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Abstract
The COVID-19 pandemic presents an unprecedented clinical and healthcare chal-
lenge for the many medical researchers who are attempting to prevent its worldwide 
spread. It also presents a challenge for statisticians involved in designing appropriate 
sampling plans to estimate the crucial parameters of the pandemic. These plans are 
necessary for monitoring and surveillance of the phenomenon and evaluating health 
policies. In this respect, we can use spatial information and aggregate data regarding 
the number of verified infections (either hospitalized or in compulsory quarantine) 
to improve the standard two-stage sampling design broadly adopted for studying 
human populations. We present an optimal spatial sampling design based on spa-
tially balanced sampling techniques. We prove its relative performance analytically 
in comparison to other competing sampling plans, and we also study its properties 
through a series of Monte Carlo experiments. Considering the optimal theoretical 
properties of the proposed sampling plan and its feasibility, we discuss suboptimal 
designs that approximate well optimality and are more readily applicable.

Keywords Anticipated variance · Local cube method · Optimal sampling design · 
Epidemic surveillance and monitoring · Spatial correlation

1 Introduction

The SARS-CoV-2 pandemic has affected Western countries suddenly and in 
a devastating manner. The presence of many mutations of the virus after the 
first 2020 wave of the pandemic, together with possible future new pandemic 
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emergencies, makes it essential to establish a system of timely monitoring and 
surveillance tools. The phenomenon has already been analysed in an exten-
sive scientific literature which proposes various methods for the analysis of the 
COVID-19 pandemic. Italy was the first European nation to host an outbreak dur-
ing the month of February 2020 (Cerqua and Stefano, 2022), so it was of rel-
evance for the development of epidemic spread models (see Mingione et al. 2022 
and Scrucca 2022 among others). Sample surveys are of paramount importance 
during a pandemic since they allow the estimation of the number of asympto-
matic and paucisymptomatic cases. In fact, these categories of infection are not 
generally observed through medical swabs, which are mainly directed toward 
symptomatic patients (Li et  al. 2020; Mizumoto et  al. 2020), thus causing an 
underestimation of prevalence and an overestimation of the lethality rate. Ioan-
nidis (2020) stigmatized the risk of erroneous inference based on such data.

Alleva et al. (2022) proposed an indirect sampling mechanism based on tracing 
the contacts of verified infected people (who could be either hospitalized or in 
compulsory quarantine) to build a continuous-time surveillance system to assess 
the prevalence of infected people in the population. The quoted methodology, 
although very efficient, does not consider spatial correlation among the observed 
data, which represent an intrinsic feature of infectious diseases (Cliff et al. 1981). 
Moreover, this proposal implies both innovations in the sampling design (through 
an indirect mechanism based on tracing) and innovation in the data collection and 
institutional setting. This latter innovation, unavoidable for monitoring the spread 
of infection, derives from the need for cooperation between different health insti-
tutions (which have the responsibility and the information on the spread of the 
pandemic) and the statistical agencies (which have the mandate for designing 
the survey and ensuring its quality). However, dealing with so many innovations 
could seriously jeopardise the operativity of the survey. For this reason, we need 
to establish a system of timely infection monitoring based on standard and well-
known sampling techniques.

In the present contribution, we consider the use of two-stage sampling, a design 
widely used by the National Statistical Institutes to conduct surveys involving direct 
interviewing. The major novelty of our work is to define the factors that contrib-
ute to efficiency and to identify which components of these factors are reducible 
considering the feasibility of the sample design. We first define the conditions for 
achieving theoretical efficiency under a superpopulation model, coherent with the 
pandemic’s evolution, which includes spatial correlation. We then examine sam-
pling choices that, while allowing us to approach theoretical efficiency, are also 
practically feasible. We emphasize the role of spatial information (Grafström et al. 
2012; Jauslin and Tillé, 2020) in improving a standard two-stage sampling design. 
Similar to past pandemics, the Covid phenomenon displays strong spatial correla-
tion due to the mechanism through which the contagion spreads. Indeed, the disease 
spreads through human contact, and those who are spatially closest to infected indi-
viduals have a higher probability of contracting the disease. The early cases of epi-
demic are always reported in a very precise and concentrated geographic area, as it 
clearly shown by empirical data. As a result, spatial sampling provides lower sample 
variability with the same number of individuals when looking for disease-positive 
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individuals. This feature allows to minimize the consideration of the number of peo-
ple located in nearby locations that display a similar development of the disease.

In particular, aiming at a strategy that is both efficient and feasible, we consider 
spatially balanced sampling in the first stage (Tillé 2020) and simple random sam-
pling in the second stage. Since infectious phenomena are positively correlated, 
spatial sampling allows gaining efficiency by spreading the first-stage sample over 
space. Moreover, the balancing strategy leverages aggregated data on the number of 
verified infected people: a set of data that in many countries is openly available for 
specific uses. Simple random sampling in the second stage does not require informa-
tion at the individual unit level and ensures feasibility. To verify the effectiveness of 
the proposed strategy, we simulate the development of the pandemic by consider-
ing a scheme in which people are free to move around the territory and, accord-
ing to their social network, can meet other people and possibly become infected. In 
this simulation scheme, generated by random mechanisms, the probability of get-
ting infected depends on the individuals’ characteristics including their social net-
work and propensity to move. To produce a realistic picture, in our simulations, we 
also consider the different phases of infection spreading: initial outbreak, peak and 
lockdown.

The rest of the paper is organized as follows. Section 2 illustrates the sampling 
framework. Section 3 introduces a superpopulation model that considers a positive 
distance-decreasing spatial correlation of the state of infection. Under our model, 
we can then obtain the anticipated variance (AV) of the Horvitz Thompson estima-
tor (see Isaki and Fuller 1982; Nedyalkova and Tillé, 2008). Section 4 defines the 
theoretical conditions to obtain the maximum efficiency of the sampling plan and 
discusses its feasibility. Section 5 illustrates a model to simulate the geographical 
spread of the pandemic and examines the properties of the proposed method through 
a Monte Carlo study. Conclusions and future challenges are highlighted in Sect. 6.

2  The basic sampling framework

Let us consider a target population U composed of N people that can refer to the 
inhabitants of a country or of a specific district. Let us further suppose that U can be 
partitioned into M subpopulations (called clusters or subareas) denoted as 
U1,… ,Ui,… ,UM . According to the notation used by Sarndal et al. (1992, p. 116), 
the set of all clusters is indicated with the symbol UI =

{
U1,… ,Ui,… ,UM

}
 . Each 

cluster is composed of Ni individuals, with N =
∑M

i=1
Ni. Furthermore, let 

vij
(
i = 1,… ,M;j = 1,… ,Ni

)
 be the value of the target variable v referring to the 

verified status of infection for person j belonging to cluster Ui, with vij = 1 if the ij 
individual has a verified state of infection (either hospitalized or restricted in com-
pulsory quarantine), and vij = 0 otherwise. Let us further define the following quan-
tities:Vi =

∑Ni

j=1
vij and V =

∑M

i=1
Vi , which represent the known totals of the verified 

infected people in each cluster Ui and, respectively, in the whole population U . Pub-
lic health authorities have full knowledge of the aggregate quantities Vi , and they 
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often disseminate them as open data and share them on official websites. Let yij be 
the single observation of a dichotomous variable y on the presence of infection for 
individual j in cluster Ui , with yij = 1 if the person is infected and 0 otherwise. If 
vij = 1 , then we have yij = 1 . Conversely, if vij = 0 , it is still possible that either 
yij = 1 (that is, an infected person whose infection has not yet been verified) or 
yij = 0 (a noninfected person). Our target parameter Y  is then represented by the 
total number of infected people, that is, Y =

∑
i∈UI

∑
j∈Ui

yij =
∑
i∈UI

Yi, where Yi indicates 

the number of infected people in the i − th cluster. In this informative context, the 
known values of the number of verified infected people ( Vi ) represent an auxiliary 
variable available for estimating the target parameter Y  (the true number of infected 
people).

Our proposed sample design can be illustrated as follows.
First, we select a sample S from U using a two-stage random sampling design 

without replacement. According to the specific sampling context, the primary sam-
ple units (PSUs) may correspond to different levels of aggregations, e.g., munici-
palities or census enumeration areas.

The sampling process starts with drawing a first-stage sample of clusters, SI , of 
fixed size m . SI is selected without replacement from UI, with inclusion probabilities 
�Ii(i = 1, 2,… ,M) . A standard solution in two-stage random sampling designs is to 
select cluster i with probability proportional to size (PPS), that is �Ii = m

Ni

N
.

A second-stage sample, say SIIi , of fixed size n is drawn from each cluster Ui 
selected in the first stage by drawing the units with a simple random sample without-
replacement (SRSWOR for short) design. The second-stage inclusion probability of 
people in the sampled cluster i , say �IIi , is then given by �IIi =

n

Ni

.

As a consequence, the final inclusion probability of person j being selected from 
cluster i is given by �ij = �Ii�IIi = m

Ni

N

n

Ni

= m
n

N
.

The sampling is self-weighting (Murthy and Sethi 1965) in the sense that all the 
units in U have an equal probability of being selected irrespective of their cluster. 
The self-weighting property defines a sampling design that simplifies the data analy-
sis phase because it avoids the complications resulting from variable weights.

Even if the first-stage sampling is based on the same vector of first-order inclu-
sion probabilities �Ii(i = 1,… ,M) , the selection can be carried out using different 
algorithms, leading to different first-stage sampling designs in relation to two impor-
tant characteristics, namely, balancing and spreading.

In the first stage, let dIi be a vector of auxiliary variables available for cluster Ui. 
Sample SI is said to be balanced on the dIi variables if:

Moreover, the sample is said to be approximately balanced if 
∑
i∈UI

dIi is close to
∑
i∈SI

dIi

�Ii
.

Deville and Tillé (2005, p. 577) showed that several customary sampling designs 
may be considered special cases of balanced sampling. If we define the balancing 

(1)
∑

i∈SI

dIi

�Ii
=

∑

i∈UI

dIi.
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variables in Expression (1) as dIi = �Ii, then the sampling selection ensures planned 
sample sizes m for each sampling selection. Deville and Tillé (2004; p. 905) proved 
that a balanced sampling design always exists if we define the dIi variables as 
dIi = �Ii and if m =

∑
i∈UI

�Ii, is an integer. Balanced samples may be drawn using the 

cube method (Deville and Tillé, 2004). Usually, the sample SI is only approximately 
balanced for generic vectors of dIi of real values.

The spreading of sample units in space is necessary to improve the efficiency of 
the estimators in  situations characterized by positive spatial correlation of the tar-
get variable. An example of sampling designs satisfying this desirable feature is the 
so-called dependent unit spatial sampling technique (DUST) method (Arbia 1993), 
which was subsequently improved by Arbia and Switzer (1994). More recently, Graf-
ström (2012) and Grafström et al. (2012) introduced two methods called correlated 
Poisson sampling and the local pivotal method (LP), respectively, which enable the 
selection of unequal probability samples of fixed size that are well spread over the 
population. Both algorithms use the distance between the population units to create 
low joint inclusion probabilities for nearby units, thus forcing the samples to be well 
dispersed. Combining the notion of balancing with that of spreading, Grafström and 
Tillé (2013) proposed the local cube (LC) method, which enables the selection of 
samples that are balanced on several auxiliary variables and at the same time are 
also well spread for some variables, which can be geographical coordinates. In this 
sense, the LC method can be considered an extension of the LP method. Moreover, 
Grafström and Lundström (2013) demonstrated that well-spread balanced samples 
in space are balanced on auxiliary variables even if the target parameters are non-
linear in the auxiliary variables. Indeed, suppose we have a well-spread sampling 
where the distance among the units is defined in terms of some auxiliary variable. In 
that case, we obtain a sample approximately balanced on nonlinear functions of the 
auxiliary variables.

Survey enumerators verify the status of infection (e.g., through a swab) on each 
of the m × n people selected in the sample, thus quantifying the values of variable 
yij . The Horvitz-Thompson (HT) estimator (Horvitz and Thompson 1952) of Y  is 
then provided by.

Ŷ =
∑
i∈SI

∑
j∈SIIi

yij
N

mn
=

∑
i∈SI

Ŷi
1

𝜋Ii
, where Ŷi =

∑
j∈SIIi

yij
Ni

n
.

3  Anticipated variance

Consider the following generalized linear Model M:

where ỹij = Pr
(
yij = 1

)
, and uij are random errors, EM

(
uij
)
= 0 , VM

(
uij
)
= �2

u
 and 

CovM
(
uij, u�k

)
= �2

u
�ij,�k . EM(⋅) , VM(⋅) and CovM(⋅, ⋅) are the expectation, variance 

and covariance under the model, respectively, and �2
u
 is the homoscedastic error var-

iance. Generally, the spatial correlation parameter �ij,�k is assumed to be a decreas-
ing function of the distance �ij,�k between unit j belonging to cluster Ui and unit k 

(2)yij = ỹij + uij
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belonging to cluster Ul . Grafström and Tillé (2013) proposed specifying this term as 
follows:

where 0 ≤ � ≤ 1 . The probability ỹij can be modelled as a Lipschitz con-
tinuous function ỹij = g

(
xij
)
, where xij is a column vector of auxiliary vari-

ables specific for unity ij . Denoting with EP(⋅) the expectation over repeated 
sampling, the accuracy of the proposed sampling strategy may be meas-
ured by the anticipated variance AV

(
Ŷ
)
= EPEM

(
Ŷ − Y

)2
. Adding and sub-

tracting the term EPEM

(
Ŷ
)
= Ỹ  on the right-hand side of AV  , we have 

AV
(
Ŷ
)
= EPEM

[
Ŷ − Ỹ

]2
+ EPEM

[
Ỹ − Y

]2
+ 2EPEM

[(
Ŷ − Ỹ

)(
Ỹ − Y

)]
. From Ken-

dall and Stuart (1976, p. 196), we have EPEM

(
Ŷ − Ỹ

)2
= VP

[
EM

(
Ŷ
)]

+ EP

[
VM

(
Ŷ
)]

 . 
Furthermore, from Alleva et  al. (2022), we have 
EPEM

(
Ỹ − Y

)2
+ 2EPEM

[(
Ŷ − Ỹ

)(
Ỹ − Y

)]
= −VM(Y).

Joining together the previous results, we obtain

where �Ii,I� is the joint inclusion probability of selecting clusters Ui and U
�
 in the 

first-stage sampling. Ỹi =
∑
j∈Ui

ỹij =
∑
j∈Ui

g
�
xij
�
, 𝜎2

IIỹi
=

1

Ni−1

∑
j∈Ui

�
ỹij −

Ỹi

Ni

�2

, and the 

spatial correlation terms are, respectively, �i =
1

Ni(Ni−1)

∑
j∈Ui

∑
k≠j

�ij,ik and 

�i,� =
1

NiN�

∑
j∈Ui

∑
k∈U

�

�ij,�k.

The first component of the anticipated variance, VP

[
EM

(
Ŷ
)]

 , is given by 
Expression (4) and can be easily derived using Theorem 11.1 of Cochran (1977) 

considering that VP

�
EM

�
Ŷ
��

= VP

�
∑
i∈SI

∑
j∈SIIi

ỹij
N

mn

�
. The second component, 

EP

[
VM

(
Ŷ
)]

 , is given by Expression (4) and can be easily obtained from the fol-
lowing result:

(3)�ij,�k = ��ij,�k

(4)

AV
(
Ŷ
)
= VP

[
EM

(
Ŷ
)]

+ EP

[
VM

(
Ŷ
)]

− VM(Y)

= VP

(
∑

i∈SI

Ỹi
1

𝜋Ii
−
∑

i∈UI

Ỹi

)
+
∑

i∈UI

1

𝜋Ii
Ni

(
Ni − n

n

)
𝜎2

IIỹi
+

+

{
∑

i∈UI

1

𝜋Ii
𝜎2

u

[(
N2

i

n

(
1 +

(
n − 1

)
𝜌i
)
)

+

(
∑

�≠i

1

𝜋I�
𝜋Ii,I�NiN�

𝜌i,�

)]}
+

− 𝜎2

u

∑

i∈UI

Ni

{
[
1 +

(
Ni − 1

)
𝜌i
]
+

[
∑

�≠i

N
�
𝜌i,�

]}

EP

[
VM

(
Ŷ
)]

=
∑

i∈UI

EP

[
VM

(
Ŷi

N

Nim
𝜆i

)]
+
∑

i∈UI

∑

�≠i

EP

[
CovM

(
Ŷi

1

𝜋Ii
, Ŷ

�

1

𝜋I�
𝜆i𝜆�

)]
,
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where �i = 1 if Ui ∈ SI and �i = 0 otherwise, and �j|i = 1 if j ∈ SIIi and �j|i = 0 oth-
erwise. The third component in Eq. (3), VM(Y) , is a fixed component depending on 
the population characteristics and is given by Expression (4). Finally, with some 
straightforward manipulation of previous equations, we may express the anticipated 
variance of the Horvitz–hompson estimator under the adopted model as follows:

where

in which �IIij,IIik = EP

(
�j|i�k|i|Ui ∈ SI

)
 , with �IIij,IIik = n

(
n − 1

)
∕Ni

(
Ni − 1

)
 in an 

SRSWOR design in the second stage.

4  Efficiency versus feasibility

To achieve efficiency, we adopt a sampling algorithm for the first-stage sampling 
which ensures that joint inclusion probabilities �

�i,�� are small whenever �̄�i,l is large 
in order to minimize the term A of 3.3. As demonstrated in Theorem 1 in Grafström 
and Lundström (2013), if the first-stage sampling is well spread on the totals 
d
�i = Xi =

∑
j∈Ui

xij and we balance on the same totals, then we balance on the theo-

retical unknown values Ỹi =
∑
j∈Ui

g
�
xij
�
. In this way, the term B of Eq. (6) tends to be 

tiny because 
∑
i∈S

�

Ỹi
1

�
�i

≅
∑
i∈U

�

Ỹi = Ỹ. We may reduce the value of the term C of 

Eq.  (5) by geographically spreading the second-stage sampling into the clusters. 
Suppose now that we adopt an LP sampling strategy in each cluster by geographi-
cally spreading the sample. This produces the effect of having joint inclusion proba-
bilities �

��ij,��ik(LP) that are very small when the units are close and the correlation 
�ij,ik is high. Furthermore, if we geographically spread the second-stage sampling on 
the xij values and balance on the same variables, we obtain the balancing on the the-
oretical unknown values g

(
xij
)
 . In this way, the term D in Eq. (5) tends to be negli-

gible because, due to the balancing, we have 
∑
i∈S

�

ỹij
1

�
��i

≅ Ỹi.

(5)AV
(
Ŷ
)
= A + B + C + D + E − VM(Y)

(6)

A = 𝜎2

u

∑

i∈UI

∑

�≠i

Ni

𝜋Ii

N
�

𝜋I�
𝜋Ii,I�𝜌i,� ,

B = VIP

(
∑

i∈SI

Ỹi
1

𝜋Ii
−
∑

i∈UI

Ỹi

)
,

C =
∑

i∈UI

∑

j∈Ui

∑

k≠j

𝜎2

u
𝜌ij,ik

1

𝜋Ii

𝜋IIij,IIik

𝜋2

IIi

= 𝜎2

u

∑

i∈UI

1

𝜋Ii

N2

i

n

(
n − 1

)
𝜌i,

D =
∑

i∈UI

1

𝜋Ii
Ni

(
Ni − n

n

)
𝜎2

IIỹ
, E =

∑

i∈UI

1

𝜋Ii

N2

i

n
𝜎2

u
,



 G. Alleva et al.

1 3

In synthesis, taking as fixed the first-order inclusion probabilities �Ii = mNi∕N 
and �IIi = n∕Ni (for i ∈ UI ), the maximum efficiency is achieved by spreading and 
balancing both stages of the sampling selection. With this strategy, the term E 
becomes the dominant term of the AV, which can be expressed as 
AV

�
Ŷ
�
≅
∑M

i=1

1

𝜋Ii
N2

i

𝜎2
u

n
− VM(Y) = E − VM(Y).

Under the constraint that the first-stage sample size is fixed 
∑M

i=1
�Ii = m, and by using 

a Lagrangian function, we find that the minimum in �Ii of 
∑M

i=1

1

�Ii
N2

i

�2
u

n
 is given by.

�Ii = mNi

�
�u∕

√
n
�
∕
∑M

�=1
N
�

�
�u∕

√
n
�
=

mNi

N
, provided that mN

i

�
�
u
∕
√
n

�

≤
∑M

�=1
N
�

�
�
u
∕
√
n

�
.

Therefore, we see that the PPS solution, given by �Ii = m
Ni

N
 for defining the first-

stage inclusion probabilities, is the optimal solution when spreading and balancing the 
sampling in both stages.

Above, we implicitly hypothesized that balancing and scattering of the sample in 
each of the two stages may nullify (more or less) the terms A , B , C and D in Eq. (5).

However, in designing practically feasible sampling strategies, we cannot com-
pletely neglect any of these terms. All feasible designs leave a residual that we cannot 
eliminate. We can better study the residuals by reformulating the AV as follows:

where A = A∗ + RA , B = B∗ + RB , C = C∗ + RC , and D = D∗ + RD , with A∗,B∗ , 
C∗ and D∗ representing, respectively, the elements of the components A , B , C and 
D that can be cancelled by a proper choice of the sampling designs. Conversely, 
the terms RA,RB,RC and RD represent the unavoidable components. The greater the 
terms A∗,B∗ , C∗ and D∗ approach the respective components A , B , C and D , the 
greater the residuals R become negligible and the sampling design approaches the 
maximum efficiency.

Let us first consider spreading. Having the clusters’ spatial coordinates, we can 
quickly spread the first-stage sample on the geographical variables. For all practical 
purposes, we can assume that the joint probabilities obtained through the LP algorithm 
are a good approximation of the optimal joint inclusion probabilities that minimize the 
term RA . Therefore, the terms A∗ and RA may be approximately defined as follows:

where �Ii,I�(LP) is the first-stage joint inclusion probability of clusters Ui and Uj of the 
local pivotal sampling design, and �Ii,I�(FPPS) is the first-stage joint inclusion prob-
ability of a standard PPS sampling design. Since the joint inclusion probabilities 
�Ii,I�(FPPS) and �Ii,I�(LP) are generally unknown, we may estimate them via Monte 

(7)AV
(
Ŷ
)
=
(
A∗ + RA

)
+
(
B∗ + RB

)
+
(
C∗ + RC

)
+
(
D∗ + RD

)
+ E − VM(Y),

(8)A∗ ≅ �2

u

∑

i∈UI

∑

�≠i

Ni

�Ii

N
�

�I�
�i,�

(
�Ii,I�(FPPS) − �Ii,I�(LP)

)
,

(9)RA ≅ �2

u

∑

i∈UI

∑

�≠i

Ni

�Ii

N
�

�I�
�i,� �Ii,I�(LP)
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Carlo simulation. Expressing the spatial correlation as in Eq.  (6), the value of RA 
depends mainly on the size of parameter � : the closer is � to the value 1, the lower 
the decrease with the distance of the spatial correlation and, hence, the greater the 
gain in efficiency. Similarly, the terms C∗ and RC may be approximately defined as:

Because the distances between units in the same cluster are tiny, the effectiveness 
of the second stage derived from local pivotal sampling may be poor. Indeed, the 
correlation values �ij,ik remain uniformly high in this situation. Furthermore, spread-
ing in the second stage may be more difficult due to a lack of professional skills to 
carry on that exercise. Therefore, a feasible strategy should ensure that the second-
stage selection is carried out autonomously in each sample cluster. In this case, it 
would be better to adopt an SRSWOR design.

Let us now consider the balancing. First, let us note that it is not conceivable to 
balance directly on the Xi totals at the cluster level since the variables xij that influ-
ence the spread of a pandemic are strictly related to personal behaviour (e.g., num-
ber of people met and number of journeys). These variables are usually unavailable 
in the sampling frames. Individuals’ age, class and sex may represent a good proxy 
of the unknown xij values. A rational strategy is to identify a vector zi of known 
auxiliary variables at the cluster level, which we can assume to be correlated to the 
dissemination of the pandemic. We can then define a working model:

where ỹ(z)i = h
(
zi
)
, denotes a Lipschitz continuous function, which returns the 

same value for all individuals in the same cluster, and the residual u(z)ij is given by 
u(z)ij = uij + g

(
xij
)
− h

(
zi
)
.

We may express the component B∗ as:

where B∗ is the sampling variance of the predictions Nih
(
zi
)
 of the totals Yi obtained 

by Model (12), whereas B is the sampling variance of the theoretical values Ỹi 
derived by Model (2) when generating the data.

In the context of the pandemic, possible choices of zi are as follows:

where Vi = Vi∕Ni and ki is the vector of the geographical coordinates of cluster Ui.
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∑

i∈U
I

∑

j∈Ui

∑

k≠j
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[
n
(
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)
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(
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) − �
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]
,

(11)RC ≅
∑

i∈U
I

∑

j∈Ui

∑

k≠j
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u
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�
Ii

�
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IIi

,

(12)yij = ỹ(z)i + u(z)ij

(13)B∗ = VP

[
∑

i∈SI

Nih
(
zi
) 1

�Ii
−
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i∈UI

Nih
(
zi
)
]
,

(14)zi = Vi, zi = ki, zi =
(
Vi, k

�
i

)�

,
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The first equation in (14) assumes that being infected depends mainly on the aver-
age number of verified infected people in the cluster. In contrast, the second equa-
tion in (14) implies that the probabilities of being infected are a function of the geo-
graphical coordinates of Ui only. Finally, the third equation in (14) identifies both 
the average number of verified infections and the geographical coordinates of Ui as 
possible influencing factors on the probability of being infected. Under Model (12), 
we have D∗ = 0 and RD = D.

Finally, we note that balancing the sample requires the availability of a popula-
tion register with balancing variables xij available for every individual. However, 
this is not what happens in most situations we may encounter.

To summarize the results presented in this section, the best strategy to follow in 
practical cases is to balance the first-stage sampling on the Nih

(
zi
)
 variables to guar-

antee that the term B∗ is nullified as a consequence of the fact that ∑
i∈SI

Nih
�
zi
�

1

�Ii
≅

∑
i∈UI

Nih
�
zi
�
 . Moreover, we can spread the first-stage sampling and 

have a small �Ii,I� when �i,� is large. Indeed, in this case, the dominant term of 
AV

(
Ŷ
)
 is:

This strategy approaches the theoretical optimum E − VM(Y) if the terms 
RA and RB are small and the components C and D (derived from the second-stage 
sampling) are comparatively lower than the terms A and B derived from the first-
stage sampling. Furthermore, we may introduce two indicators of efficiency. The 
first is the feasible sampling design’s efficiency index ( eff  ) defined as:

In addition, the difference between above design’s efficiency and the maximum 
efficiency ( effmax ) can be computed as

5  Simulation results

5.1  Simulation of pandemic spread

In this section, we evaluate the performance of our proposed sampling methods 
using a simulated dataset representing an artificial population. The algorithm used 
for generating the data are extensively described in Alleva et al. (2022). The R pack-
age episampler (Nardelli 2020), containing all the codes to generate the dataset, is 
freely available online. Alleva et al. (2022) adopted an augmented SIR model that 
best represents the characteristics of the SARS-CoV-2 epidemic. In fact, in the 

(15)AV
(
Ŷ
)
≅ RA + RB + C + D + E − VM(Y)

(16)eff = 100
RA + RB + C + D + E

A + B + C + D + E
.

(17)effmax = 100
E

A + B + C + D + E
.
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original formulation (Kermack and McKendrick 1927), the authors considered the 
infected people divided into only two categories, namely, ‘verified’ (identified by a 
positive swab from health screening) and ‘unverified’, i.e., those who were not aware 
of being infected. This model has also been used extensively to analyse the evolution 
of the COVID-19 pandemic (see among others Taimoor et al. 2022). In contrast, in 
our formulation, we also distinguish infected individuals with or without symptoms. 
In fact, regarding the transmission chain, the ‘unverified’ infected are not isolated in 
quarantine and continue to move and meet other people, thus increasing the spread 
of the epidemic. Furthermore, in contrast to the original formulation, those that are 
removed from the list of susceptibles are further distinguished in the categories of « 
healed» or « dead».

We considered an artificial population of individuals distributed across 400 spa-
tial units laid on a regular 20-by-20 square lattice grid. The structure of the map is 
intentionally generic: it can represent both a city divided into neighbourhoods or a 
small region divided into several administrative areas. The density of the popula-
tion residing in each cell was generated considering different spatial distributions. In 
three different experiments, we generated 20,000 individuals distributed with a spa-
tial autocorrelation parameter equal to 0.3, 0.5 or 0.7 to reproduce different patterns 
of spatial agglomeration in urban settlements (Xu et al. 2010). However, in what fol-
lows, we report only the results characterized by an autocorrelation parameter equal 
to 0.5 because the other two cases do not present significant differences.

The movements of the individuals were simulated as follows: each day, some of 
the individuals go to the four central cells considered the points of attraction (e.g., 
the city centre for work or leisure). Contagion is simulated to occur during the 
meeting of individuals and during their movements in the geographical space with 
a probabilistic mechanism. Epidemic curves are then simulated with the mobility 
and social interaction mechanism and divided into two phases. In the first 4 weeks 
(Phase 1), the interaction corresponds to a situation of normality, while in the fol-
lowing 6 weeks (Phase 2), we simulated a state of lockdown. The main results are 
reported in Fig. 1, which displays the time trend of 6 categories: the susceptible (S), 
those exposed to the virus (E), those infected with symptoms (I) and without symp-
toms (A), and those removed from the population either because they are healed 
(R) or dead (D). The trend of the various categories of the model closely resembles 
those observed in many empirical situations, e.g., those of the first wave observed in 

Fig. 1  Epidemic curves for the 
generated map
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the different Italian regions affected by the SARS CoV-2 pandemic from February 
to June 2020.

To measure the impact of the spatial correlation of the susceptible population 
and mobility, for each day of the pandemic, we calculated the Moran index (Moran 
1950) for both the known infected and the total infected (I + A) populations. Fig-
ure 2 shows that the spatial correlation of the infected is more attributable to the 
mechanisms of mobility and social interactions than to the geographical distribution 
of the population because it changes dramatically over time. Moreover, consider-
ing the distribution of the known infected (I) and of the total infected (A + I), the 
spatial correlation of the two variables follows the same pattern in the homogeneous 
screening simulation. We can observe that, quite intuitively, the spatial correlation 
increases in the early phase when the outbreaks are still limited. Conversely, when 
the epidemic spreads throughout the map, the spatial correlation declines to a mini-
mum, which is reached at the epidemic peak. Once the infected curve reached the 
plateau (Day 29), in areas with lower incidence, the total number of infected people 
decreased faster thanks to lockdown policies, resulting in a subsequent new increase 
in spatial correlation.

5.2  Evaluation of different sampling designs

For comparison, our experiment considers six possible first-stage alternative sam-
pling designs as follows: (1) fixed-size probability proportional to size (FPPS), (2) 
local pivotal (LP) method, (3) local cube method (LC) based on verified infected 
(LCBV) in which the balancing variables use the first equation in (14) to specify the 
z variables, (4) LC method based on geography (LCBG) in which the balancing uses 
the second specification of (14), (5) LC method based on both the verified infections 
and on geography (LCBVG) where the balancing is based on the third specification 

Fig. 2  Evolution of Moran’s spatial correlation coefficient over time for known infected (I) (dashed line) 
and total infected (I + A) (solid line) populations in simulation
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of (14), and (6) LC method based on the variables influencing the pandemic at the 
unit level (LCBI).

Given the way we created the pandemic simulation, the variables influencing 
the probability of becoming infected at the level of a single unit of the design 
LCBI are the following: number of people, total distance and number of trav-
els, total number of contacts and rate of the known infected of the cluster. The 
designs FPPS and LCBI represent the lower and upper bounds of efficiency, 
respectively. The LCBI design is not feasible in practice since we would have 
to record all relevant auxiliary information at the unit level that influenced the 
spread of the infection in the sampling frame. Using the artificial population gen-
erated as described in Sect. 5.1, we simulated a sample survey at three moments 
of time: Day 15 (during the ascending phase of the epidemic), Day 29 (at the 
peak) and Day 43 (during the descending phase in the lockdown period). For each 
combination of the simulation parameters, we repeated the Monte Carlo exercise 
for 50,000 runs to ensure the convergence of the results for different sample cells 
(20, 40, 80 and 160 out of 400) with different numbers of people sampled in each 
cell (1, 3, 5 and 7) on different days (Days 15, 29 and 43 of the pandemic). For 
simplicity, in Table 1, we report the true value, estimated value obtained as the 
mean of the various simulation runs, relative bias expressed in absolute terms 
(RAB) and standard error (SE) of the estimates for Day 15 with 3 people for 80 
cells. The results of the simulations obtained using other parameter combinations 
do not add further insight. As expected, all sampling methods considered produce 
unbiased estimates. Furthermore, they provide evidence of consistency, although 
with very different convergence speeds and significantly lower standard errors 
than those produced by FPPS sampling. The LCBI displays the lowest standard 

Table 1  Simulation results for 
Day 15 (3 people–80 cells)

Sampling method True value Estimate RAB SE

FPPS 1,035 1,048 0.0125 0.37
LP 1,035 1,035 0.0001 0.34
LCBV 1,035 1,034 0.0006 0.25
LCBG 1,035 1,037 0.0015 0.34
LCBVG 1,035 1,028 0.0071 0.32
LCBI 1,035 1,034 0.0006 0.23

Table 2  Standard error of 
simulation on different epidemic 
days (3 people–80 cells)

Sampling method Day 15 Day 29 Day 43

FPPS 0.37 0.72 0.50
LP 0.34 0.68 0.47
LCBV 0.25 0.58 0.42
LCBG 0.34 0.68 0.47
LCBVG 0.32 0.67 0.46
LCBI 0.23 0.57 0.41
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error. As discussed above, since it would need to capture any pertinent auxiliary 
data at the individual level, this design is not viable in practice. The LCBV tech-
nique exhibits the smallest standard error among the remaining feasible designs.

To add further insights, in Table 2, we report the standard errors calculated for 
the three different epidemics. Again, LCBV sampling outperforms the other feasi-
ble methods. These results agree with those obtained in previous simulation studies 
(Grafström et al. 2013).

The LCBV method performs best with respect to the other sampling strategies 
because of the assumption of homogeneous screening. In the previous simulation, 
we assumed that all the infected people have the same probability of being discov-
ered. Although sometimes empirically grounded (Nishura et al. 2020), this assump-
tion may sometimes be too strong and may not properly represent what occurs.

For this reason, in a further Monte Carlo study, we relax the hypothesis of homo-
geneity, and we assume the presence of heterogeneity by dividing the map into 4 
squared macroregions characterized by different abilities to find infected individuals 
in each area. For brevity, we omit all results similar to those obtained in the pre-
vious simulation. The main difference under the heterogeneity assumption is that 
the method which is balanced both with space and with known infection (LCBVG) 
appears to be more robust and it performs better than the one balanced only for the 
number of known infected people neglecting space. Considering that in practical 
instances the relationship between known and unknown infected cannot be known a 
priori, the LCBG may be a good choice. Indeed, it approaches the optimal accuracy 
provided by the LCBVG sampling.

5.3  Evaluation of various addenda of anticipated variance

To complete our analysis1 and refer to the theoretical results derived in Sect.  3, 
Table 3 reports an evaluation of the size of the terms A,B,C,D and E in Eq.  (5) 

Table 3  Percent value of 
each component over sum of 
components A,B,C,D and E

Day � A B C D E

7 0.598 59.32 23.73 11.32 0.03 5.60
15 0.635 67.34 17.24 10.31 0.01 5.10
43 0.961 82.10 16.40 1.00 0.01 0.49

Table 4  Percent ratio of 
unavoidable first-stage 
components R

A
and R

B
 over 

respective terms A and B and 
indices of efficiency

*We compute R
B
 by balancing first stage on aggregated number of 

verified infected

Day �
(
RA∕A

)
100

(
RB∕B

)
100* eff eff − effmax

7 0.598 10.3 19.45 27,7 22,0
15 0.635 8.8 15.31 24,0 18,8
43 0.961 0.4 15.72 4,4 3,9

1 The code to reproduce the analysis is available on https:// github. com/ vincn ardel li/ sampl ing- effic iency- 
feasi bility.

https://github.com/vincnardelli/sampling-efficiency-feasibility
https://github.com/vincnardelli/sampling-efficiency-feasibility
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(expressed as a percentage) for Days 7, 15 and 43 of our simulation. We estimated 
the term � of the covariance �ij,ik = ��ij,�k with the methods of moments.

Table  4 provides the percentage of the unavoidable first-stage components 
RA and RB over the respective terms A and B . We compute the term RB by balanc-
ing the first stage on the aggregated number of verified infections. The table shows 
the feasible sampling design’s efficiency index ( eff  ) and the difference between this 
design’s efficiency and the maximum efficiency ( effmax).

Looking at the two tables, we can draw the following conclusions: (1) The value 
of � , as defined in Formula (4), is relatively high each day and consistently higher 
than 0.59. (2) The term A is dominant since it represents more than 60% of the sum 
of the positive components of AV  . Its importance dramatically increases when the 
parameter � approaches its theoretical maximum, that is, in highly positive spatially 
correlated situations. (3) The term B represents a relevant component with a rela-
tive percent size ranging from 15 to 20. Balancing in the first stage, therefore, turns 
out to be a good way to reduce sample variability without needing access to indi-
vidual data. (4) The first-stage components A and B together represent more than 
80% of the AV. (5) The second stage-components C,D and E represent a negligi-
ble part of the AV being together consistently lower than 20%. The second stage 
achieves only 20 percent efficiency because most of the variability is observed in the 
first stage among the different PSUs, while the variability among individuals living 
nearby (second stage) is much lower. Therefore, using more complex methods that 
also consider spatial correlation in the second stage can only negligibly improve the 
efficiency of the method. (6) The local pivotal method can cancel more than 90% of 
component A. Similarly, balancing the first stage on the aggregated number of veri-
fied infected eliminates more than 30% of the term B.

To summarize, the proposed strategy based on spatially balanced sampling in the 
first stage and simple random sampling in the second stage achieves a very high 
level of efficiency since it cancels out more than 70% of the positive components of 
the AV. The second-stage sampling could achieve only a 20% additional efficiency, 
but this gain may jeopardize the survey’s feasibility.

6  Conclusions and research priorities

The aim of this paper was to improve the current practice in epidemic data collec-
tion by introducing sampling designs that exploit the intrinsic peculiarity of data of 
being positively spatially correlated. In this context, we studied the feasibility and 
efficiency of two-stage sampling designs to estimate critical parameters of COVID-
19 infection. The National Statistical Institutes could implement them rather quickly 
to provide timely information on the development of the pandemic. We propose to 
adopt spatially balanced sampling in the first stage and simple random selection 
in the second stage. This strategy is efficient and feasible. Since the phenomenon 
of infection is positively correlated, spatial sampling allows gaining efficiency by 
spreading the first-stage sample over space. The balancing strategy leverages aggre-
gated data on the number of verified infected people often available at the primary 
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unit stage level in many countries. Simple random sampling in the second stage does 
not require information at the unit level. Since the essential auxiliary variables are 
only represented at the aggregate level, the strategy we provide is also significant 
from the perspective of its viability in terms of privacy compliance.

Thanks to a simulation study, the theoretical optimality properties of the estima-
tors were confirmed, and the advantages derived from the introduction of the spatial 
dimension appear to be highly relevant.

The results obtained in this paper encourage us to extend our research in sev-
eral directions. Indeed, some developments represent a natural extension of the pre-
sent proposal. The simulation could be extended by adding information such as age, 
sex and professional condition that are useful to balance the sample, thus further 
improving the efficiency of the estimators. Different forms of map structure, popu-
lation density and mobility schemes could also be introduced to represent differ-
ent types of urban contexts or regional settlements to tailor the design to different 
real cases. Other possible developments may concern the adaptation of the proposed 
method for the selection of sample units to which diagnostic tests seeking to trace 
the diffusion of the virus can be administered. One good example is the tracing of 
the variants of COVID-19 observed in the 2021 waves, with a specific focus on their 
geographical spread.
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