small and rSOI = aM

(
m2
m1

) 2
5 is the radius of the sphere of influence

of the Moon. Equation (16) represents five constraints in the six transformed Hamiltonian
variables (x, y). The first three represent the capture condition and the inclination and
periselenium radius at capture, while the last two result from the properties of the canonical
transformation TN given by Equation (9).

For the sake of clarity, Equation (16) can be transformed by making explicit the
dependence on the position space variables

(
1 + 2γ2)(x− xL1) +

(
1− γ2)y + αvx − ασvy

2[(1− γ2)σ2 + ρ2]
= ε

vz =

√
2h1 tan2 ic

λ2

t5,1x + t5,5vy

1 + t2,2y + t2,4vx
= tan

(
2rp,c

rSOI

)

h1 = 2λ1(t2,2y + t2,4vx)
(
t5,1x + t5,5vy

)
h2 = 2λ2(t3,3z)(t6,6vz) = h− h1

(17)

where γ2 =

(
− µ

|xL1+µ−1|3 −
1−µ

|xL1+µ|3

)
, σ = −2ρ/

(
ρ2 + γ2 − 1

)
, τ =

2(λ2
2−1)

λ4
2−3λ2

2+2
and t5,1 =

0.1764, t2,2 = 1.0387, t2,4 = 0.1409, t5,5 = 0.5053, t3,3 = 1.0651, t6,6 = 0.4694 are the ti,j
elements of the TN matrix. Once a suitable combination of ε, ic,rp,c and h has been fixed,
Equation (17) can be used to select five out of the six position and velocity coordinates.

The last degree of freedom allows the selection of the RAAN at capture Ωc. The
value of Ωc is strictly related to the time t? at which the low-energy capture trajectory
crosses the Moon equatorial plane for the first time, which can be delayed or anticipated by
changing the time at which the ∆Ver is provided. Recalling now that all the satellites enter
the equilibrium region at the same time, a simple way to select different values of Ωc for
different satellites is to provide the ∆Ver at different coordinates x. In any case, because a
closed-form solution equivalent to Equation (16) to relate the difference in x to that in Ωc is
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not available, the problem must be solved iteratively. Nevertheless, this does not represent
an actual issue, since numerical solvers can find a solution in a few iterations.

As mentioned above, providing ∆Ver changes the energy level from the value her, before
the maneuver, to hc. Therefore, another iterative process can be implemented to minimize the
difference between the energy level her and hc. Even though this step is not strictly required,
it is useful to minimize the total ∆V.

The low-energy capture trajectory obtained from the process above is inherently
chaotic; consequently, the values of its orbital elements change in time affecting the perfor-
mance of the constellation. To overcome this issue, if required, a final corrective maneuver
can be performed at the periselenium, providing a ∆Vc to reduce the semimajor axis.

4. Analysis of the Constellation Deployment

The deployment strategy designed in Section 3 is here examined using numerical
methods. Initial conditions equivalent to those of the Artemis-1 mission are considered [54],
corresponding to ad = 202,700 km, ed = 0.968 and θd = 29 deg. The satellites are assumed
to be deployed in elliptical inclined lunar orbits, whose orbital elements are reported in
Table 3, which are suitable for constellations that shall provide polar and global coverage of
the Moon [30]. The analysis is performed using the General Mission Analysis Tool R2020a
developed by NASA, in which the algorithm presented in Section 3 was implemented. The
propagator includes the Sun and the Earth as point masses while the gravitational field of
the Moon is described by the LP-165 model. The motion of the celestial bodies is modeled
using the NASA JPL Development Ephemerides (DE405).

Table 3. Orbital elements for the satellites of the constellation.

Element Sat-1 Sat-2 Sat-3 Sat-4 Sat-5

ac 6541.4 km 9873.0 km 7500.0 km 7494.7 km 6541.4 km
ec 0.6 0.2 0.05 0.05 0.6
ic 56.2 deg 45 deg 40 deg 40 deg 56.2 deg

Ωc 50 deg 30 deg 50 deg 10 deg 140 deg
Expressed in the Moon-centered MJ2000Eq reference frame.

4.1. Application of the Deployment Strategy

Phase 1, consisting of the transfer to the equilibrium region, is common to all the
satellites. Steps 1–2 of the algorithm reported in Section 3 are implemented in GMAT after
selecting the following target parameters for the lunar flyby rp,a = 2037.1± 50 km, ya < 0
and ia = 30± 2 deg, while the initial epoch is fixed to 17 October 2023, 00:00. The value of
rp,a, corresponding to an altitude of 300± 50 km from the lunar surface, is selected because
it represents an effective trade-off between the gravity-braking effect and the harmonic
perturbations of the lunar gravitational field [55]. The analysis provides the orbital elements
of the departure trajectory corresponding to the above-mentioned target parameters, both
reported in Table 4.

Table 4. Orbital elements of the departure trajectory.

Element Value at Departure 1 Value at Arrival 2

a 202,700 km −5694 km
e 0.968 1.369
i 33.72 deg 28.50 deg

Ω 42.97 deg 355.04 deg
ω 62.67 deg 173.02 deg
θ 29.00 deg 0 deg

1 Expressed in the Earth-centered MJ2000Eq reference frame. 2 Expressed in the Moon-centered MJ2000Eq
reference frame.
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At the periselenium, the first maneuver performed by the launch vehicle concludes
Phase 1, transferring it to a trajectory heading towards the equilibrium region. Based on
previous analyses on capture in the Earth–Moon system [44], for a low-energy capture to
incline the range reported in Table 3, an energy value her = 2× 10−2 is required. To achieve
it, a ∆Vp = 228.4 m/s is provided in the direction opposite to the orbital velocity. Figure 1
shows the trajectory of Phase 1 represented in the rotating frame Fr with the origin shifted
to xL1 . The injection into the equilibrium region is achieved on 1 November 2023, at 12:39,
about 15.5 days after the departure epoch.

Figure 1. Spacecraft trajectory during Phase 1.

The iterative process reported in Step 3 of the algorithm is implemented to determine,
independently and for each satellite, the coordinate xer at which the capture maneuver
shall be performed to achieve the desired Ωc at capture. The following parameters are
considered:

1. the coordinate xer is selected within the interval [200, 1200] km, to ensure that the
satellites are maneuvered close enough to L1, where the linear model provides an
accurate description of the dynamics;

2. after propagation to xer, the velocity variation ∆Vc required to achieve ic and rp,c
reported in Table 3 is calculated, assuming a tolerance of, respectively, 2 deg, 10 km
and ε = 10−10;

3. the capture trajectory is propagated to the periselenium and the value of the RAAN is
verified, the process is repeated until the RAAN converges to Ωc ± 2 deg;

4. a final iteration allows refining the values of xer and ∆Vc to achieve the target orbital
elements within a tolerance of 0.1 deg and 1 km.

The process described above was applied to the five satellites obtaining the state
variables reported in Table 5.

Table 5. State variables in the equilibrium region before and after the maneuver.

Element Sat-1 Sat-2 Sat-3 Sat-4 Sat-5

xer 909 km 859 km 908 km 908 km 209 km
yer 2719 km 2706 km 2719 km 2719 km 2542 km
zer 3073 km 3070 km 3072 km 3072 km 3035 km

vx,er −239.0 m/s −239.2 m/s −238.6 m/s −238.6 m/s −239.4 m/s
vy,er −62.2 m/s −61.9 m/s −62.1 m/s −62.1 m/s −58.8 m/s
vz,er −12.7 m/s −12.7 m/s −12.7 m/s −12.7 m/s −13.0 m/s

∆vx,er 1.8 m/s 263.3 m/s 308.3 m/s 239.4 m/s 144.2 m/s
∆vy,er 252.9 m/s 84.8 m/s 97.8 m/s 70 m/s 482.8 m/s
∆vz,er −68.2 m/s −87.1 m/s −72.5 m/s −22.6 m/s −143.0 m/s
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A final corrective maneuver ∆Vc at the periselenium also allows the fixing of the value
of ac and ec. The values of all the ∆V, provided in the direction opposite to the orbital
velocity, are reported in Table 6, and the trajectories resulting from the deployment strategy
are shown in Figures 2–4, represented in the Fr reference frame with origin shifted to
xL1 . The deployment of the last satellite will be concluded on 11 November 2023, at 23:56,
approximately 26 days after the initial epoch.

Table 6. Required ∆V by each satellite on the different mission phases.

Element Sat-1 Sat-2 Sat-3 Sat-4 Sat-5

∆Va [m/s] 228 228 228 228 228
∆Ver [m/s] 262 290 332 251 524
∆Vc [m/s] 158 163 232 236 192

∆VTOT [m/s] 648 681 792 715 944

Figure 2. Satellite trajectories during Phase 2: projection onto the [x̂, ŷ] plane.

Figure 3. Satellites trajectories during Phase 2: 3D view in the rotating frame.
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Figure 4. Satellites trajectories during Phase 2: detail of the lunar orbits in the rotating frame.

4.2. Discussion on the Results

The analysis proves the suitability of the single-launch deployment strategy to reach
the desired targets within one sidereal month and a total ∆V less than 1 km/s for each
satellite. Recalling that the injection into the equilibrium region is performed by the launch
vehicle, the ∆V that shall be provided by the satellite never exceeds 730 m/s, a value that
can be provided by most small satellites. For instance, considering a small satellite of wet
mass at launch of 100 kg, a monopropellant propulsion system providing a thrust T = 20 N
with a specific impulse Isp = 230 s can easily perform the maneuvers requiring a total
propellant mass mp = 32.4 kg, which is shown hereafter to be lower than that required by
other innovative deployment strategies.

It is worth now comparing the deployment strategy to other innovative ones available
in the literature. Mahdisoozani et al. and Koblick and Choi proposed interesting solutions
to deploy satellites from the same launch trajectory to orbits with different RAAN and
inclination, respectively [56,57]. It should be noted that the solution by Mahdisoozani et al.
addresses Earth constellations. Compared to these strategies, the one developed here offers
the advantages of allowing the selection of both parameters in a single maneuver requiring
50 % or less of ∆V for this task, leading to relevant savings in the propellant mass budget.

Nadoushan et al. proposed the use of the CR3BP and nodal precession due to gravita-
tional perturbations to deploy multiple satellites in different orbital planes from the same
launch trajectory [33]. Additionally, this method is designed for Earth constellations, but
can be extended to lunar ones. Compared to it, the strategy proposed in this work is more
rapid, because it does not require the nodal precession to select the RAAN, and can be
obtained at slightly lower ∆V, because the CR3BP solutions developed by Nadoushan et al.
are constructed from libration point halo orbits that are characterized by a higher energy
level with respect to that of low-energy captures (h = 10−2) considered here.

A different solution is proposed by Pontani et al., who suggest the use of low-thrust
propulsion and nonlinear orbit control to deploy a satellite constellation around Mars [58],
with consequent substantial savings in the required mass of propellant. Even though it is
not trivial to predict the ∆V required for the deployment in the hypothesis of extending
the single-launch deployment to Martian constellations, which is an actual possibility [59],
it is reasonable to suppose that it would be greater than the one required using low-
thrust propulsion. On the contrary, the deployment time of the low-energy strategy could
reasonably be shorter and it requires fewer resources from the satellite platform.
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5. Conclusions

A strategy to deploy the satellites of a lunar constellation to multiple orbital planes
from the same launch trajectory is investigated in this research.

The strategy is developed by taking advantage of low-energy capture trajectories
existing in the Sun–Earth–Moon system, which allows the targeting of the orbital elements
of the capture orbit by providing small ∆V in the neighborhood of libration point L1. The
theoretical background on low-energy captures and their characterization in the dynamic
framework of the ER4BP are provided, and the strategy is derived from them.

The analysis verifies the strategy: it is applied to a scenario of actual interest, namely
the deployment of a constellation that can provide polar and global coverage. Results
from the analysis prove its effectiveness and demonstrate its performance in terms of
deployment time, which does not exceed one sidereal month (26 days), and ∆V, which is
lower than 1 km/s for the worst case examined.

Converting ∆V to finite-time maneuvers, it can be verified that they can be successfully
performed by the same chemical propulsion systems available to small satellites, requiring
less than 1/3 of the mass for a 100 kg spacecraft.
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Appendix A. Canonical Transformation for the Elliptic Restricted 4-Body Problem

The Hamiltonian function characterizing the linear dynamics of the ER4BP in the
neighborhood of L1 is provided by Equation (14) and reported below

H(e) = 1
2
(

p2
1 + p2

2 + p2
3
)
+ p1q2 − p2q1 − K

2
(
2q2

1 − q2
2 − q2

3
)
+

+eMc1 cos θE + µ0
r0

c2
(A1)

where the expressions for the coefficients ci are

c1 = − cos θE

[
µ1
r?1

+ µ2
r?2

+ 1
2
(
q2

1 + q2
2 + q2

3
)]
+

− µ1µ2aM cos θE
aE

(q1 cos β cos ε− q2 sin β cos ε + q3 sin ε)

(
1

r3
2 |?
− 1

r3
1 |?

)
+

− µ1µ2a2
M cos θE
a2

E

(
µ2

r3
2 |?
− µ1

r3
1 |?

) (A2)

c2 = − µ1

r3
1|?

c3 −
µ2

r3
2|?

c4 (A3)

c3 = 2aMµ2 sin ε(aEq3+aMµ2 sin ε)
aE

− 2(aEq1+aMµ2 cos β cos ε)(aE−aMµ2 cos β cos ε)
aE

+

− 2abµ2 cos ε sin β(aEq2−aMµ2 sin β cos ε)
aE

(A4)

c4 = − 2abµ1 sin ε(aEq3−aMµ2 sin ε)
aE

− 2(aEq1+aMµ2 cos β cos ε)(aE+aMµ1 cos β cos ε)
aE

+

− 2abµ1 cos ε sin β(aEq2+aMµ1 sin β cos ε)
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(A5)
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(A6)
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1
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)
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r?3
2
=
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|xL1 + µ− 1|5
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2

q2
2 −

5
2

q2
3

)
(A9)

β = θM − θE (A10)

and ε is the inclination of the Moon orbital plane with respect to the ecliptic plane.
The canonical transformation rearranging H(e) to a form equivalent to H can be

developed from a type-3 generating function T : [p = ∂S
∂q , Q = ∂S

∂P ]

S(q, P) = q1P1 + q2P2 + q3P3 + f1q1 + f2P2 + f3q2 + f4P1 + f5q3 + f6P3 (A11)

The form for functions fi is given below

fi(θM, θE) = bi
1 cos θE + bi

2 sin θE + bi
3 cos β + bi

4 sin β

and it depends on the unknown coefficients bi
j determined as follows. First, the new

coordinates are derived from S {
p = ∂S

∂q

Q = ∂S
∂P

→


q1 = Q1 − f4

q2 = Q2 − f2

q3 = Q3 − f6


p1 = P1 + f1

p2 = P2 + f3

p3 = P3 + f5

(A12)

Equation (A12) is introduced into Equation (A1) and rearranged as follows

H̃(e) = 1
2
(

P2
1 + P2

2 + P2
3
)
+ P1Q2 − P2Q1 − K

2
(
2Q2

1 −Q2
2 −Q2

3
)
+

+E1(θM, θE)Q1 + E2(θM, θE)Q2 + E3(θM, θE)Q3 + E4(θM, θE)
(A13)

For the transformation to be canonical, the following identity must be verified

H̃(e)(Q, P) = H(q, p, θb, θ) +
∂S
∂β

∂β

∂θ
+

∂S
∂θ

= H(Q, P) (A14)

The reader may have noticed that the derivative ∂S/∂t is here replaced by a convective
one, which results from the selection of rotating–pulsating coordinates used for expressing
ER4BP dynamics. Expanding Equation (A14) leads to

− f3 + 2

(
µ

|xL1 + µ|3 +
1−µ

|xL1+µ−1|3

)
f4 + f ′1 + E1 = 0

− f1 −
(

µ
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1−µ

|xL1+µ−1|3

)
f2 + f ′3 + E2 = 0

−
(

µ

|xL1 + µ|3 +
1− µ

|xL1 + µ− 1|3

)
f6 + f ′5 + E3 = 0

f1 − f2 + f ′4 = 0
f3 + f4 + f ′2 = 0
f5 + f ′6 = 0

(A15)
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Finally, Equation (A15) can be solved (i.e., using symbolic algebra), determining the
value of the bi

j coefficients



b1
1 = −E2 cos θE +

µ

|xL1 + µ|3 cos θE +
1− µ

|xL1 + µ− 1|3 cos θE + E1 sin θE

b1
2 =

(
µ

|xL1 + µ|3 cos θE +
1− µ

|xL1 + µ− 1|3 cos θE + E1 sin θE − E2 cos θE

)
cot θE

b2
1 = − cos θE

(
µ

|xL1 + µ|3 +
1− µ

|xL1 + µ− 1|3 − E2

)

b2
2 = − cos2 θE csc θE

(
µ

|xL1 + µ|3 +
1− µ

|xL1 + µ− 1|3 − E2

)

b3
1 = −

(
µ

|xL1 + µ|3 +
1− µ

|xL1 + µ− 1|3 − E2

)
csc θE

b5
1 = E3 sin θE

b5
2 = −E3 cos θE

(A16)

All the bi
j not reported are null.
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