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Abstract: (1) Background: The purpose of this review is to study the role of radiomics as a support-
ing tool in predicting bone disease status, differentiating benign from malignant bone lesions, and
characterizing malignant bone lesions. (2) Methods: Two reviewers conducted the literature search in-
dependently. Thirteen articles on radiomics as a decision support tool for bone lesions were selected.
The quality of the methodology was evaluated according to the radiomics quality score (RQS).
(3) Results: All studies were published between 2018 and 2021 and were retrospective in de-
sign. Eleven (85%) studies were MRI-based, and two (15%) were CT-based. The sample size was
<200 patients for all studies. There is significant heterogeneity in the literature, as evidenced by the
relatively low RQS value (average score = 22.6%). There is not a homogeneous protocol used for MRI
sequences among the different studies, although the highest predictive ability was always obtained in
T2W-FS. Six articles (46%) reported on the potential application of the model in a clinical setting with
a decision curve analysis (DCA). (4) Conclusions: Despite the variability in the radiomics method
application, the similarity of results and conclusions observed is encouraging. Substantial limits
were found; prospective and multicentric studies are needed to affirm the role of radiomics as a
supporting tool.

Keywords: MRI; CT; bone metastasis; bone cancer; lung cancer; prostate cancer; machine learning;
radiomics; signature

1. Introduction

Bone is the third most frequent site for metastatic localization, after lung and liver [1],
with breast and prostate cancer accounting for almost 70% of primary tumors [2]. In
most cases, bone metastases influence a patient’s short-term prognosis, as bone lesions
can rarely be completely eradicated. Patients with bone metastases have the option of
undergoing palliative care to reduce the size of the lesions, slow their growth, or allow for
improvement in symptoms. Bone metastases lead to a sharp reduction in life expectancy:
average survival in patients with bone metastases from melanoma is 6 months; from breast
cancer, 19–25 months; and from prostate cancer, 53 months [3].

The improvement of therapeutic strategies to deal with the various forms of cancer
has led to an increase in life expectancy and, consequently, a lengthening of the time a
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patient can coexist with metastatic disease [4]. The most frequent site of bone metastasis
is the axial skeleton because of its high red marrow content [1,2,5,6], which is therefore
frequently responsible for the increased morbidity and decreased quality of life of patients.

The spectrum of clinical manifestations is very heterogeneous, ranging from com-
plete absence of symptoms to severe pain, reduced mobility, pathologic fractures, spinal
cord compression, bone marrow aplasia, and hypercalcemia. Hypercalcemia is in turn
responsible for constipation, polyuria, polydipsia, and fatigue [2,7]. In the final stages,
hypercalcemia may lead to cardiac arrhythmias and acute renal failure [1].

Therefore, to identify a proper course of treatment, it is essential to differentiate
metastatic lesions from any primary or benign lesions of the bone. In order to assess the
patient’s prognosis and choose the most appropriate medical treatment according to their
life expectancy, bone metastases should be diagnosed at the time of the diagnosis of the
primary tumor: the aim is to reduce the incidence of complications and improve the quality
of life.

Bone scintigraphy, computed tomography (CT), magnetic resonance imaging (MRI),
and positron emission tomography (PET) are all capable of assessing the presence of bone
metastases [8]. The sensitivity and specificity of bone scintigraphy are 78% and 48%,
respectively, but despite its relatively low specificity which may require further imaging
examinations, it is still the most widely available technique and the most suggested by the
guidelines for the study of bone disease. The CT exam, with a sensitivity and specificity
of 74% and 56%, respectively, can be used as a guide during interventional diagnostic
procedures. In addition, CT allows simultaneous evaluation of bone and systemic staging,
reducing the burden of imaging for patients. MRI shows a sensitivity and specificity of
95% and 90%, respectively. It is a radiation-free technique and is considered the imaging
modality of choice for assessing metastatic spread in the bone marrow. 18F FDG-PET
(fluorodeoxyglucose) has a sensitivity and specificity of 98% and 56%, respectively: the
sensitivity may vary among different histologies, as some well-differentiated tumors can
go undetected because of their low metabolism [9].

Radiomics is an emerging branch of artificial intelligence (AI) that involves converting
digital medical images that contain information related to tumor pathophysiology, also
known as features, into measurable and quantifiable data. These data, combined with
clinical and qualitative imaging-derived data, can improve medical decision making [10].

The field of radiomics is constantly and rapidly evolving. The purpose of AI is to
aid the physician in the assessment of lesions beyond subjective visual interpretation in
order to obtain additional information about tumor behavior and pathophysiology that is
otherwise not inferable by the human eye with currently used techniques.

As a topic of relatively recent emergence and application, there is considerable variabil-
ity in the workflow that determines the results of radiomics-related studies. For traditional
radiomics approaches, the workflow is divided into specific steps: data selection, medical
imaging evaluation/segmentation, feature extraction, exploratory analysis, and modeling.
The acquisition technical specifications and medical image reading modalities, the software
and how the segmentation of the regions of interest (ROIs) is produced, the feature extrac-
tion, and the algorithm of the predictive model are all subject to numerous factors, making
the research, and therefore the literature on it, highly heterogeneous. The radiomics quality
score (RQS) was introduced in order to evaluate the past and future radiomics studies by
achieving homogeneity in study reporting [11].

The purpose of this review is to investigate the potential role of radiomics as a decision-
supporting tool in predicting bone disease status, differentiating benign from malignant
bone lesions, and characterizing malignant lesions at the genetic level.

2. Materials and Methods

MEDLINE databases, such as PubMed and Web of Science, were employed for the
research, using the following strings: ((“radiomics” OR “machine learning”) AND (metas-
tases OR metastasis) AND (“bone” OR “spine” OR “spinal”)).



Int. J. Environ. Res. Public Health 2022, 19, 1880 3 of 11

No limitations were applied to the search strategy. The following criteria were used
for the inclusion of the studies: (a) imaging analysis involved only CT and MRI modalities;
(b) the studies addressed the ability of radiomics to predict, diagnose, or characterize bone
lesions; (c) the studies involved humans only; (d) the articles were accessible through our
institution; and (e) the publications were in English.

Case studies, abstracts, reviews, letters to editors, editorials, and commentaries were
excluded. We completed the search by manually reviewing the bibliography of all se-
lected articles.

Two reviewers conducted the search, selected the studies, and extracted data from
each study independently. From a total of 100 articles, 13 research articles were considered
suitable and then collected.

The quality of the methodology was assessed according to the RQS as described by
Lambin et al. [11].

Each of the 16 criteria, covering individual aspects of the radiomics workflow, was
assigned a different maximum score in relation to its importance. The absence of feature
selection and validation results in a reduction in the final score by −3 and −5 points,
respectively. The two reviewers assigned, in agreement, the RQS to the selected studies in
absolute and percentage values (maximum value of 36, representing 100%).

The following data were extracted from each study: title, authors, year and journal of
publication, study objective, study design (retrospective or prospective), number of patients,
CT and MRI technical information, software used for segmentation and feature selection,
number and type of radiomics features considered, algorithms used for classification,
summary of results, and RQS.

3. Results

Our search found 13 publications on radiomics as a decision support tool regarding
bone lesions. All studies were published between 2018 and 2021 and were retrospective in
design. Study characteristics, as recorded by the reviewers, are shown in Table 1.

Eleven (85%) studies were MRI-based, whereas two (15%) were CT-based. Four
(30%) studies were focused on whether radiomics could predict epidermal growth factor
receptor (EGFR) mutation in spinal metastases of primary lung adenocarcinoma. Three
(23%) studied bone metastases from prostate cancer: two aimed to predict the presence of
bone metastases from prostate cancer, one studied the prognostic role in terms of overall
survival (OS) and cause-specific survival (CSS) of radiomics in prostate cancer patients
with bone metastases. Four (30%) studies aimed to differentiate bone metastases from other
pathological conditions: two studies evaluated the ability of radiomics to differentiate bone
metastases from benign vertebral bone disease, and two studies evaluated the ability of
radiomics to differentiate bone metastases from other pathological bone lesions. One (7%)
study aimed to differentiate between metastatic and nonmetastatic vertebral bodies, and
one aimed to differentiate between metastatic lesions in the spine originating from lung
cancer and other nonpulmonary cancers.

3.1. EGFR Mutation Prediction in Spinal Metastasis from Primary Lung Adenocarcinoma

Jiang et al. [12] analyzed MRI-based multiparametric radiomics for EGFR mutation
prediction on T2-weighted (T2W), T2-weighted fat-saturated (T2W-FS), and T1-weighted
(T1W) images: both traditional handcrafted and deep learning-based features were derived
from each MRI sequence. For each of the two types of approach, radiomics models showed
better results using combined features from all the MRI sequences than those with features
extracted from each individual sequence. A fusion model created by integrating traditional
handcrafted and deep learning-based features from the three sequences achieved the best
prediction performance. A radiomics nomogram was obtained by integrating the best
performing radiomics features: a decision curve analysis (DCA) confirmed the potential
clinical utility of the radiomics nomogram.



Int. J. Environ. Res. Public Health 2022, 19, 1880 4 of 11

Table 1. Characteristics of the selected radiomics studies.

Authors Publication
Year Objective Journal Number of

Patients
Imaging
Modality Segmentation

Technique Used
for Feature
Selection

Validation Classification Features Best Results Calibration
Statistics

Decision
Curve

Analysis
RQS

Jiang X et al. [12] 2021

Detect EGFR mutation in
spinal metastasis in patients

with primary
lung adenocarcinoma

Journal of Magnetic
Resonance Imaging 97 3T MRI T1W,

T2W, T2W-FS
Manual,

ITK-SNAP

Mann–Whitney
U-test, LASSO,

10-fold
cross-validation

Y Logistic regression models

Handcrafted features:
first-order, shape- and

size- based, texture,
filtered features

Fusion features:
AUC = 0.771,
ACC = 0.550,
SEN = 0.750,
SPE = 0.875

Y Y 10/36 = 27.7%

Ren M et al. [13] 2021

Detect EGFR mutation in
spinal metastasis in patients

with primary
lung adenocarcinoma

Medical Physics 110 3T MRI T1W,
T2W, T2W-FS

Manual,
ITK-SNAP

Intraclass correla-
tion coefficient
(ICC) analysis,
Mann–Whitney

U, LASSO,
10-fold

cross-validation

Y

Logistic regression,
random forest, neural
network, and support

vector machine

First-order,
shape-based,

and texture (1967)

Fusion features:
AUC = 0.803
(0.682–0.924),
SEN = 0.700,
SPE = 0.818;
nomogram,

AUC = 0.882
(0.695–0.974),
ACC = 0.808,
SEN = 0.846,
SPE = 0.846

Y Y 11/36 = 30.5%

Fan Y et al. [14] 2021

Detect EGFR mutation in
spinal metastasis in patients

with primary
lung adenocarcinoma

Physics in
Medicine & Biology 94 3T MRI, T1W,

T2W-FS
Manual,

ITK-SNAP

Mann–Whitney
U-test, LASSO,

10-fold
cross-validation

Y Logistic regression models

First-order, shape- and
size- based, texture,
high-dimensional

features (1595)

Multiregional
radiomics signature:

AUC = 0.777
(0.612–0.967),
ACC = 0.688,
SEN = 0.615,
SPE = 0.947

N N 8/36 = 22.2%

Ran C et al. [15] 2020

Detect EGFR mutation
subtypes in exons 19 and 21 in

spinal metastasis in patients
with primary lung
adenocarcinoma

Academic Radiology 76 3T MRI, T1W,
T2W-FS Manual

Mann–Whitney
U, LASSO,

10-fold
cross-validation

Y Logistic regression models First-order, shape-based,
and texture (1967)

T1W: AUC = 0.728
(0.526 0.903),
ACC = 0.692,
SEN = 0.692,

SPE = 0.769; T2W-FS:
AUC = 0.852
(0.706 0.998),
ACC = 0.731,
SEN = 0.846,
SPE = 0.769;
nomogram,

AUC = 0.821
(0.692–0.929),
SEN = 0.667,
SPE = 0.909

Y Y 12/36 = 33.3%

Wang Y et al. [16] 2019
Pretreatment prediction of
bone metastasis in patients

with prostate cancer

Magnetic Resonance
Imaging 176 3T MRI T2W,

T1W DCE Manual, IBEX

Linear regression,
ridge regression,

logistic regression
models

Y
Linear regression, ridge

regression, logistics
regression models

Shape, intensity,
intensity histogram,

GLCM, gray-level run
(976)

Combined T2W and
DCE: AUC = 0.898

(0.833–0.937),
ACC = 0.821,
SEN = 0.647,
SPE = 0.782

Y N 8/36 = 22.2%

Hayakawa T et al. [17] 2020

Investigate the potential
prognostic value of clinical risk

factors, image features, and
radiomics of pelvic bone

metastasis in newly diagnosed
prostate cancer patients

Japanese Journal
of Radiology 69 CT Manual, 3D Slicer N N Not available Shape-based, first-order

statistics, texture (105)

Maximum 2D
diameter and least

axis were detected as
risk factors for OS

(HR 1.007 and
1.013, respectively)

N N 0/36 = 0%

Zhang W et al. [18] 2020
Pretreatment prediction of
bone metastasis in patients

with prostate cancer
BMC Medical Imaging 116

3T MRI,
T2W-FS, DWI,

DCE T1W

Manual, AK
software ANOVA Y Logistic regression models Not available (204) AUC = 0.84 Y Y 14/36 = 38.8%

Sun W et al. [19] 2021 Distinguish between benign
and malignant bone tumors Cancer Imaging 206 CT Manual,

ITK-SNAP LASSO Y Logistic regression models Shape, statistical,
texture, wavelet (1130)

Radiomic model,
AUC = 0.781
(0.643–0.918);
nomogram,

AUC = 0.917

Y Y 12/36 = 33.3%
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Table 1. Cont.

Authors Publication
Year Objective Journal Number of

Patients
Imaging
Modality Segmentation

Technique Used
for Feature
Selection

Validation Classification Features Best Results Calibration
Statistics

Decision
Curve

Analysis
RQS

Xiong X et al. [20] 2021

Differentiating between
multiple myeloma and

different tumor metastasis
lesions of the lumbar vertebra

Frontiers in Oncology 107 3T MRI, T1W,
T2W-FS Manual LASSO, 10-fold

cross-validation Y

Support vector machine,
k-nearest neighbor, random

forest, artificial neural
networks (ANNs), and

naïve Bayes

Histogram features,
GLCM, GRLM, and
an autoregressive

model (282)

Differentiating
myeloma and

metastasis, ANN
T2W-FS:

AUC = 0.815,
SEN = 0.879,
SPE = 0.790;

differentiating
myeloma and

metastasis subtypes,
ANN T2W-FS:
AUC = 0.648,
SEN = 0.714,
SPE = 0.775

N N 8/36 = 22.2%

Yin P et al. [21] 2018

Differentiation between
primary sacral chordoma,

sacral giant cell tumor,
and sacral

metastatic tumor

Journal of Magnetic
Resonance Imaging 167

3T MRI,
T2W-FS,
T1W CE

Manual,
ITK-SNAP

ANOVA, LASSO,
Pearson

correlation,
random forest

Y Random forest

Histogram features,
form factor

features, Haralick,
GLCM features,

RLM (385).

Combined T2W and
T1W CE:

AUC = 0.773,
ACC = 0.711; T2W,

AUC = 0.678,
ACC = 0.541; T1W
CE, AUC = 0.592,

ACC = 0.568

Y N 9/36 = 25%

Zhong X et al. [22] 2020

Differentiating of cervical
spine osteoradionecrosis

from metastasis after
radiotherapy in

nasopharyngeal carcinoma

BMC Medical Imaging 123 1.5 MRI,
T1W CE Manual, MaZda

Intraclass
correlation
coefficient

(ICC) analysis,
combination

feature selection
algorithm

(combination of
Fisher coefficient,

classification
error probability
combined with
average correla-
tion coefficients,

and mutual infor-
mation), LASSO,

10-fold
cross-validation

Y Logistic regression models

Histogram, gray-level
co-occurrence matrix,

run-length matrix,
absolute gradient,

autoregressive model,
and wavelet (279)

Nomogram:
AUC = 0.720
(0.573–0.867),
ACC = 0.723,
SEN = 0.800,
SPE = 0.640

Y Y 11/36 = 30.5%

Filograna L et al. [23] 2019

Differentiate between
metastatic and nonmetastatic
vertebral bodies in patients

with bone marrow
metastatic disease

La Radiologia Medica 8 1.5 MRI, T1W,
T2W-FS Not available Wilcoxon test N Logistic regression models

Statistical/
histogram,

morphological, and
textural features (89)

T1W: AUC = 0.814
(0.685–0.942); T2W:

AUC = 0.911
(0.829–0.993)

N N 2/36 = 5.5%

Lang N et al. [24] 2019

Differentiate metastatic cancer
in the spine originated from

lung cancer and other
nonlung tumors

Magnetic Resonance Imaging 61 3T MRI DCE Manual, automatic Random forest
algorithm N Logistic regression models Texture, histogram

(33 × 3 maps)

3 features,
histogram + texture:

ACC = 0.68;
5 features, histogram

+ texture: ACC =
0.71;

N N 1/36 = 2.7%
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Ren et al. [13] produced a nomogram using an MRI-based radiomics signature and
smoking status to classify patients with EGFR mutation and wild-type EGFR through anal-
ysis of spinal metastases on T2W, T2W-FS, and T1W images. In addition to the radiomics
model, a deep learning approach was considered: the combined signature generated higher
AUCs than either feature type alone. Four different machine learning classifiers were de-
veloped and compared, with logistic regression outperforming the others. The nomogram
achieved an AUC of 0.821 (SEN = 0.667, SPE = 0.909): DCA showed that the nomogram
had a higher net benefit than all treatment and nontreatment strategies when the threshold
was greater than 0.013.

Fan et al. [14] proposed a predictive model that could determine the presence of
EGFR mutation in spinal metastasis subregions. Spinal metastases were divided into
subregions based on patient- and population-level clustering: marginal, fragmentary, and
internal subregions and the total tumor region. Radiomics features were extracted from
the subregions’ T2W-FS and T1W images. For both sequences, the radiomics signature
derived from the inner subregions outperformed other subregions or the entire tumor
regions in terms of AUC: the multiregion radiomics signature derived from merging the
inner subregion from T1W and T2W-FS MRI achieved the best detection capabilities. The
results suggest that the inner region is biologically more aggressive than the others.

Ran et al. [15] further investigated the predictive ability of the EGFR mutation in spinal
metastases by constructing a radiomics model that could identify the mutation subtype in
exon 19 and exon 21. The radiomics signature derived from the T2W-FS MRI consistently
outperformed the T1W-derived signature in terms of AUC, ACC, sensitivity, and specificity.
A nomogram model was constructed by incorporating the combined radiomic signature,
age, and CEA level, achieving an AUC of 0.881 in the validation set: a decision curve
analysis (DCA) confirmed that the model potentially guides individual treatments for
patients with lung adenocarcinoma.

3.2. Bone Metastasis from Prostate Cancer

Wang et al. [16] determined that multiparametric prostate MRI predicted the pres-
ence/absence of bone metastasis in prostate cancer patients using radiomics features alone
and combined with free PSA level and Gleason score. The combined MRI features derived
from T2W and DCE showed higher prognostic performance than features derived from
the single sequence and Gleason score. The radiomics MRI model combined with clini-
copathological features (free PSA level, age, and Gleason score) yielded the highest AUC
(AUC = 0.916), further improving predictive performance.

Hayakawa et al. [17] investigated the potential prognostic value of clinical risk factors
(anamnestic and laboratory data and histological prostate cancer characteristics), imaging
features, and radiomics of pelvic bone metastases in patients with newly diagnosed prostate
cancer: patients were studied for OS and CSS. Only shape-based features were detected
as risk factors for OS, and “maximum 2D diameter”, defined as the largest tumor surface
dimension in the axial plane, was detected as a risk factor for OS after multivariate analysis
(HR = 1.007). None of the radiomics features were detected as a risk factor for CSS in
the uni- and multivariate analysis. After multivariate analysis, LDH, hemoglobin, and
“maximum 2D diameter” were detected as risk factors for OS, whereas total Gleason score,
LDH, and maximum 2D diameter were detected as a risk factors for CSS. Radiation therapy
to the prostate gland and bone metastases did not significantly improve both OS and CSS.

Zhang et al. [18] established and validated a radiomics model that combined prostate
multiparametric MRI-based radiomics signature and clinical risk factors to predict bone
metastasis in patients with prostate cancer before treatment. The radiomics signature
constructed from features extracted from DWI, T2W-FS, and DCE images showed good
predictive efficiency. The nomogram, which incorporated the radiomics signature based
on MRI and clinical risk factors, had an AUC of 0.92 in the validation set. DCA also
demonstrated the clinical use of the radiomics model, which had better discriminatory
efficiency than t-PSA or radiomics signature alone.
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3.3. Differentiation of Bone Metastases from Other Bone Diseases

Sun et al. [19] proposed a CT-based nomogram able to distinguish between benign
and malignant bone tumors. The nomogram, obtained by combining the radiomics signa-
ture and clinical model (consisting of demographics and CT characteristics), had higher
diagnostic performance than the clinical model, but there was no statistical difference
compared with the radiomics signature (AUC = 0.823 in the validation set). The DCA
showed that the nomogram had higher diagnostic performance than the clinical model
and achieved greater net clinical benefits than the clinical and radiomics signature models
when considered alone.

Xiong et al. [20] evaluated the discrimination ability in T1W and T2W-FS MRI se-
quences between bone lesions from multiple myeloma and metastasis through several
machine learning models: support vector machine (SVM), k-nearest neighbor (KNN),
random forest (RF), artificial neural networks (ANNs), and naïve Bayes (NB). The ANN
classifier from T2W images showed the best performance, both in differentiating myeloma
from metastases and for classifying metastasis subtypes.

Yin et al. [21] developed and validated a multiparametric prostate MRI-based ra-
diomics model to differentiate primary sacral chordoma, giant cell sacral tumor, and
metastatic sacral tumor. Radiomics features extracted from the combined T2W-FS and CE
T1W images exceeded those from the T2W-FS or T1W images alone, but T2W-FS outper-
formed T1W images. The highest radiomics model AUC was achieved when clinical and
imaging data were combined.

Zhong et al. [22] proposed an MRI-based radiomics nomogram to differentiate cervical
spine osteoradionecrosis from metastasis in patients with nasopharyngeal carcinoma after
radiotherapy. The nomogram model demonstrated good calibration and discrimination,
and DCA indicated that, if the threshold probability of a lesion for diagnosis as osteora-
dionecrosis is >12%, the radiomics nomogram adds net benefit when compared to either
the treat-all-patients scheme or the treat-none scheme.

3.4. Other Studies

The study of Filograna et al. [23] is the only study that demonstrated the ability
of radiomics-based MRI to differentiate between metastatic and nonmetastatic vertebral
bodies in non-radiotherapy-treated cancer patients with metastatic bone marrow disease
from primary tumors of different nature (three lung cancers, one prostate cancer, one
esophageal cancer, one nasopharyngeal cancer, one hepatocarcinoma, and one breast
cancer). Internal cross-validation showed an AUC of 0.814 for T1W images and 0.911 for
T2W images. One histogram feature (minimum gray level) and one textural feature (joint
variance of the gray level co-occurrence matrix) were found to be the best-fitting features in
T1W and T2W images, respectively.

Lang et al. [24] aimed to differentiate metastatic spine cancer derived from primary
lung cancer and other nonpulmonary cancers (breast, thyroid, prostate, liver, kidney)
using an ROI-based model, radiomics, and deep learning. The accuracy of the radiomics
model when histogram and texture features were combined was higher than that when
histogram and texture features were evaluated alone. By increasing the number of features
from three to five, the accuracy showed slightly higher values (from 0.68 to 0.71 in the
histogram + texture model). The accuracy of the radiomics model was worse than that
of the hot-spot ROI-based (ACC = 0.79) and deep learning (ACC = 0.71 ± 0.043 and
0.81 ± 0.034) methods.

3.5. RQS Assessment and Study Limitations

The average recorded RQS was 22.6% (0–38.8%). This low score confirms what has
been reported in other reviews in the field of radiomics, representing a relatively low
quality of research methodology [25–30]. None of the reviewed studies were prospective
in design, no external validation on a dataset from another institution was performed,
no cost-effectiveness of the clinical application of the radiomic models was reported, and
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no datasets were made publicly available (although four authors allowed access to the
datasets upon request). Two articles (15%) did not perform any validation of their results.
In only four (30%) of the articles, multiple segmentations were performed to assess the
robustness of features to segmentation variabilities. The majority of articles (12/13, 92%)
performed a feature reduction to decrease the risk of overfitting. Eight (61%) studies
reported discrimination statistics (such as ROC curve and/or AUC), and six (46%) studies
reported calibration statistics. Six articles (46%) reported on the potential application of the
model in a clinical setting with a DCA.

4. Discussion

The application of radiomics in the diagnosis and characterization of bone lesions is
recent and constantly evolving, as is the entire field of radiomics. The articles identified by
our two researchers are few in number and were all published within the period between
2018 and 2021, with approximately 70% in the period immediately after 2020. Reflecting
the relative freshness of this area of research, all studies are retrospective, performed at a
single center, and with a small study population, ranging from 8 to 176 patients.

Radiomics can not only predict the presence of bone metastases and differentiate
skeletal regions without lesions from those containing metastases, but its application is
able to determine the primary tumor, differentiate metastases from other bone lesions
(both benign and malignant), and predict mutation status (such as EGFR). Apart from
MRI and FDG-PET, which have high predictive values, the other imaging methods have
relatively low sensitivity and specificity values, although they are easily accessible and
widespread [8,9]. Despite the predictive capabilities of the traditional imaging methods,
there is some clinical information regarding bone metastases, including the genetic status
or the primary tumor, that the naked eye is not able to perceive, due to similar clinical and
imaging manifestations. Complete pathological confirmation and histological analysis are
currently only possible by sampling through bone biopsy, which is associated with relatively
high procedural risks (such as vertebral artery or spinal cord damage) [31]. Radiomics
models, by inferring quantifiable data from the features, allow obtaining information that,
once applied in the clinical setting, can be decisive for the specific therapeutic treatment
choice. Because data are extracted from noninvasive methods, and in most cases radiation-
free methods, radiomics is a further step towards the reduction in a patient diagnostic
burden, and at the same time towards a patient-centered medicine. Some studies have also
constructed nomograms in order to graphically represent the mathematical relationship
between radiomics features and other prognostic factors, both clinical and diagnostic, in
order to improve the clinical applicability of a field still difficult for nonexperts to interpret.

All articles included among their limitations the relatively small sample size
(<200 patients), the single-center nature of the study, and the selection bias introduced by
the retrospective design. Even in studies in which validation was performed on an internal
dataset, the absence of external validation leads to reduced evidence of the possible clinical
application of the research: multicenter studies are necessary to validate radiomics models
and nomograms. Some articles complained about the tediousness of manual segmentation,
which, in addition to being time-consuming, is not free of human error despite the option
of multiple segmentation: the hope is that the spread of automatic, or semiautomatic,
segmentation will speed up the process and further reduce the margin of error.

Our review confirms the considerable heterogeneity in current radiomics research, as
evidenced by the relatively low RQS value obtained when analyzing the reviewed studies
(22.6%). There is not a homogeneous protocol used for MRI sequences among the different
studies, although the highest predictive ability was always obtained in T2W-FS. Wide
variability also exists in the software used for image segmentation and feature extraction;
the number and the type of features explored, with and without feature selection method
application; and even the models used to classify the final features. All of these elements
contribute to the reduced reproducibility of the results, even if none of them are considered
integral to the RQS assessment.
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As described above, the most critical limitation concerns the small sample size, which
leads to selection bias. A possible way to overcome this important limit is to increase the
number of patients under investigation or to extend the research and results validation to
other centers. In fact, it is well known that, after a first validation of a radiomic model, a
subsequent path of validation through multicenter studies is necessary to allow radiomics
to get closer and closer to widespread clinical applicability, even and especially through
prospective studies.

This review has some important limitations. To our knowledge, no other review
has exclusively investigated the role of radiomics in the analysis and prediction of bone
metastases, particularly the spine localization. Even within the field of radiomics, this
is a niche subfield, as is evident from the low number of studies analyzed. This novelty,
in addition to the high variability of the included studies, both in methodology and in
objectives, prevented us from pursuing a robust meta-analysis. We expect that as radiomics
evolves and becomes more widespread, there will be an increase in the number of patients
included and more extensive validation of existing datasets. Another critical issue at this
early stage of research is the ability to share data across public datasets that have already
been validated, as currently none of the papers publicly released their data.

In addition, we have deliberately eliminated from the research the studies based on
scintigraphy and PET (we have not detected studies that have used ultrasound) and papers
in non-English language or not accessible from our institution, reducing the number of
the articles included. Due to an implicit publication bias, most articles on this topic focus
on the use of MRI. This implies that many other methods, on which there are no current
studies, do not result in a significant contribution to research in the radiomics field, a
phenomenon that introduces further bias into our review. Furthermore, at the time of
publication, it is safe to assume that there are additional feature extraction software and
classification models currently in development that we are unaware of in the literature,
which are therefore protected from our review.

5. Conclusions

In spite of the variability in the radiomics method application, the similarity of re-
sults and conclusions observed is encouraging. Furthermore, all six studies that have
measured the possible application of the radiomics model in the clinical setting through
DCA have shown a net benefit compared to the use of the other strategies alone, confirm-
ing the promising role of radiomics in guiding the choice of treatments for individual
cancer patients.

Author Contributions: Conceptualization, E.F. and V.D.; methodology, A.C.; software, A.C. and
P.S.; validation, D.S., E.F. and G.V.; formal analysis, P.S.; investigation, D.S.; resources, A.C. and F.R.;
data curation, A.C.; writing—original draft preparation, A.C. and D.S.; writing—review and editing,
D.S. and G.V.; visualization, E.F.; supervision, G.I., B.B.Z. and C.d.F.; project administration, E.F.
and G.V.; funding acquisition, V.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Research Grants (BRiC-2018 ID3 and BRIC-2021 ID4) of
the Italian Workers’ Compensation Authority (INAIL).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Environ. Res. Public Health 2022, 19, 1880 10 of 11

References
1. Coleman, R.E. Metastatic Bone Disease: Clinical Features, Pathophysiology and Treatment Strategies. Cancer Treat. Rev. 2001, 27,

165–176. [CrossRef] [PubMed]
2. Cecchini, M.G.; Wetterwald, A.; van der Pluijm, G.; Thalmann, G.N. Molecular and Biological Mechanisms of Bone Metastasis.

EAU Update Ser. 2005, 3, 214–226. [CrossRef]
3. Selvaggi, G.; Scagliotti, G.V. Management of Bone Metastases in Cancer: A Review. Crit. Rev. Oncol./Hematol. 2005, 56, 365–378.

[CrossRef]
4. Yu, H.-H.M.; Tsai, Y.-Y.; Hoffe, S.E. Overview of Diagnosis and Management of Metastatic Disease to Bone. Cancer Control J.

Moffitt Cancer Cent. 2012, 19, 84–91. [CrossRef]
5. Bussard, K.M.; Gay, C.V.; Mastro, A.M. The Bone Microenvironment in Metastasis; What Is Special about Bone? Cancer Metastasis

Rev. 2007, 27, 41–55. [CrossRef]
6. Coleman, R. The Role of Zoledronic Acid in Cancer: Clinical Studies in the Treatment and Prevention of Bone Metastases. Semin.

Oncol. 2001, 28, 11–16. [CrossRef]
7. Cuccurullo, V.; Lucio Cascini, G.; Tamburrini, O.; Rotondo, A.; Mansi, L. Bone Metastases Radiopharmaceuticals: An Overview.

Curr. Radiopharm. 2013, 6, 41–47. [CrossRef]
8. O’Sullivan, G.J. Imaging of Bone Metastasis: An Update. World J. Radiol. 2015, 7, 202. [CrossRef]
9. Talbot, J.N.; Paycha, F.; Balogova, S. Diagnosis of bone metastasis: Recent comparative studies of imaging modalities. Q. J. Nucl.

Med. Mol. Imaging 2011, 55, 374–410.
10. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.;

Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis.
Eur. J. Cancer 2012, 48, 441–446. [CrossRef]

11. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.;
Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin.
Oncol. 2017, 14, 749–762. [CrossRef] [PubMed]

12. Jiang, X.; Ren, M.; Shuang, X.; Yang, H.; Shi, D.; Lai, Q.; Dong, Y. Multiparametric MRI -Based Radiomics Approaches for
Preoperative Prediction of EGFR Mutation Status in Spinal Bone Metastases in Patients with Lung Adenocarcinoma. J. Magn.
Reson. Imaging 2021, 54, 497–507. [CrossRef] [PubMed]

13. Ren, M.; Yang, H.; Lai, Q.; Shi, D.; Liu, G.; Shuang, X.; Su, J.; Xie, L.; Dong, Y.; Jiang, X. MRI-Based Radiomics Analysis for
Predicting the EGFR Mutation Based on Thoracic Spinal Metastases in Lung Adenocarcinoma Patients. Med. Phys. 2021, 48,
5142–5151. [CrossRef]

14. Fan, Y.; Dong, Y.; Yang, H.; Chen, H.; Yu, Y.; Wang, X.; Wang, X.; Yu, T.; Luo, Y.; Jiang, X. Subregional Radiomics Analysis for the
Detection of the EGFR Mutation on Thoracic Spinal Metastases from Lung Cancer. Phys. Med. Biol. 2021, 66, 215008. [CrossRef]
[PubMed]

15. Cao, R.; Dong, Y.; Wang, X.; Ren, M.; Wang, X.; Zhao, N.; Yu, T.; Zhang, L.; Luo, Y.; Cui, E.N.; et al. MRI-Based Radiomics
Nomogram as a Potential Biomarker to Predict the EGFR Mutations in Exon 19 and 21 Based on Thoracic Spinal Metastases in
Lung Adenocarcinoma. Acad. Radiol. 2021, 29, e9–e17. [CrossRef] [PubMed]

16. Wang, Y.; Yu, B.; Zhong, F.; Guo, Q.; Li, K.; Hou, Y.; Lin, N. MRI-Based Texture Analysis of the Primary Tumor for Pre-Treatment
Prediction of Bone Metastases in Prostate Cancer. Magn. Reson. Imaging 2019, 60, 76–84. [CrossRef]

17. Hayakawa, T.; Tabata, K.; Tsumura, H.; Kawakami, S.; Katakura, T.; Hashimoto, M.; Watanabe, Y.; Iwamura, M.; Hasegawa, T.;
Ishiyama, H. Size of Pelvic Bone Metastasis as a Significant Prognostic Factor for Metastatic Prostate Cancer Patients. Jpn. J.
Radiol. 2020, 38, 993–996. [CrossRef]

18. Zhang, W.; Mao, N.; Wang, Y.; Xie, H.; Duan, S.; Zhang, X.; Wang, B. A Radiomics Nomogram for Predicting Bone Metastasis in
Newly Diagnosed Prostate Cancer Patients. Eur. J. Radiol. 2020, 128, 109020. [CrossRef]

19. Sun, W.; Liu, S.; Guo, J.; Liu, S.; Hao, D.; Hou, F.; Wang, H.; Xu, W. A CT-Based Radiomics Nomogram for Distinguishing between
Benign and Malignant Bone Tumours. Cancer Imaging 2021, 21, 20. [CrossRef]

20. Xiong, X.; Wang, J.; Hu, S.; Dai, Y.; Zhang, Y.; Hu, C. Differentiating between Multiple Myeloma and Metastasis Subtypes of
Lumbar Vertebra Lesions Using Machine Learning–Based Radiomics. Front. Oncol. 2021, 11, 601699. [CrossRef]

21. Yin, P.; Mao, N.; Zhao, C.; Wu, J.; Chen, L.; Hong, N. A Triple-Classification Radiomics Model for the Differentiation of Primary
Chordoma, Giant Cell Tumor, and Metastatic Tumor of Sacrum Based on T2-Weighted and Contrast-Enhanced T1-Weighted MRI.
J. Magn. Reson. Imaging 2018, 49, 752–759. [CrossRef] [PubMed]

22. Zhong, X.; Li, L.; Jiang, H.; Yin, J.; Lu, B.; Han, W.; Li, J.; Zhang, J. Cervical Spine Osteoradionecrosis or Bone Metastasis after
Radiotherapy for Nasopharyngeal Carcinoma? The MRI-Based Radiomics for Characterization. BMC Med. Imaging 2020, 20, 104.
[CrossRef]

23. Filograna, L.; Lenkowicz, J.; Cellini, F.; Dinapoli, N.; Manfrida, S.; Magarelli, N.; Leone, A.; Colosimo, C.; Valentini, V. Identification
of the Most Significant Magnetic Resonance Imaging (MRI) Radiomic Features in Oncological Patients with Vertebral Bone
Marrow Metastatic Disease: A Feasibility Study. La Radiol. Med. 2018, 124, 50–57. [CrossRef] [PubMed]

24. Lang, N.; Zhang, Y.; Zhang, E.; Zhang, J.; Chow, D.; Chang, P.; Yu, H.J.; Yuan, H.; Su, M.-Y. Differentiation of Spinal Metastases
Originated from Lung and Other Cancers Using Radiomics and Deep Learning Based on DCE-MRI. Magn. Reson. Imaging 2019,
64, 4–12. [CrossRef] [PubMed]

http://doi.org/10.1053/ctrv.2000.0210
http://www.ncbi.nlm.nih.gov/pubmed/11417967
http://doi.org/10.1016/j.euus.2005.09.006
http://doi.org/10.1016/j.critrevonc.2005.03.011
http://doi.org/10.1177/107327481201900202
http://doi.org/10.1007/s10555-007-9109-4
http://doi.org/10.1016/S0093-7754(01)90260-X
http://doi.org/10.2174/1874471011306010007
http://doi.org/10.4329/wjr.v7.i8.202
http://doi.org/10.1016/j.ejca.2011.11.036
http://doi.org/10.1038/nrclinonc.2017.141
http://www.ncbi.nlm.nih.gov/pubmed/28975929
http://doi.org/10.1002/jmri.27579
http://www.ncbi.nlm.nih.gov/pubmed/33638577
http://doi.org/10.1002/mp.15137
http://doi.org/10.1088/1361-6560/ac2ea7
http://www.ncbi.nlm.nih.gov/pubmed/34633298
http://doi.org/10.1016/j.acra.2021.06.004
http://www.ncbi.nlm.nih.gov/pubmed/34332860
http://doi.org/10.1016/j.mri.2019.03.007
http://doi.org/10.1007/s11604-020-01004-5
http://doi.org/10.1016/j.ejrad.2020.109020
http://doi.org/10.1186/s40644-021-00387-6
http://doi.org/10.3389/fonc.2021.601699
http://doi.org/10.1002/jmri.26238
http://www.ncbi.nlm.nih.gov/pubmed/30430686
http://doi.org/10.1186/s12880-020-00502-2
http://doi.org/10.1007/s11547-018-0935-y
http://www.ncbi.nlm.nih.gov/pubmed/30191445
http://doi.org/10.1016/j.mri.2019.02.013
http://www.ncbi.nlm.nih.gov/pubmed/30826448


Int. J. Environ. Res. Public Health 2022, 19, 1880 11 of 11

25. Fiz, F.; Viganò, L.; Gennaro, N.; Costa, G.; La Bella, L.; Boichuk, A.; Cavinato, L.; Sollini, M.; Politi, L.S.; Chiti, A.; et al. Radiomics
of Liver Metastases: A Systematic Review. Cancers 2020, 12, 2881. [CrossRef] [PubMed]

26. Stanzione, A.; Gambardella, M.; Cuocolo, R.; Ponsiglione, A.; Romeo, V.; Imbriaco, M. Prostate MRI Radiomics: A Systematic
Review and Radiomic Quality Score Assessment. Eur. J. Radiol. 2020, 129, 109095. [CrossRef] [PubMed]

27. Chetan, M.R.; Gleeson, F.V. Radiomics in Predicting Treatment Response in Non-Small-Cell Lung Cancer: Current Status,
Challenges and Future Perspectives. Eur. Radiol. 2020, 31, 1049–1058. [CrossRef] [PubMed]

28. Valdora, F.; Houssami, N.; Rossi, F.; Calabrese, M.; Tagliafico, A.S. Rapid Review: Radiomics and Breast Cancer. Breast Cancer Res.
Treat. 2018, 169, 217–229. [CrossRef]

29. Calabrese, A.; Santucci, D.; Landi, R.; Beomonte Zobel, B.; Faiella, E.; de Felice, C. Radiomics MRI for Lymph Node Status
Prediction in Breast Cancer Patients: The State of Art. J. Cancer Res. Clin. Oncol. 2021, 147, 1587–1597. [CrossRef]

30. Kendrick, J.; Francis, R.; Hassan, G.M.; Rowshanfarzad, P.; Jeraj, R.; Kasisi, C.; Rusanov, B.; Ebert, M. Radiomics for Identification
and Prediction in Metastatic Prostate Cancer: A Review of Studies. Front. Oncol. 2021, 11, 4489. [CrossRef]

31. Peh, W. CT-Guided Percutaneous Biopsy of Spinal Lesions. Biomed. Imaging Interv. J. 2006, 2, e25. [CrossRef] [PubMed]

http://doi.org/10.3390/cancers12102881
http://www.ncbi.nlm.nih.gov/pubmed/33036490
http://doi.org/10.1016/j.ejrad.2020.109095
http://www.ncbi.nlm.nih.gov/pubmed/32531722
http://doi.org/10.1007/s00330-020-07141-9
http://www.ncbi.nlm.nih.gov/pubmed/32809167
http://doi.org/10.1007/s10549-018-4675-4
http://doi.org/10.1007/s00432-021-03606-6
http://doi.org/10.3389/fonc.2021.771787
http://doi.org/10.2349/biij.2.3.e25
http://www.ncbi.nlm.nih.gov/pubmed/21614239

	Introduction 
	Materials and Methods 
	Results 
	EGFR Mutation Prediction in Spinal Metastasis from Primary Lung Adenocarcinoma 
	Bone Metastasis from Prostate Cancer 
	Differentiation of Bone Metastases from Other Bone Diseases 
	Other Studies 
	RQS Assessment and Study Limitations 

	Discussion 
	Conclusions 
	References

