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Abstract: Agricultural land drainage is an instrument for growing production and a tool for the
conservation of land resources. The performance of land drainage systems is thus critical for achieving
sustainable agricultural production Recently, many types of software have been developed in this
field for modeling and simulating the performance of these systems. SISDRENA is a simulation
model of the performance of underground drainage systems. The main objectives of this paper are to
simulate different combination of depths and spaces between drains and to analyze their impact on
potential sugarcane productivity in the western plains of Venezuela using a land drainage system
model. Therefore, three climatic scenarios were defined by annual precipitation: dry years (25%
below average), normal (mean) and humid (75% above average). The scenarios were implemented in
three different soil types: sandy loam, loam and silt loam, with a hydraulic conductivity of 0.19, 0.26
and 0.04 m day−1, respectively. The simulation of the yield related to soil deficit (YRD) and water
stress (YRW) indicated that the highest yields were reached for the larger spacing between drains
and the high conductivity hydraulic of soils. In relation to the average relative productivity (YT), it
was shown that in soils with a greater water retention capacity there is an inversely proportional
relationship between the spacing between drains and the productivity. We concluded that in order to
reach the maximum sugarcane yield, the effect of hydraulic conductivity is more important than the
changes in the precipitation pattern.

Keywords: water stress; crop yield; SISDRENA; drain; water table; flooding

1. Introduction

Climate change impacts and their associated extreme events mean that soil fertility
in areas affected by excess moisture needs to be maintained and improved. This major
concern of many countries, which affects their efforts to ensure basic needs such as food and
habitable land for a population [1–3] which is continuously growing and which presents
a high interest for developing their economic activities [4], emphasizes the importance of
increasing the productivity of areas currently under cultivation [5,6]. Agricultural land
drainage is an instrument for growing productivity, a safeguard for sustainable investment
in irrigation and a tool for the conservation of land resources [7–9]. In this aspect, the drain
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depth of installed underground drainage is one of the important factors which affects its
efficiency [10–12].

Grown in tropical climates, sugarcane in many regions of the world is often exposed to
heavy rains and periodic flooding which are significant production constraints in low-lying
areas of sugarcane [13,14]. The flooding induces changes in the growth physiology and
root structure of sugarcane and also favors the accumulation of sodium in sugarcane juice
at the stem’s bottom, with a particularly high accumulation following prolonged flooding.
These processes can have negative effects even after the soil water has been drained and
re-irrigated as photosynthesis is negatively influenced by flooding [15–17].

Waterlogging may even occur with a high-water table just 10–15 cm below the soil
surface for extended periods. This is a widespread phenomenon that drastically reduces
the growth and survival of sugarcane, leading to a 15–45% reduction in cane yield [14,18].
Constantly shallow water-table depths near 20 cm are more damaging than periodic flood
durations up to 14 days [13]. However, periodic flooding for 14 days at −40 cm in relation
to the constant water table significantly abates the dry biomass and the leaf area index in
the plant cane [19].

The response of sugarcane changes according to the soil’s structure and porosity. Thus,
Pitts et al. [20] reported the positive effect on the yield when the water table is lower than
35–50 cm during plant-cane and first ratoon in sandy soils. For organic soils (Histosols), the
losses in sugarcane production caused by surface depths of the water table of 16 to 37 cm are
not exacerbated by periodic short-term flooding [21,22]. These researchers recommended
that the fields should be drained for depths of 50 cm after flooding in 1 week so as not to
affect sugarcane yields. In contrast, Ray et al. [23] demonstrated for sandy loam soil that
flooding for long durations could severely reduce cane yields but that a continuous high-
water table (15 cm water-table depth), can inhibit rooting depth and promote sugarcane
tolerance to high water tables and flood durations greater than 11 days. In an Oxisol,
Tavares et al. [24] observed that the sugarcane maturation index was not adequate when
the plants were flooded and submitted to the lowering speed of a water table slower than
30 cm in 12 days.

The mathematical modeling of water table dynamics is an important tool that can
improve and optimize the performance of agricultural drainage systems, as long as it is
used in the design and management of drainage systems. Therefore, several computer
models such as DRAINMOD, SWAP or SISDRENA are especially suitable for such water
table simulations [25].

DRAINMOD [26–28] is a field-scale, process-based, distributed simulation model
originally developed to provide a means of quantifying, on a continuous basis, the per-
formance of multi-component drainage and related water management systems. This
drainage model is commonly used in the United State and in many other countries as it is
capable of simulating a number of different water management scenarios [29–53].

SWAP [54–56], is another important model that was designed to simulate the flow
and transport of water, solutes and thermal energy (heat flow) in unsaturated–saturated
soils during growing seasons and also for long term time series. This model describes a
domain from the top of the canopy to the groundwater which may be in interaction with a
surface water system. SWAP is often used to analyze the processes in agro-hydrological field
experiments and to simulate different groundwater table and irrigation scenarios [33,56–63].

The SISDRENA model [64] is a one-dimensional model that accounts for the main
components that affect the water balance in a volume of homogeneous soil and of a unitary
surface located equidistant between two parallel drains and extending from the barrier
layer to the soil surface. Its performance in drainage systems design is similar to the
DRAINMOD model. This model has been used by researchers to find the answers to
several scientific questions related to land drainage [65–69] and simulates the performance
of the drainage system in sugarcane [24,70–74].

The western plains of Venezuela is the region with the highest production of sugar-
cane [75,76].
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The main objectives of this paper are to simulate different combinations of depths and
spaces between drains and to analyze their impact on potential sugarcane productivity in
the western plains of Venezuela using the SISDRENA model.

2. Materials and Methods
2.1. Study Area

The region analyzed in this study is situated between the Barinas and Portuguese
states in the western part of Venezuela, covering around 20,000 km2 (Figure 1). Soils from
the western plains of Venezuela have been used for the intensive production of cereals such
as maize, sorghum, sesame corn, sunflower maize, cotton maize, rice and sugarcane. The
most common types of soil are loam and sandy loam [77–80].

For this study, we used climate information such as precipitation, global radiation and
maximum and minimum temperature from 2 locations: Barinas Airport (serial number
3147 according to the National Institute of Meteorology and Hydrology (INAMEH), located
within 70◦ 13′ 16′′ W, 8◦ 37′ 12′′ N, 203 MAMSL) and Turen (serial number 2277 according
to INAMEH, located within, 69◦ 06′ 14′′ W, 9◦ 15′ 49′′ N, 275 MAMSL) weather stations
(Figure 1). The Barinas and Turen meteorological stations belong to the Awi climate zones
according to the Köppen classification.
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www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND, accessed on 12 November 2021).
In order to cover the gaps from these time series, we used the DSSAT WGEN data genera-
tor [81–84].

2.2. Drainage Systems Model

SISDRENA was coded in Visual Basic 6.0 at the Department of Biosystems Engineering
(LEB), “Luiz de Queiroz” College of Agriculture (ESALQ/USP), Piracicaba, São Paulo,
Brazil. It is a one-dimensional model that accounts for the major components that affect
the water balance such as: precipitation, runoff, infiltration, percolation to groundwater,
upstream from the groundwater level to the root zone, evapotranspiration, drainage and
vertical “seepage” (Figure 2).
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Table 1. SISDRENA input parameters.

Total daily precipitation, mm day−1

Daily potential evapotranspiration, mm day−1

Saturated hydraulic conductivity of saturated soil, m day−1

Depth to impervious layer, m

Values of drain spacing to be submitted for evaluation, m

Daily upward flow by vertical seepage (optional), mm day−1

Drain depth, m

Effective radius of the drain, m

Soil water retention curve

Planting and harvesting dates of the crop

Variation of the effective root system depth throughout the year, m

Daily factors for the crop sensitivity to excess and lack of water

Starting groundwater level above the drains m

Starting volumetric soil water content

Table 2. SISDRENA output parameters.

Daily overland runoff, mm day−1

Daily infiltration, mm day−1

Daily groundwater level, m

Daily drain flow mm day−1

Daily water storage in the root zone, mm

Daily actual evapotranspiration; mm day−1

System evaluation parameters

Most economical drain spacing

Initially, the model separates the precipitation that reaches the soil surface in runoff
and infiltration. The runoff is estimated by using a modification of the Curve Number
method [85], and infiltration is the difference between the total precipitation and the runoff.
According to this method, the runoff is calculated by Equation (1):

E =
(P− 0.2S)2

(P− 0.08S)
(1)

where E is the runoff [mm], P is the total precipitation [mm] and S represents the potential
retention [mm].

The potential retention is a function of the Curve Number (CN). CN values are
dependent on land cover, hydrological condition, soil type and initial soil moisture. The
CN value is divided into three classes; CN Class II is used by the model. CN Class I and
CN Class III values are used to determine the maximum and minimum potential retention
as shown in Equations (2) and (3), respectively.

Smax =

(
25400
CN1

)
− 254 (2)
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where Smax is the maximum potential retention (mm) and CN1 is the curve number Class I,
dimensionless.

Smin =

(
25400
CN3

)
− 254 (3)

where Smin is the minimum potential retention (mm) and CN3 is the curve number Class III,
dimensionless.

The SISDRENA model uses a modification of the Curve Number method, in which
the potential retention is calculated by the expression:

S = Smin + µ(Dd− h)·1000 (4)

where µ is drainable porosity (dimensionless), Dd is the drain depth (m) and h is the
groundwater level above the horizontal plane passing through the center of the drains (m).

If the value of S is greater than or equal to Smax then S is set equal to Smax. Thus,
the potential retention is influenced by WT depth and drainable porosity. In soils with a
shallow WT, the runoff is better correlated with the water table depth than with surface
soil moisture.

In the second step, the model generates a table correlating the maximum upward
flow from the saturated zone to the root zone with the position of the WT, using a finite
differences solution of the Darcy equation, with the van Genuchten representation of the
soil water retention curve [86]. The equation used to determine flow upward through any
level below the root zone is:

v = −K(Ψ)
dΨ
dz

+ K(Ψ) (5)

where v is the upward water flow in soil (cm/h), K (Ψ) = hydraulic conductivity in the
unsaturated soil (cm/h), Ψ = matric head (cm of water) and z = vertical coordinate, positive
downward (cm).

After the determination of flows, the model interpolates the flow corresponding to the
position of water table at the current day for each daily water table depth. Then, a com-
parison is made between the maximum upflow obtained from the depth of groundwater
and the potential evapotranspiration. The objective of this step is to separate the fraction of
the daily potential evapotranspiration which comes from the WT (PETwt) and the water
that comes from the root zone (PETrz). If the flow obtained is greater than the potential
evapotranspiration (PET), it means that the PET is entirely supplied by PETwt and the
PETrz is equal to zero. Otherwise PETwt will be the actual maximum upflow and PETrz
will be the difference between the PET and maximum upflow, i.e., a part is supplied by the
root zone.

In the next step, based on the previous day’s soil moisture and WT depth, the model
performs a daily water balance in the root zone and calculates the soil water storage and
the actual evapotranspiration and determines the amount of precipitation that reaches the
WT. The model then calculates WT levels using the de Zeeuw and Hellinga equation [87]:

h = hi−1exp
(
−1

J

)
+

rec
0.8
µ

·J·
(

1− exp
(
−1

J

))
(6)

where h = water table level calculated daily (m), hi−1 = water table level from the day
before (m), rec = effective water table recharge (m/day), J = storage coefficient (days) and
µ = drainable porosity (dimensionless).

The WT depth from Equation (6) is then corrected by subtraction of the evapotranspi-
ration faction that comes from the WT, i.e.,

hcorrected = h− etpwt
µ

(7)
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The root zone water storage is recalculated if the WT rises into the root zone, under
the assumption that the soil is saturated below the WT and at field capacity above it. The
entire profile is assumed to be saturated if the WT level rises to the soil surface.

The daily drain flow is evaluated using the equation:

qo =
8·Ko·

(
deq + h

2

)
L2 ·h (8)

where qo = daily drain flow (m/day), Ko = hydraulic conductivity of saturated soil (m/day),
deq = Hooghoudt, equivalent depth (m) and L = drain spacing (m).

Several annual indices that reflect the performance of the drainage system, such as
SEW30, number of dry days and probable and average yields are determined for each
specified drain spacing. The yield data are then used to perform an economic analysis to
determine the most profitable drain spacing. A flowchart for the model is given in Figure 3.
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The comparisons between the performance of the SISDRENA and DRAINMOD mod-
els were conducted by estimating the standard errors between the simulated daily values
of total yield and runoff, as well as the data obtained under field conditions (tile flow
(cm day−1) and cumulative tile flow (cm)), taking the DRAINMOD model as standard. The
results were satisfactory [66].

To estimate the relative yield of sugarcane in relation to the stresses caused by excessive
soil water condition (YRW), the model uses the modified function of Carter et al. (1985)
and Gayle et al. (1987) relating YRW to the SEW30 index [88,89].

Therefore, Duarte et al. (2002) suggests the following equations [70]:

YRW =
100− 0.02771SEW30

100
(9)

In order to determine the relation between sugarcane yield and stresses due to drought
stresses (YRD), SISDRENA uses the following equation:

YRD = (1−Y) (10)

where Y (decimal) represents the yield loss, estimated using the production function
proposed by [90], which is dependent on the evapotranspiration deficit.

Finally, the total relative yield (YT, decimal) is determined according to the method-
ology provided by the authors of [91], considering together the effects of water excess
and water deficit, calculated by multiplying YRW (decimal) and YRD (decimal) More
information is given in [64–66,70,72].

Therefore, using the methodology proposed by various authors [65,70,72,73] the water
balance in the root zone of sugarcane was determined using the available water data in
each proposed scenario (Soil 1, Soil 2 and Soil 3, see Section 2.3). The geometric parameters
of the drainage system used in the simulations were: spacing between drains ranging from
10 to 100 m, with intervals of 10 m; installation depths of 1.2, 1.4 and 1.6 m; initial depth
of the water table at 50% of the installation depth; the depth of the impermeable layer at
5 m; and the effective radius of the drains at 0.05 m. For the simulations, the cultivation of
sugarcane, with a one-year cycle, was assumed to be planted in January, with three stages
of development. These development stages were defined by [90] as follows: vegetative
establishment (125 days), training of the production (120 days) and maturation (120 days).

2.3. Environmental Data

The rainfall data series were classified according to the annual rainfall, adapted to [92]
in dry, normal and wet years, with percentiles of 0.25, 0.5 and 0.75, respectively. The
runoff was calculated by a modification of the Soil Conservation Service–curve number
(SCS–CN) method [85]. The water table movement (LF) was estimated using the equation
proposed in [87] and the moisture in the root zone of the crop was calculated using the
water balance method [64]. For our study, PET was calculated according to [93,94] using
the FAO-24 Blaney–Criddle method, with the Reference Evapotranspiration Calculation
Software (REF-ET v 2.0) [95].

For the Barinas weather station, a wet year is characterized by annual precipitations of
1511 mm, a dry year by 1271 mm/year, while in a normal year, 1393 mm can be recorded.
In Turen these results were approximately 2715 mm, 1613 mm and 2452 mm, for wet, dry
and normal years, respectively. In relation to temperature, for Barinas we considered the
maximum value of 29.5 ◦C and the minimum of 27.5, with an average annual value of
28.4 ◦C; in Turen the values were 28.7 ◦C, 26.2 ◦C and 27.4 ◦C, respectively. The average
annual PET was 1733.9 mm and 1614.4 mm for Barinas and Turen, respectively (Figure 4).
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The soils were defined in the model according to their hydraulic conductivity and the
parameters of the retention curve, with different textures of sandy loam (Soil 1), loam (Soil 2)
and silt loam (Soil 3). The values assumed by simulation in terms of the soil characteristics
shown in Table 3.

Table 3. Soil physical–water parameters used for simulations, texture, soil water retention equation
adjustment parameters (n and m), soil volumetric moisture corresponding to saturation, residual,
field capacity and wilt point (θsat, θr, θfc e θwp), the inverse of the air entry suction (α) and saturated
hydraulic conductivity (Ksat).

Soil Texture
van Genuchten Equation Parameter

θfc
(cm3 cm−3)

θwp
(cm3 cm−3)n m α

(cm−1)
θsat

(cm3 cm−3)
θr

(cm3 cm−3)
Ksat

(m dia−1)

Soil 1 Sandy
Loam 1.0900 0.0826 0.0080 0.3800 0.0680 0.1917 0.2300 0.0700

Soil 2 Loam 1.5600 0.3590 0.0360 0.4300 0.0780 0.2572 0.2200 0.1300

Soil 3 Silt Loam 1.8330 0.4544 0.0230 0.4800 0.2640 0.0438 0.4500 0.1900

3. Results
3.1. Impact on Simulated Sugarcane Yield to Soil 1

Figure 5 shows the average values of YRW, YRD and the total average relative yield
(YT) for soil 1 and their respective spacing, revealing the effects related to water excess, lack
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of water and the combined effect of these two factors on the relative yield of sugarcane. For
the same spacing, as the drain depth increased, higher yield values were obtained relative
to the excess water. In relation to yield loss in soil 1, the YRW was the most important
factor for both locations. This result is related to the differences between the Barinas and
Turen weather stations and is also related to the difference in precipitation as the Turen
station has a higher rainfall than Barinas.
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and 1.6 (e,f) m for the Barinas (a,c,e) and Turen (b,d,f) weather stations.

Therefore, for the space of 100 m, the yield breakage was greater for drain depths of
1.2 m. It was also observed that, to reduce the stress due to excess water, the space adopted
should be less than 20 and 10 m for the Barinas and Turen stations, respectively, for a drain
depth of 1.6 m. This can be explained by the relationship between the drainage depths and



Land 2022, 11, 626 11 of 20

spacings. In fact the optimal spacing distance between the drainage lines is given as the
depth of the drain increases.

Figure 6 reveals the effects of rainfall variation (i.e., normal, wet and dry years) on
the yield. For the years considered to have normal rainfall, the spaces that provided the
highest average yields were approximately 30 and 40 m for Barinas and 10 and 20 m
for Turen (because Barinas has a lower mean rainfall than Turen). In the wet years, the
YT values maintained for Turen were approximately similar to normal conditions, but
for Barinas, they decreased to 30 m. For the dry conditions, it was observed that Turen
suffered a greater effect under an increasing yield to reduce the stress due to excess water
compared to Barinas. This indicates that if there is a change in the precipitation conditions
(i.e., normal, wet and dry years) there are differences in the average yield (YT) of sugarcane
and the differences also occurred between the locals and were higher for Turen.
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3.2. Impact on Simulated Sugarcane Yield to Soil 2

For soil 2, the values of YRW, YRD and YT were lower than the case of soil 1. This
result is related to the hydraulic conductivity effect. The YRW was the important factor for
both locations. The spaces that better reduced the stress due to excess water were 30 m and
20 m for the Barinas and Turen stations, respectively (Figure 7). For both sites, the effect
of rainfall variation was higher in Turen than in Barinas (Figure 8); in the normal years it
could reach up to 40 m in Barinas while it was less than 20 m in Turen.
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3.3. Impact on Simulated Sugarcane Yield to Soil 3

For soil 3, YRW decreased quickly as the spaces became greater. It can be noted that
the productivity loss due to the excess of water was higher for the two stations in soil 3
with respect to the effect of the YRD, showing that water excess was the most important
factor for both locations. This result is related to the effect of hydraulic conductivity. The
differences between the Barinas and Turen stations are also related to the difference in
precipitation, because the Turen station has a higher rainfall than Barinas (Figure 9). Thus,
the drain spaces of 20 m and 10 m for Barinas and Turen stations, respectively, for a drain
depth of 1.6 m were the spaces that generated the lowest yield loss.



Land 2022, 11, 626 14 of 20
Land 2022, 11, x FOR PEER REVIEW 15 of 22 
 

 
Figure 9. Yield due to excess water (YRW), deficit (YRD) and total (YT) for sugarcane in the period 
of 1972–2012 for soil 3 for drain spaces varying from 10 to 100 m and drain depths of 1.2 (a,b), 1.4 
(c,d) and 1.6 (e,f) m in the Barinas (a,c,e) and Turen (b,d,f) weather stations. 

Figure 9. Yield due to excess water (YRW), deficit (YRD) and total (YT) for sugarcane in the period of
1972–2012 for soil 3 for drain spaces varying from 10 to 100 m and drain depths of 1.2 (a,b), 1.4 (c,d)
and 1.6 (e,f) m in the Barinas (a,c,e) and Turen (b,d,f) weather stations.

For soil 3, in all rainfall year conditions (Figure 10), the results were similar to the
ones obtained previously with approximately 10 m spaces between the drains. We can
notice that for this soil, the effect of low hydraulic conductivity is more important than the
changes in the rainfall pattern.
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Figure 10. Yield of sugarcane (YT), for normal and dry and wet years for drain spaces varying from
10 to 100 m and drain depths of the 1.2 (a,b), 1.4 (c,d) and 1.6 (e,f) m in the Barinas (a,c,e) and Turen
(b,d,f) weather stations.

4. Discussion

The differences between the Barinas and Turen weather stations can be identified in
precipitation volumes, with Turen having a higher rainfall than Barinas.

The average values of YRW, YRD and YT for soils 1, 2 and 3 and their respective spaces
reveal the effects related to water excess, lack of water and the combined effect of these
two factors on the relative yield of sugarcane. With respect to the effect of YRD, as the
model does not predict irrigations, even with a space of 100 m there was a decrease in yield.
In relation to the yield relative to YRW, it can be noted that the productivity loss due to
excess water was higher for the two stations in Soil 3.

The relative yield of sugarcane relative to the stresses caused by the excessive soil
water condition (YRW) simulation indicates that the highest yields were achieved using the
data from Barinas with greater spaces for soil 1 (80 m and a drain depth of 1.6 m) compared
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to soil 2 (40 m with a drain depth of 1.6 m). The lowest values (10 m and drain depth of
1.6 m) were found for soil 3 for both locations. e The effect of the fluctuation of the water
table on the yield of the sugar cane is therefore evident. The simulation of the yield related
to the soil water deficit (YRD) shows that the highest values were obtained using data from
the Barinas station with larger spacing in soil 3 (100 m) compared to soil 2 (80 m), due to
fact that soil 3 had a higher water retention capacity.

It was also observed that to reduce the stress due to excess water, the spaces between
the drains should be less than 20 and 10 m for soils1. Youssef et al. [30] mentioned that
the largest differences in water table depth predictions between models occurs after major
rainfall events.

For sugarcane grown in clay soil, Askar et al. [45] suggested drain depths of 1.4 to
1.8 m and spaces between drains ranging from 25 to 40 m. In clay-loam soil the drain pipes
should be installed at spaces of between 55 and 70 m, with a corresponding drain depth
between of 1.4 and 1.8 m. On the other hand„ various authors [65,70,72,73] have determined
that the best spaces of drains that presented the highest relative yield of sugarcane for clay
loam, clay, silt clay loam soils were 60 m, 40 m and 30 m, respectively.

Accordingly, considering only the effect of the water deficit for Barinas on soils 1 and 2,
the most favorable spaces would be greater than 80 m and for soil 3 more than 60 m. In the
case of Turen, soils 1 and 2 require spaces greater than 60 m and for soil 3 the most favorable
space would be over 50 m. Similar to this, Lisenbee et al. [46] suggested that in low land the
yield losses due to water excess were more frequent than losses due to droughts. In soil 3,
the effect of wastewater excess was very severe, so that the space that allowed a higher
yield remained around 10 m.

Contrariwise for corn yield, Resende et al. [68] observed with SISDRENA that the best
drain space for clay and clay loam soil is 20 m and that clay loam soils tended to have a
higher productivity and economic return than clay soil. Even Lisenbee et al. [46], using
DRAINMOD, found that 40 m was a threshold distance for drain spacing in sandy loam
soil, beyond which yields start to decrease due to under-drainage.

The YT considers the effects of normal rainfall and dry and wet years on variation
yield. For the years considered normal, the spaces that provided the highest average yields
for soils 1 and 2 were higher for Barinas because there the mean rainfall is lower than
in Turen; therefore, smaller spacings were obtained in all cases in this area. Under these
conditions, the YT of the sugarcane is strongly influenced by the upward flow of water.
In terms of climatic conditions, Turen was rainier than Barinas when compared to normal,
dry and humid years, so the highest average yields for soils 1 and 2 were higher for Barinas
(30 and 40 m, respectively). For the dry rain years and in normal conditions, the highest
results were obtained at Barinas with approximately 50 m for soils 1 and 2.

For soil 3, in all simulated conditions, the result was similar at approximately 10 m.
It can be s concluded that in order to reach the maximum sugarcane yield, the effect of soil
hydraulic conductivity is more important. In this case, for a more detailed assessment an
economic analysis must be carried out to verify if drainage is indicated in these soils.

Moreover, the results showed that the higher the hydraulic conductivity of the soil, the
greater the space that optimizes the productivity. Some improvements in water table depth
simulations were obtained by increasing the accuracy of soil hydraulic property inputs,
especially with respect to time pattern behavior [32]. For instance, Miranda et al. [71] found
out that in the estimation of the YT the model is very sensitive to the values of saturated
hydraulic conductivity of soil (Ko), so an increase in the values of Ko increases the error
in the model estimation. Therefore, it is expected that the model does not present good
estimations in alluvial soils with high values of Ko.

Due to a lack of field information related to the impact of controlled drainage on
sugarcane yield in the western plains of Venezuela, field experiments are recommended
to further characterize performance, specifically explaining sugarcane yield and the total
water balance, including the movement of water in the soil.
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5. Conclusions

The results obtained by the SISDRENA model in the western plains of Venezuela
allowed us to conclude that for the total relative yield of sugarcane, it is verified that
the lower the drain depth and the greater the spaces between the drains, the greater the
decrease in the yield of the sugarcane and these effects are more evident in soils with
a greater water retention capacity. In order to reach the maximum sugarcane yield, the
effect of soil hydraulic conductivity is more important. In this case, for a more detailed
assessment, an economic analysis must be carried out to verify if drainage is indicated in
these soils. In view of the results obtained in the simulations, it can be concluded that the
SISDRENA model represents a tool for modeling drainage and can be applied to different
climate and soil conditions.
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