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Quantum zero point electromagnetic energy difference between the superconducting
and the normal phase in a high-Tc superconducting metal bulk sample
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We provide a methodological approach to the estimate of the change of the quantum vacuum electromagnetic
energy density in a high critical temperature superconducting metal bulk sample, when it undergoes the transition
in temperature, from the superconducting to the normal phase. The various contributions to the Casimir energy
in the two phases are highlighted and compared. While the transverse magnetic polarization of the vacuum mode
allows for a macroscopic description of the superconducting transition, the changes in the transverse electric
vacuum mode induced by the superconductive correlations are introduced within a microscopic model, which
does not explicitly take into account the anisotropic structure of the material.

DOI: 10.1103/PhysRevB.106.134502

I. INTRODUCTION

The electromagnetic (EM) field does work on each unit
volume of matter at the rate �E · �j, where �E is the electric field
and �j is the charge current density. Feynman and coauthors,
in their textbook on electromagnetism [1] stress the indefinite-
ness in the location of the EM field energy: “It is sometimes
claimed that this problem can be resolved by using the the-
ory of gravitation ...all energy is the source of gravitational
attraction.” The Archimede project is designed for measuring
the effects of the gravitational field on a Casimir cavity by
performing a weighing measurement of the vacuum fluctua-
tion force on a rigid Casimir cavity [2–4]. The vacuum state
of the EM photon field is strongly modified in presence of a
metal material, forming a coherent radiation-matter realm [5].
The goal of this project is to measure changes in the Casimir
force when the cavity metal undergoes a phase transition from
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the normal metal phase to the superconducting state. In the
following we will address the two phases by talking shortly of
a normal metal or a superconducting metal. There are specu-
lations that the Casimir force can be the driving microscopic
mechanism for superconducting pairing [6]. In this paper we
adopt a more conservative view and assume that the largest
contribution to the change in the Casimir force at the transition
comes from modifications of the vacuum fluctuation spectrum
due to changes in the photon field density of states at long
wavelength, assuming that the thermodynamic free-energy
gain at the transition (the so-called “condensation energy”)
originates instead at atomic scale, by including short-distance
lattice effects. The latter are considered as a small correction
to the vacuum fluctuation spectrum and can be measured at
very low temperature with a transition in magnetic field.

This work is devoted to the comparison in the Casimir
energy between the normal and the superconducting phase
of a metal slab considered as the Casimir cavity in free
space. By choosing an high-temperature superconductor
(HTS) as YBCO we gain various advantages. The transition
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temperature is relatively high, which increases the feasibility
of the experiment. We choose ẑ in the direction of the c axis
orthogonal to the high-Tc superconductor planes, so that the
collection of CuO planes are parallel to the planar surfaces
of the material, thus exploiting the strong anisotropy of the
superconducting correlations. The dominant contribution to
the Casimir energy for a normal metal slab comes from the
plasma modes that can be excited at the opposite surfaces.
Retardation implies that they are both acoustic with a top
frequency in the crossover between microwaves and infrared
radiation (∼THz), an energy range which is already rather
high for a conventional superconductor. In spite of the fact
that the electronic spectrum is not fully gapped in the super-
conducting phase, coherence of a HTS is expected to be more
robust and preferable in this range of frequencies. Ignoring in
this approach the nodes in the gap, YBCO has a maximum
superconducting gap � ∼tens of meV which is in the same
frequency range.

Differences arise between the superconductor and the nor-
mal phase because the minimal coupling of the EM field to
the superconducting order parameter generates the Anderson-
Higgs (AH) mechanism in the superconducting state [7–9].
The two transverse massless modes of the Maxwell equa-
tions in vacuum are replaced by three independent massive
modes with mass m2 = (2 π/λL )2 which, macroscopically,
gives rise to the Meissner effect, i.e., the expulsion of the
static magnetic fields from the superconducting bulk. This
fixes an energy threshold for photon propagation inside the
superconductor, given by h̄cm/n, where n is the refraction
index (denoted as Meissner threshold in the following). While
the superconducting correlation length ξ can be of the size of
the sample, the Meissner penetration length is relatively small
in the c-axis direction λ⊥,YBCO

L ∼ 0.75 μm, where λL is the
London penetration length. The latter is of the order of the
skin depth in the normal metal, at least for a pure sample.
However, the transverse electric (TE) vacuum modes, charac-
terized by Ez penetrating in the sample, perform in any case
very differently between the two phases as for what concerns
the interaction with the surface plasma excitations. Resonant
tunneling below the Meissner threshold, assisted by virtual
quasiparticle (QP) electronic excitations is still possible if
the slab has thickness a � 2λL, as will be explained in the
following.

For a macroscopic metal body of linear millimeter size a,
in coherence with the EM vacuum, a macroscopic approach is
usually adopted, resorting to a semiclassical response theory
in terms of a dielectric function ε(ω) (intended at k ≈ 0 for an
isotropic system). A macroscopic description of the transverse
magnetic (TM) photon vacuum in the presence of a slab-like
cavity is allowed as the TM modes have Bz = 0 which can be
macroscopically compatible with the metal both in the normal
and superconducting phases. Indeed, superconductors require
Bz = 0 at the boundary with the plane surface due to Meissner
effect. Among the nonvanishing field components (Ex, Ez,
and By), the ε(ω)Ez component should be matched at the
boundary. In a slab geometry ε(k‖, ω) entails plasma surface
modes (k‖ ‖ a-b planes) coupled between the two opposite
surfaces, which can be classified as symmetric plasma mode
(SPM) and antisymmetric plasma mode (ASPM) with respect
to the inversion plane of the slab. Only the transverse magnetic

(TM) photons couple to these modes. It is well known that
in the normal metal the SPM and the ASPM give opposite,
almost compensating, contributions to the Casimir energy and
the ASPM prevails with its minus sign [10]. We will argue
that the superconductor has collective modes corresponding
to the SPM and ASPM, the Mooij-Schön (MS) mode, and
the Carlson-Goldman (CG) mode, respectively. On the other
hand, in the superconducting phase the MS mode is a true
plasma oscillation mode, while the CG one is macroscopically
charge neutral, balancing a QP electron component with a
Cooper pair component which, in the case of nodes in the
gap, does not require too much energy. The CG mode being
neutral does not couple macroscopically to the zero point
extended TM photons, thus implying the absence of compen-
sation occurring in the normal phase, which makes a sizable
difference when comparing the results of the two phases in
first approximation. Moreover, in the superconducting phase,
the two transverse massive modes are both similar to TM
modes and they both couple to the MS excitation mode.

The TE mode (which is characterized by nonzero
Bx, Bz, Ey components) does not couple to the plasmonic
surface excitations in the normal metal, at least in a macro-
scopic approach based on a Drude-type frequency-dependent
dielectric constant ε(ω). In the superconducting case, the
longitudinal AH massive photon mode is similar to a TE
mode and we expect that it does not couple with the MS
plasmon, either. On the contrary, it allows for longitudinal
resonant states to arise, which split off the minimum of the
AH band in the confined geometry, provided Cooper pairs
can be, even just virtually, broken. These pair-broken states
couple with the Bz component of the incoming AH mode.
However, to describe this physics, the macroscopic picture
cannot be adopted. In fact, the Bz component of the longi-
tudinal, so called, TE mode would violate the macroscopic
London Bz = 0 boundary condition for the superconductor. A
realistic model accounting for the full microscopic electronic
structure of the real sample is beyond any possible approach.
The idea is to replace the actual cavity with an effective local
interaction between the nonvanishing Bz component and pair
breaking in the a-b planes. For YBCO the Meissner threshold
is of the order of the gap �, so that the resonant state can
be located in the coherent subgap energy window. We will
adopt a two-channel scattering approach for the TE mode by
considering virtual photon emission or absorption processes,
as the result of the interaction of the incoming wave with
quasiparticles close to the nodes of the gap. We will show that
resonant states arise in the case of normal incidence of the TE
mode onto the film surfaces.

In Sec. II we present the macroscopic approach for deriving
the contribution to the Casimir energy from interaction of the
TM mode with the surface plasma waves for various linear
lengths of the sample which plays the role of the Casimir
cavity. Section II A discusses the case of a normal medium,
while Sec. II B is devoted to the superconducting medium.
The ideal normal metal is characterized by a single param-
eter, the plasma frequency ωp. Hence, the length scale is
c/ωp where c is the propagation velocity in the material.
According to London theory, ωp is replaced in the super-
conducting phase by the superconductive plasma frequency
ωps = (4πnse2/m)1/2, in which the density of Cooper pairs
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ns appears replacing the electron density n. Here c/ωps is the
London penetration length λL for an isotropic medium. This
implies that close to the transition temperature the normal and
the superconductive length scales are quite different, while for
temperatures not in the transition region the two scales can be
considered as being roughly equal. In Sec. III we will present
the effective model for the microscopic model approach of a
TE mode characterized by the Bz field component propagating
at normal incidence. Details are given in Appendixes A and
B. Section IV is devoted to the Casimir energy of the super-
conducting phase. Further scattering features of the model,
including phase-shift jumps, are critically analyzed. The total
Casimir energy for the two phases and their difference is
presented in Sec. V. Section VI includes a summary and the
conclusions that can be extracted which could be useful in the
interpretation of the experiment.

Keep in mind, any time we discuss qualitative physics
related to superconductors we assume zero temperature and
ignore the fact that HTS materials, YBCO in particular, are
strongly anisotropic and that there are nodes in the d-wave
excitation gap. In this sense, the gap is 2� with no QP’s
in this energy range both in the text and in the pictures.
Also, the velocity of light is denoted as c with no care of
the refractive index. These simplifications aim to highlight
the differences of the superconducting phase with respect to
the normal phase. We are aware, of course, that quantita-
tive analysis would require to include these peculiarities of
the HTS carefully, and we mention and introduce them in
the text and in the numerical estimates, when they cannot
be overlooked.

The approach considered in this paper explicitly uses the
bulk behavior of the superconductor, while in the case of the
experiment one can consider both the use of bulk samples and
thin films, and also the superposition of thin layers [11]. In
this sense, it is expected to extend this work to the limiting
case of thicknesses tending to zero, in the nanometer limit.

II. COMPARISON BETWEEN THE NORMAL AND
THE SUPERCONDUCTING PHASE ENERGY SCALES

To compare the superconducting and the normal phases
of our sample from the macroscopic point of view, we have
to define the dielectric properties of the two phases with the
energy scales involved.

In the case of the normal phase, when the inelastic scatter-
ing time τ is long enough (i.e., in the limit ωτ � 1), we can
assume that the sample is close to be an ideal metal. With the
TM polarization, Ez penetrates inside the metal over a length
δ̃ named “skin penetration depth.” The Drude conductivity for
the ideal normal metal σ , of real part σ1 and imaginary part
σ2, can be used:

σ = n e2

m

1

1/τ − iω
→ σ2(ω) = σ0

ωτ

1 + ω2τ 2

(with σ0 = ne2τ/m) allows to define a frequency scale:

ω0 = c

δ
= c

√
4π

c2
σ2(ω0)ω0 = 4π σ2(ω0). (1)

FIG. 1. σ1 vs ωτ for �τ = 1.5 (lowest curve), 0.5, 0.3 and
kBT τ = 0.3. τ is the inelastic scattering time.

For the ideal normal metal, Eq. (1) recovers ωp =√
4π ne2/m, the normal metal plasma frequency.
With the chosen geometry, the nodal lines of the d-wave

order parameter for high-Tc superconductors lie in the a-b
plane parallel to the surfaces of the material. Although the
nodes of the gap � imply that some density of QP’s is ex-
cited even at T ≈ 0, we consider the gap � quite robust for
transport in the c direction. In Fig. 1 we report the real part of
the conductivity, σ1, at finite frequency, at �q = 0 (i.e., its bulk
value), for increasing � at fixed temperature for an s-wave su-
perconductor, as derived from Ref. [12]. When kBT 	 �, σ1

is quite small at frequencies ω < 2�, except for the pseudo-
Drude peak at zero frequency, which contributes to the sum
rule

∫∞
0 dω 4πσ1(ω) = π ω2

ps/2 in the limit τ → ∞ and is
not included in the plot. This implies that the Kramers-Kronig
transform for σ2,

σ2(ω) = −ω

π

∫ ∞

−∞
dω′ σ1(ω′)

ω′2 − ω2
, (2)

is dominated mostly by the enhancement of excitations close
to the pair-breaking energy, but also by the zero-frequency
peak. Including just the latter δ peak, we obtain

σ1 	 σ2 ∼ nse2

mω
, (3)

where ns is the Cooper pair density. Hence, the polarizability
is quite high at microwave frequencies [13]

ε1(ω) ≈ −4πσ2/ω (4)

in the limit τ → ∞. It follows that the superconducting di-
electric function is not much different from the normal one,
except for frequencies close to the pair-breaking energy 2�/h̄,
where it has an enhancement just above the gap threshold [14].
The main differences are expected in the quantitative energy
scale of the modes and in their lifetime [15–18]. A plot of an
approximation of the real part ε1(ω) for the superconducting
and normal phases is displayed in Fig. 2.

In the superconducting case, inserting Eq. (3) in Eq. (1)
we obtain the superconducting plasma frequency ωps =√

4π nse2/m. As expected, the definition of Eq. (1) appears
convincing on the full range normal ↔ superconductor,
when screening is low. In the case of YBCO, the anisotropy
of the London length is important as λ⊥

L /λ
‖
L = 5 (where λ

‖
L

is in the a-b plane). With the choice ωps = c√
εsλ

⊥
L

, which is

valid in the limit ωτ � 1, and with εs = 30, λ⊥
L ∼ 0.75 μm,
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FIG. 2. Comparison between ε1(ωτ,�τ, T τ ) of the normal ideal
metal case ε1(ωτ, 0, T τ ) = 1 − 2.6/(ωτ )2 (full blue curve) and for
the superconducting case ε1(ωτ,�τ, T τ ) (green dashed curve) vs
ωτ . Here �τ = 1.0 and T τ = 2.0 (with σ0 = 0.7). The sharp peak
at ω ∼ 2�/h̄ heralds the enhancement of QP excitations at the pair-
breaking energy. Difference between the two curves is only close to
ω ∼ 2�/h̄.

which gives ωps ∼ 0.7 × 1014 Hz = 48 meV. The maximum
gap for YBCO is � ∼ 16 meV, so that 2� < ωp, but rather
close to it.

III. PHOTON MODES IN INTERACTION
WITH THE METAL FILM

A. TM polarization: Contribution of the plasma modes to the
Casimir energy, in the normal metal phase

Let us now introduce the Maxwell equation outside of the
superconductor and the boundary conditions:(

∇2 + με
ω2

c2

){ �E
�B
}

= 0. (5)

The modes have dispersion ω2

c2 = k2
‖ + k2

z . As the TM mode
has Bz = 0, it can be macroscopically compatible with the
metal both in the normal and in the superconducting phases.
Indeed, superconductors require Bz = 0 at the boundary with
the plane surface. Among the nonvanishing field components
(Ex, Ez, and By), continuity of Dz = ε(ω) Ez is required,
assuming vanishing charge density at the surface. These con-
ditions, written for the TM mode component Ez across a single
vacuum-material boundary, are

εL(ω) �L − εR(ω) �R = 0, �′
L − �′

R = 0 (TM), (6)

where L is the vacuum at the left-hand side, with εL = ε0 = 1,
and R is the material at the right-hand side with dielectric
function εR(ω). Here the prime denotes derivative. At mi-
crowave frequencies, the electric field penetrates into the bulk
of the normal material over the skin depth [19], which is of the
order of the London penetration length at these frequencies.
Bound states at surfaces z = 0 and z = a imply

� =
⎧⎨
⎩

A eκ0z, z < 0
B e−κaz + C e−κa (a−z), 0 < z < a

D e−κ0z, a < z
(7)

with

⇒ εa/0(ω)
ω2

c2
= k2

‖ − κ2
a/0, (8)

where the subscript a refers to the 0 < z < a space region,
while the subscript 0 is for the vacuum regions. Assuming
inversion symmetry at a/2 is C = ±B and D = ∓A. Hence,
Eq. (6) at z = 0 becomes{

B[−κa ± κae−κaa] − A κ0 = 0,

ε(ω) B[1 ± e−κaa] − A = 0.

The requirement det∓ = 0 implies

−κa

κ0
[1 ∓ e−κaa] = εa(ω) [1 ± e−κaa]. (9)

In the case of no retardation and ideal metal, the two plasma
modes are very simple. No retardation (c → ∞) implies κa =
κ0 = k‖. Adopting the Drude form for εa(ω) = 1 − ω2

p/ω
2

where ω2
p = 4πn e2/m is the plasma frequency for electronic

density n, electron charge e and mass m, we get

det+ = 0 ⇒ ω2
+ = ω2

p

1 + coth
( k‖a

2

) (10)

for the symmetric plasmon and

det− = 0 ⇒ ω2
− = ω2

p

1 + tanh
( k‖a

2

) (11)

for the antisymmetric plasmon. ω+(k‖a) is an acoustic mode
and is rather unchanged when retardation is included, while
ω−(k‖a) is strongly modified by retardation.

Defining f+[x] = coth[x] ( f−[x] = tanh[x]) the total en-
ergy associated to each plasma mode is as follows: We now
integrate on k‖,

ETM
± ≡ 1

2

∑
k‖

ω±
k‖

= 1

2

L2

(2π )2

∫ +∞

0
2π k‖ dk‖

ωp√
1 + f±

[ k‖a
2

] (12)

or, with k‖L = x,

ETM
± ≡ ωp

2π

∫ +∞

0
x dx

1√
1 + f±

[
ax
2L

]
= ωp

2π

(
2L

a

)2 1

2

{
−
∫ +∞

0
dy

y2

2

∂

∂y

1√
1 + f±[y]

}
.

(13)

To include retardation, we define κ =
√

k2
‖ − ω2

c2 ε(ω) and

use λ = a ωp

c , s = k‖a, ν = ω
ωp

:

0 = det± =
√

s2 + λ2(1 − ν2)

s2 − λ2ν2

+
(

1 − 1

ν2

)
f±

[√
s2 + λ2(1 − ν2)

2

]
. (14)
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FIG. 3. The symmetric (ωsym) and antisymmetric (ωasym) disper-
sion relation for the plasma bound excitations vs k‖ (with k‖ > ω

c ),
in the retarded normal case, for two different linear sizes of the
sample aωp/c = 0.7 (a) and aωp/c = 0.2 inset (b). The linear light
dispersion ω = ck has also reported in the corresponding scale. The
dashed green line is the asymptotic limit at ωp/

√
2.

Solutions are only for s > λν → k‖ > ω/c. This limitation
guarantees that they are bound states (decaying outside the
slab). At very small s, ν has to be also very small to keep
the square root real. This implies that (1 − 1

ν2 ) is strongly
negative and a a solution is always found for both equations.
ν±(s) is the solution of det±(s, ν, λ) = 0 and is given in Fig. 3
for λ = 0.7 [Fig. 3(a)] and 0.2 [Fig. 3(b), inset]. The function
det±[s, ν, λ] depends on a. Dropping the label ± for simplicity
we get

ETM ≡ 1

2

∑
k‖

ωk‖ = ωp

2π

(
2L

a

)2

× 1

2

{
−
∫ +∞

0
ds

s2

2

∫
dν

∂ν

∂s
δ[ν − ν(s)]

}
. (15)

Here ∂ν
∂s = − ∂ det

∂s / ∂ det
∂ν

|λ.
For the case aωp/c = 0.2 we have

ETM
α ≡ ηα × ωp

2π

(
2L

a

)2

,

ηret
− ≈ 0.157 931, (16)

ηret
+ ≈ −0.204 317

(label α = ∓ stands for antisymmetric and symmetric, re-
spectively) to be compared with the nonretarded ones from
Eq. (13), ηnonret

− ≈ 0.167 578, ηnonret
+ ≈ −0.192 115. While

the energy dispersion ω−(k‖) is quite different for small k‖
and becomes acoustic for both modes in the retarded case, the
difference in their contribution to the Casimir energy, per unit
cross-section area L2 is rather small. This is shown in Fig. 4
for various linear widths of the sample z = ac/ωp. E± and
their sum E+ + E− (black dots) are reported vs ac/ωp. The

FIG. 4. Contribution to the Casimir energy, per unit area L2,
for various linear sizes ac/ωp, coming from the plasma modes in
the normal ideal metal sample. E+ (E−) comes from the symmetric
(antisymmetric) plasma mode. The full blue curves are fits of the
red dots with z−α , where α ≈ 5

2 for E− and α ≈ 2 for E+. E− is
negligible beyond dc/ωp ∼ 1. The black dots correspond to the sum
E+ + E−. The fit green curve is a power law just weaker than z−3(see
Sec. III D).

fitting of the sum E+ + E− (green curve) gives a scaling law
close to z−3 but weaker (see discussion in Sec. III C).

B. TM polarization: Plasma excitations
in the superconducting phase

Because of the presence of the gap � in the spectrum, it can
be argued that the plasma modes are much better defined in the
superconducting case than in the normal phase. In fact, with
the exclusion of the nodes of the energy excitation spectrum,
in the rest of the two-dimensional (2D) Brillouin zone, they
are located in the energy gap. In the case of the TM mode,
continuity of ε(ω)Ez at the boundary with exponential decay
inside the sample provides the energy dispersion of the plasma
modes.

The plasma mode dispersions for a superconducting film
have been plotted with a “phenomenological” approximation
in Ref. [20] and they do not look much different from our
Fig. 3, except for the frequency scale which replaces the
normal metal plasma frequency ωp with the superconducting
one ωps (the 2D mode dispersion implies in both cases an extra
factor 1/

√
2). Similarly to the normal case of Fig. 3 the sym-

metric and antisymmetric modes of Ref. [20] are ∼√k‖ and
∼1/

√
k‖, respectively. However, the similarity is conceptually

misleading. In the case of Ref. [20], the film is embedded
in a nonconducting medium with an enormous value for the
static dielectric constant (ε̃ ∼ 2 × 104). The phase velocity
of Ref. [20] is ω/k‖ < c/

√
ε̃, so that a frequency-independent

approach can be adopted. This is equivalent to ignore retar-
dation which is mostly relevant in our case, as the film is
located in vacuum and the bulk plasma frequency ωps � 2�,
or even � 2�. More generally, we can estimate the scale of
the dispersion ω0 for YBCO as ω0 = Rsq/L where Rsq is the
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sheet resistance in the nonsuperconducting state(∼2 × 10−4 �

at ∼10 GHz) and L is the kinetic inductance (expected to be
much larger than the geometric inductance) (with dimensions
� s and � is Ohm). In the case of an s-wave superconductor,
the commonly used expression [21] is

L ≈ Rsq h̄

π�

1

tanh
(

�
2kBTc

) . (17)

Adopting this definition for L, and a BCS form for ξ ∼ 10 nm,
we get

ω0 ∼ vF

ξ
∼ 1014 s−1. (18)

In the limit ωτ � 1 the (inductance per unit length)−1 for
a sample of 1 μm length can be estimated as nse2/m ∼
1019 (� × s)−1, which produces the same order of magnitude
for ω0 as Eq. (18).

Mooij and Schön [22] (MS) derived the collective exci-
tation modes in reduced geometries from a hydrodynamical
approach for charge imbalance. In a superconducting wire
of diameter r0 a linear dispersion mode is well defined for

kr0 	 1, with velocity c2
pp ≈ ω2

ps
r2

o
2 ε−1

s ln(1/kro), where εs

is the dielectric constant in the superconducting phase. They
also remark that, in the case of a superconducting slab of
thickness d in vacuum, the screening voltage is δV (x, r) with r
in the surface plane. The 2D Fourier transform is δV = 2π

k σ̃ ,
where σ̃ = δρs d is the induced surface charge density (δρs is
the volume-induced charge and d is the thickness of the slab
in the third direction). The three-dimensional (3D) Fourier
transform is δV = 4π

k2 ρ, so that we have

δV (k, a) = 2π

k

[
a

εs
+ 2

k

]
δρs. (19)

The continuity equation for the superconducting-induced
charge with ρ̇s = −iωFρs and F = 1 + 2εs/(ka) given by
Eq. (19), together with Euler equation, provides(

ω2 + i ωτ−1
imp

)
F (k‖) = ω′2

0. (20)

Keeping just the real part, in the limit ka 	 1 we have

ω′2 2εs

k‖a
= ω′2

0 ⇒ ω2 = ω′2
0a

2εs
k‖ (21)

which is the MS acoustic mode for a slab, with ω ∝ √k‖
(Fig. 5). It follows the k‖ dependence is the same as of the
symmetric plasma mode of the normal phase of Fig. 3 and
of the symmetric one in Ref. [20], though not in scale. It is
reasonable to assume that ω′

0 ∼ ω0 given in Eq. (18), so that
the prefactor in the dispersion of Eq. (21) is of the order of√

ω2
psa

2εs
∼ 0.07–0.3 × 1014 m1/2/s, (22)

for ωps ∼ 0.7 × 1014 Hz = 46 meV. The upper threshold for
the MS acoustic mode is ω0 < 2� � h̄ωps.

The mode corresponding to the ASPM is most probably
the Carlson-Goldman (CG) mode, which is close to the pair-
breaking energy and involves charge compensation between
the charge modulation of the pair condensate and the charge
modulation of the QP’s. At low temperatures, the CG velocity

FIG. 5. The dispersion of the symmetric Mooij-Schön mode (∝√
k) in a superconducting film. Vertical axis not in scale.

is cCG:

c2
CG = ns

m

1

2N (0)
≈ ns

n

1

6
v2

F (23)

[N (0) is the density of states at the Fermi energy]. It is ex-
pected to be quite short lived, particularly at small k‖. Besides,
being this mode charge neutral, it does not couple, at first
order, with the photon of the EM vacuum. The signature of
the pair-breaking processes in the dielectric function appears
at about k0 = 2�

h̄v
∼ 250 (μm)−1, as discussed in Appendix C.

This k vector refers to sampling distances of the order of the
lattice spacing, beyond the validity of our approach.

To sum up the case of the TM modes, our conclusion
is that, in first approximation, the CG neutral mode which
corresponds to the ASPM in the normal metal case does not
contribute to the Casimir energy because it does not couple to
the zero-point photon field. The SPM instead grows linearly
with k‖ at low k vectors and bends as

√
k‖, not different from

the normal ideal metal, but with an energy scale which is
different from the normal case, given by Eq. (18). The SPM
contributes to lower the Casimir energy. In the superconduct-
ing case here is no subtraction of the positive contribution
given by the ASPM, as it happens for the normal metal TM
case. In the next section we discuss the TE case for the
superconducting metal, in which resonant propagating modes
may be present below the AH threshold.

C. Total Casimir energy in the normal phase

An estimate of the Casimir energy for the normal phase
of the sample requires the full density of states of the photon
propagating modes at energies which correspond to the Meiss-
ner window of the superconducting phase. These energies
contribute to the total Casimir energy difference, from the
normal phase side. A tutorial approach to this contribution can
be envisaged by adopting a simple model for the transmission
across the sample. In this case a single elastic channel suffices
because QP’s in the metal only contribute to the propagation
with a finite lifetime. Following Bordag [10], we mimic the
cavity as in Sec. IV, with two δ-function potentials at the
distance 2d . The zero-point energy of a photon of wave vector
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K =
√

|k2
‖ + k2| and energy 1

2 h̄cK , where c is the velocity of
the incoming and outgoing photons in the vacuum. Scattering
is assumed to be elastic. The strength of the δ functions is
tuned by the inverse decaying length κ of the field. We antici-
pate here some results of a two-channel scattering model that
is presented in Sec. IV B. The total transmission is

t (k‖, k) = ei(k−q)d

1 + tR
t∗
R
r∗

RrL e2iqd

→ 1(
1 − k2

‖
k2 + iκ

2k

)2 ei(k−q)d

1 − κ2

4k2
1(

1− k2‖
k2 + iκ

2k

)2 e2iqd
, (24)

where k is the k vector in the ẑ direction out of the scattering
region and q is the corresponding k vector between the two
barriers (we take q = k). ti (ri ) (i = R, L) are the transmission
(reflection) coefficients of the two δ potentials which we have
chosen equal. This can also be derived restricting the matrix
S12 of Eq. (40) to a single channel. The total-energy contribu-
tion coming from these delocalized states is [23]

En
tot = 1

2

∑
k‖

ωTM
k‖ + L2

2

∫
2πk‖dk‖

(2π )2
c
∑

α

×
√∣∣∣∣ω2

α

c2
+ k2

‖ − ε(ωα )
ω2

α

c2

∣∣∣∣
[

∂

∂k
ln

t (k‖, k)

t (k‖,−k)

]∣∣∣∣
ωα

.

(25)

ωTM
k‖ , the plasma energy modes in the first term, arise from

the poles of t (k‖, k). ωα are the eigenvalues of the operator
− d2

dz2 + V (z) arising from the Schrödinger equation of the

potential in the z direction. The ratio t (k‖,k)
t (k‖,−k) = e2iδ where δ is

the phase shift in the transmission. To subtract non-distance-
dependent terms from the expression of Eq. (25), we substitute
t → t/td=∞. As the approach is only qualitative, we rewrite it
in the continuum limit ωα = c k. We get

En
tot = 1

2

∑
k‖

ωTM
k‖ + L2

2

∫
2πk‖dk‖

(2π )2
c

×
∫ +∞

0

dk

2π i

√∣∣k2
‖ + k2

∣∣ ∂

∂k
ln

t (k‖, k)

t (k‖,−k)
. (26)

By Cauchy theorem the k integration can be performed along
the imaginary axis k → ik and the deformation of the circuit
shows that this integral already includes the residues at the
plasma poles, so that the integral along the imaginary axis pro-
vides the full contribution to the Casimir energy. Integrating
by parts, we obtain

En
tot = −L2

2

∫
2π k‖dk‖

(2π )2

× c
∫ +∞

0

dk

π

k√∣∣k2
‖ − k2

∣∣ ln
1∣∣∣∣1 −

(
κk
2

k2
‖−k2− κk

2

)2
e−2kd

∣∣∣∣
.

(27)

When k‖ � κ , t (k‖, k) of Eq. (24) has three poles with in-
creasing k, which qualitatively reproduce the crossings with

FIG. 6. Total energies per unit surface E+ + E− of Fig. 4 (red
dots) and En

tot evaluated at κd = 0.05 vs the linear size of the sam-
ple z = aωp/c (orange curve). En

tot scales with the linear size of
the sample as z−3 and has been shifted to match with E+ + E− at
z = 1.0. The weight of the change in the density of states due to
the propagating states increases at larger a values. A fit E a2 ∼ 1/a2

(black curve) has been added as well as the pair-breaking threshold
2�/ωp in the superconducting phase, for comparison (green dotted
curve).

the SPM curve, the ASPM, and the light dispersion curve
ω = ck‖. Their contribution to the integral is negative, posi-
tive, and negative, respectively, as expected, but there is no
correspondence of the location in energy with the dispersion
laws of Fig. 3. Rewriting Eq. (27) in dimensionless variables,
s′ = 2kd, s = 2k‖d, κ ′ = κd , Eq. (27) becomes, with 4d =
a,

En
tot = −1

2

(
2L

a

)2
ωp

2π
× 2

π

c

ωpa

∫
s ds

×
∫

ds′ s′√
|s2 − s′2|

ln
1∣∣∣1 − ( κ ′s′

s2−s′2−κ ′s′
)2

e−s′
∣∣∣ (28)

to be compared with Eq. (13). The ∼z−3 dependence on the
linear widths of the sample z = ac/ωp is apparent. At very
small κ ′s, the transmission is close to unity for k‖ = 0 and
we expect that En

tot is roughly given by the plasma modes
contribution only. It follows that En

tot should be very close
to the behavior of E+ + E− plotted in Fig. 4 (red dots and
green line). A numerical evaluation of the double integral
at κd = 0.005 gives 0.0075 and En

tot does not match with
E+ + E− at small z = aωp/c. However, the two derivations
stem from different approaches and it is not of a surprise
that the two results do not match. As the present approach
cannot be considered quantitatively faithful, we scale En

tot at
κd = 0.005 to make it coincide with E+ + E− at z = 1.0.
In Fig. 6, E+ + E− vs z is reported (red dots), together with
En

tot ≈ 2π 0.0075/z3 (orange curve) and another fit ∼1/z4

(black curve). At larger sample linear sizes the weight of
the propagating states increases and it is attractive, while the
role of the plasma states decreases, so that derivative of En

tot,
the Casimir force, decreases. In Fig. 7 we plot En

tot, per unit
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FIG. 7. Total energy En
tot per unit surface from Eq. (28), at various

potential strengths κa for the linear width of the sample ac/ωp = 0.2.
A constant prefactor has been adjusted to scale the amplitude of the
result at values corresponding to Fig. 6, when κd = 0.005.

surface, derived from the scattering model of Eq. (26) for the
linear width of the sample ac/ωp = 0.2, at various potential
strengths κa. A constant prefactor has been adjusted to scale
the amplitude as in Fig. 6.

IV. THE TE MODE PROPAGATION IN
THE SUPERCONDUCTING PHASE

A. Why photons should propagate in the superconducting
phase, below the AH threshold

In the superconducting phase, the Anderson-Higgs (AH)
mechanism makes the three EM modes massive, with mass
h̄cm = 2π h̄c/λ⊥

L , where λL is the London penetration length
of the field components into the sample. Here c is the photon
velocity in the medium. Propagation only occurs at energy
> h̄cm with the dispersion ω�k/c =

√
m2 + k2

⊥ + k2
‖ . The two

transverse massive modes are similar to the TM mode of the
normal phase at the surfaces, but they decay in the interior of
the material. They both couple to the MS surface excitation
mode. In a macroscopic approach [i.e., based on a model for
ε(ω)], the TE mode does not couple to surface plasma modes
in the ideal normal metal film, at least within first-order per-
turbation theory. This is the reason why it is usually assumed
that the TE photon contribution to the Casimir energy is quite
scarce in the normal phase. In the superconducting phase, the
longitudinal massive photon mode can be assimilated to a TE
mode because of the nonvanishing Bz component. As Ez = 0,
we are confident that no current is injected in the supercon-
ductor, a crucial requirement at low frequencies. However,
being massive, the longitudinal mode should not propagate
across the slab if it is relatively thick. Close to the transition
temperature, the penetration length λ⊥

L is quite long (∼2.6 μm
at T ∼ 86.5 K). Hence, we can expect that the length of the
sample a � λ⊥

L . Away from the transition temperature, the
AH mass is rather large and states with energy above it are
not expected to contribute much differently between the nor-
mal and superconducting phases. In fact, as in the case of
the CG TM mode, the large enhancement of QP excitations
in the density of states of the superconducting phase at the
pair-breaking energy suggests that TE photon tunneling can
be assisted by virtual excitations with QP’s production in the
a-b planes. Indeed, the pair-breaking energy is much lower

FIG. 8. Sketch of the energy dispersion versus k for k‖ = 0. Two
resonant states are sketched below the band of delocalized states of
the massive Anderson-Higgs modes, as they merge in the gapped
energy window. c is the photon velocity in the medium and m =
2π/λ⊥

L , where λ⊥
L is the London penetration length in the c direction

for YBCO. At high energy the linear dispersion of the normal phase
is recovered.

than h̄cm in HTS (see Fig. 8). However, the question arises if
the longitudinal mode takes advantage of photon resonances
at energy below 2� < h̄cm, to propagate across the sample.
Resonances can be induced by virtual coupling with the in-
plane superconductivity, originating from virtual excitations
with broken pairs bound of the a-b planes. The answer is
positive. The search for these resonances is the content of
Secs. IV B and IV C. They characterize the superconducting
phase and are expected to give an appreciable contribution to
the Casimir energy difference.

As discussed in the Introduction, on the one hand we can-
not account for the microscopic structure of the array of CuO
planes in the lattice. The scale of k⊥ for photons interacting
with the planes in the lattice is of the order of the inverse
of the lattice spacing, which, in YBCO is a ∼ 3 nm. On the
other hand, a photon in the micro infrared frequency range
can only see a mediated structure of cells. We will adopt a
scattering approach for a model structure and we will show
that virtual pair-breaking processes in interaction with the
photon field allows for resonant longitudinal states in the AH
gap. The TE photon modes are well defined and long lived
as long as they are located in energy below the 2� threshold
and contribute to the Casimir energy. In our model we assume
no space dependence in the a-b plane, for simplicity, which
corresponds to k‖ = 0 and we will drop the label ⊥ in the
following.

We now describe the model interaction in some detail. We
assume a bulk high-Tc material with planar boundary surfaces
and consider scattering in the ẑ direction, orthogonal to the
surface, with ẑ parallel to the c axis for simplicity. This implies
that the surfaces exposed to the impinging radiation are flat
a-b(CuO) planes. The vacuum radiation of energy h̄ω�k/2 is
characterized by a component of the wave vector k orthogonal
to the planes and a transverse component k‖, parallel to the
planes. A TE photon of infrared frequency, with a wave-vector
component k‖ in the surface plane, can break a number N of
pairs. N is of the order of 104–106 for microwave photons.
However, as the film is macroscopic and superconducting, it
does not conserve the pair number anyhow. Let ε = −� be
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the binding energy of a pair. We consider as ground state (GS)
of the system the state of the superconducting plane of energy
Nε in which N pairs are unbroken [24] and there is no real
photon and we denote it by |0,↑〉. On the other hand, |1,↓〉
is the excited state in which N pairs are broken and a real
photon is present, trapped in the film. Let us assume that a
potential matrix element � couples these two states and the
Hamiltonian applied to these states, with k‖ ∼ 0, reads as

HN

(|1,↓〉
|0,↑〉

)
=
(−Nε + h̄ωk �

� Nε

)(|1,↓〉
|0,↑〉

)

=
[

h̄ωk

2
+ 1

2

(−2Nε + h̄ωk �

� 2Nε − h̄ωk‖

)]

×
(|1,↓〉

|0,↑〉
)

. (29)

The eigenvalues are E± = h̄ωk
2 ± 1

2

√
δ2 + �2, with

δ = 2 Nε − h̄ωk:

E− ≈ h̄ωk

2
− 1

2
|δ|
√

1 + �2

δ2
= +Nε − 1

4

�2

|δ| ,

E+ ≈ h̄ωk

2
+ 1

2
|δ|
√

1 + �2

δ2
= h̄ωk‖ − Nε + 1

4

�2

|δ| .

The state corresponding to E− is

|−〉 = cos θ |0,↑〉 + sin θ |1,↓〉 (30)

with θ close 1 and is the GS of the system, while the excited
state corresponding to energy E+ is

|+〉 = − sin θ |0,↑〉 + cos θ |1,↓〉. (31)

Higher excited states are disregarded.
In a scattering approach, the interaction is localized in the

film, while the incoming photon and the superconductor, very
far from the scattering area and in the vacuum, are in the
uncoupled state |�0〉 = |0〉|↑〉. The pair number is not con-
served, so that we can assume that the energy E− is equal to
the energy of the state |�0〉, in which the incoming photon and
the superconductor are uncoupled, neglecting second-order
contributions to the energy in the coupling �. We discuss the
zero-temperature case and the channel of energy E+ is closed.

B. Scattering approach to the longitudinal mode propagation

We first discuss the scattering of a virtual photon from
the vacuum into the AH modes inside the superconductor,
at energy above the AH mass threshold h̄cm. Being the AH
modes longitudinal, it can be matched with the TE mode
impinging on the superconductor surface. The wave function
of the photon of wave vector �k is delocalized everywhere in
the space at the left-hand (L) side of the metal chunk and it
is scattered and transmitted to the right-hand (R) side of it.
To characterize the scattering of a photon on the supercon-
ductor, at least in the limit of k‖ → 0, the simplest scattering
approach will be adopted, with two δ potentials at distance
2d to mimic the matter-radiation model interaction at the two
planar surfaces of the superconducting film (see Fig. 9). To
keep some analogy between the scattering approach and the
original geometry, we have to include also the very left space

FIG. 9. Sketch of the model film (gray zone) with two δ functions
(black thick lines at the boundaries) at a distance 2d . a amplitudes
refer to incoming channels, while b amplitudes refer to outgoing
channels.

region and very right side one, as in Fig. 9. The total length of
the scattering region, symmetric with respect to the origin, is
a = 4d .

To show how the boundary conditions for the electric field
are set at the film surface, we first consider just one planar
surface interaction at z = 0 in free space. The “incoming”
state is |�0〉 = |0〉|↑〉. We denote just by k the component
kz orthogonal to the surface plane and we make explicit the
label for the parallel component of the k vector k‖. The wave
functions ψL,R, defined outside the scattering region at z = 0,
are

ψL = eikz |0, k‖〉 + r e−ikz |0, k‖〉 + s eκLz |1, k‖〉,
ψR = t eikz |0, k‖〉 + τ e−κRz |1, k‖〉. (32)

r and s (t and τ ) are reflection (transmission) amplitudes for
the two channels of transverse wave vector k‖. |0, k‖〉 and
|1, k‖〉 are photon states. The channel |1, k‖〉 is assumed to
be closed, so that κL/R are real parameters depending on the
incoming energy and on k‖, which is assumed to be conserved.

The superposition of the states �0, with �, defined above,
due to the interaction, provides the field wave function at fixed
k‖, as a function of energy and k orthogonal to the plane. In
the case of the δ-function potential, the matching conditions
require continuity of the wave function at the scattering plane,
z = 0, and a jump of the space derivative there:

|ψL(z = 0)〉 = [|χ−〉 + β|+〉]|z=0 = |ψR(z = 0)〉, (33)

d|ψL〉
dz

∣∣∣∣
z=0−

− d|ψR〉
dz

∣∣∣∣
z=0+

= gV {|χ−〉 + β|+〉}|z=0,

(34)

where |χ−〉 = |�0〉 + α|−〉 [|±〉 have been defined in
Eqs. (30) and (31) and we assume |�0〉 and |−〉 to have the
same energy] and α, β are complex numbers.

Tracing away the state of the condensate in the plane,
Eqs. (33) and (34) should be projected onto |0, k‖〉[| ↑〉 +
|↓〉] and |1, k‖〉[| ↑〉 + | ↓〉] to derive the dependence of α, β

on κL, κR, k as reported in Appendix B.
At maximum superposition,− sin θ = cos θ = 1√

2
, is

α + β = gV

2κ+

[
1 + κ+

2 i k

]
,
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(35)
α − β = g V

2κ+

[
1 − κ+

2 i k

]

(κ+ = κL + κR). Unitarity of the S matrix fixes the ratio gV
2κ+

:

gV

2κ+
= −i

κ+
2 k

1

1 + ( κ+
2 |k|
)2 . (36)

By taking the inverse decay length corresponding to the
Meissner effect in the superconductor κ+/2 = m all param-
eters are fixed, except a mixing angle η, so that the S matrix
for one single δ barrier is (x = κ+

2k )

S =

⎛
⎜⎝

r 0 t 0
0 s 0 τ

t 0 r′ 0
0 τ 0 s′

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎝

− i x u
1+i x 0

√
1+x2v2

1+i x 0

0 − i x v
1−i x 0

√
1+x2u2

1−i x√
1+x2v2

1+i x 0 − i x u
1+i x 0

0
√

1+x2u2

1−i x 0 − i xv
1−i x

⎞
⎟⎟⎟⎟⎠, (37)

where u = cos η and v = sin η. We have excluded direct
interaction between channels |0, k‖〉 and |1, k‖〉. Such an inter-
action would give an output amplitude in the |1, k‖〉 channel,
which is an inelastic process, which would lead to dissipation.
At θ = −π/4 in Eqs. (30) and (31), the parameter η does not
play any role because, being the channels independent, every
dependence on η is washed out by unitarity. The restriction
t ′ = t adopted here is allowed in the search of bound states
provided time reversal holds. Equation (37) extends the S
matrix for elastic scattering with one single channel;(

bL

bR

)
=
(

r t ′
t r′

)(
aL

aR

)
. (38)

The wave-function amplitudes aL/R are the in-wave-function
amplitudes, while bL/R are the out-wave-function amplitudes
for the AH mode. In our case, each element is a 2 × 2 matrix
because it includes the channel label 0,1, corresponding to
photon states |0, k〉 and |1, k〉.

Now we turn to the geometry of Fig. 9 by using the
following procedure [25,26]. The S matrices S1,2 of each of
the δ functions are translated by ±d , respectively, with re-
spect to the origin, by means of a unitary matrix �(±d ) =
diag[e±ikd , e±ikd ], where k is the k vector corresponding to
the energy of the incoming photon. Next, the transfer matrices
corresponding to S1,2 are derived, defined as(

bRi+1

aRi+1

)
= Mi

(
aLi

bLi

)
.

The chaining M2 ∗ M1 corresponding to matrix multiplication
provides (

bR3

aR3

)
= M2M1

(
aL1

bL1

)
.

The final step is to transform back the full transfer matrix to
give the global scattering matrix S′,(

bL1

bR3

)
= S′

(
aL1

aR3

)
, (39)

with the result

S′ ≡
(

e−i ka s11 e− 2 i k(a+d ) Uδ s12

e2 i kd s21 e−i ka Uδs22

)

≡
(

S11 S12

S21 S22

)

where

s11 = r1 + t ′
1(1 − t2 r′

1)−1t2t1,

s12 = t ′
1(1 − t2 r′

1)−1r′
2 e−2ikd ,

s21 = e2ikd r2[1 − r′
1t2]−1t1,

s22 = t ′
2 + e2ikd r2 r′

1(1 − t2 r′
1)−1r′

2 e−2ikd ,

Uδ = e2 i kd e2 i k (a+d ) s11s−1†
22 s†

12s−1
12 ≡ e2 i ka

(
e2 i δ1 0

0 e2 i δ2

)
.

(40)

ri and ti are the 2 × 2 matrices defined in Eq. (37). Trans-
lation by �(±d )) implies that the matrices r2, r′

2 acquire a
phase e±2 ikd with respect to r1, r′

1. δ1,2 are the phase shifts of
the two channels within the cell due to the scattering. This is
the result of Guérout et al. [26]. Note a small difference in the
ordering in S′

11. Numerically, our scattering matrix is found to
be unitary.

The S matrix is numerically found to be unitary. Besides,
as can be checked numerically:

S11S−1†
22 S†

12S−1
12 = 1 and S12 = −S21. (41)

From the definitions of Si j and si j and the last equality we get

Uδ ≡ −e4 ikd s21 s−1
12 . (42)

Note that, in the case of elastic scattering with a single chan-
nel, if we put

S′ =
(

r t∗ e−2iδ

t −r∗ e−2iδ

)
, (43)

the condition S11S−1†
22 S†

12S−1
12 = 1 provides r(−r−1

e−2iδ ) t e2iδ t∗−1 e2iδ = 1, that is, e−2iδ = −t/t∗, as expected.

C. TE resonant contribution to the Casimir energy
for the superconducting phase

In the case of the superconducting phase, extended prop-
agating states below the Meissner AH threshold are not
allowed. However, analysis of the S matrix of Eqs. (39) and
(40) shows that there can be one or more resonant states
propagating across the superconductor, below the Meissner
threshold, as sketched in Fig. 8. Their signatures are the zeros
of the determinant Det{S′[ k ] − 1}. In Fig. 10 we report a plot
of the real and imaginary parts of the determinant. The zeros
appear at energies k1 ≡ ωk1

/(h̄cm) = 0.2 and k2 = 0.9 (in di-
mensionless unities), for a length of the sample a = 0.378λL .
Here k‖ = 0 (normal incidence), for simplicity. Figure 11
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FIG. 10. Real and imaginary parts of the Det{S′[k ] − 1} vs k =
k/m for a = 0.378λL and k‖ = 0. In these units the AH threshold is
marked by k = 1. Two resonant modes at low energy correspond to
the zeros of Det{S′[ k ] − 1}.

shows the energy trend of these two states with increasing
length of the sample. The horizontal black line is the AH
threshold and the propagation modes are fully delocalized
above this energy. The green dashed line marks energy 2�,
one tenth of h̄cm (the y axis is not in scale). In the energy
interval (2�, h̄cm) single QP’s are produced by pair breaking
and the modes acquire a finite lifetime. When the two modes
are in the energy window <2� in which a continuum of
propagating modes is forbidden, they act as resonances in the
propagation of the field. For a < λL, which corresponds to
full penetration of the radiation inside the superconductor, the
blue curve resonant mode is even with respect to the inversion
center of the sample and is lower in energy. However, sus-
taining radiation inside the superconductor costs much energy
when a ≈ λL and the even mode increases sharp by a very
short lifetime (only the real part of the energy appears in the
plot). For a > λL the odd mode (red curve) becomes lower

FIG. 11. Energy ω of the resonant longitudinal states (normal
incidence), below the massive Anderson-Higgs propagating modes
(gray area above the black horizontal line) inside the superconductor
versus a/λL . a = 4d is the length of the model sample in the direction
orthogonal to the CuO planes. Energy, in the limit k‖ = 0, is in units
h̄cm, where c is photon velocity in the medium and m = 2π/λL . The
red curve is the mode odd for L ↔ R inversion, while the blue curve
is even and has low energy only for a < λL . The green dashed line
marks the threshold for pair-breaking excitations, at 2�. The vertical
axis is not in scale.

in energy because it allows for small field amplitude with a
node inside the superconductor. We renounce to qualify the
field amplitude within the sample but we infer the parity of
the modes from the parity of the phase shift across the sample
when k ↔ −k. We expect that non-normal incidence (k‖ �= 0)
would mix the two modes particularly at intermediate lengths
a ∼ λ⊥

L , by opening a gap at the crossing of the curves.

V. TOTAL CASIMIR ENERGY AND ENERGY DIFFERENCE

The total Casimir energy in the normal phase has been
discussed in Sec. III C. Here we present our estimate for the
total Casimir energy in the superconducting phase and the
difference between the two.

A. Total Casimir energy in the superconducting phase

The total Casimir energy in the superconducting phase
does not include propagating states below the Meissner AH
threshold h̄cm, except for the TE resonances. In our esti-
mate we assume that the contribution coming from energies
above the Meissner threshold and from the QP’s in the energy
window (2�, h̄cm) is roughly canceled by a corresponding
contribution in the normal phase, when we eventually take the
difference. In fact, single QP delocalized states are present
both in the superconducting and in the normal phases. The
contribution to the total Casimir energy difference due to the
marked change in the density of states close to the 2� thresh-
old, between the two phases, is discussed in Appendix C. The
2� gap threshold induces a sizable change of the dielectric
function, as discussed in Sec. II with important changes in the
photon propagation at that energy range. However, if we are
at temperatures rather away from Tc, we can expect that the
weight of this contribution is scarce for microwave photons
and we will ignore it. It is considered to be small and is
neglected. There are no propagating states at energy below the
gap threshold 2�, so that the only contributions to the Casimir
energy which we consider for the superconducting phase arise
from the TM plasma mode and the TE resonance (just one at
the chosen lengths of the sample).

The symmetric TM mode, even with respect to L ↔ R
inversion symmetry, appears in Fig. 5. It is linearly dispersed
in k‖ at small k‖ values, while it is dispersed as

√
k‖ at larger

k‖. We follow the same steps as in Eq. (13) to subtract the
a → ∞ term and leave just the a-dependent contribution.
Using Eq. (21) and cutting the k‖a/2 = s integration at s =
2�

√
2εs/ω0, the contribution to the Casimir energy of the TM

mode is approximately

ETM
Sup = 1

2

∑
k‖

ωk‖ = −1

2

(
2L

2πa

)2

2π

∫ s

0

s2

2
ds

∂ω(s)

∂s

≈ −
(

2L

a

)2
ω0

2π
0.037, (44)

in analogy with Eq. (13). Here ω0 � 2�. Based on the fact
that the MS mode has a

√
k‖ dependence on k‖, we estimate

the integral in Eq. (44) by assuming ωps ∼ ωp and ω0 ∼
2�/2π . The result is plotted in Fig. 13 (blue curve).

The piling up of QP excitations near the gap threshold al-
lows for an odd mode (which is the “neutral” ASPM) at those

134502-11



ANNALISA ALLOCCA et al. PHYSICAL REVIEW B 106, 134502 (2022)

energies but only at larger k‖ vectors [22]. Their influence
is detected, according to our model, in the resonances that
a TE photon propagating mode can encounter at low energy
according to Fig. 11. This feature is absent in the normal metal
phase. The contribution of the TE mode to the Casimir energy
is negative for λ⊥

L > a, i.e., when the working temperature is
not far from Tc. Here we give an estimate of the TE resonance
for a = 0.378λ⊥

L (see Fig. 10 and Sec. IV C). The energy
of the resonance disappears for a → ∞, so that we do not
have to subtract any a-independent limiting contribution. The
energy of the resonance is given by the zero of the determinant
Det{S′[ k ] − 1} [with S′ given by Eq. (40)] and takes the value
0.2h̄cm when k‖ = 0. However, its k‖ dependence is weak,
except for the fact that direct tunneling across the resonance
does not contribute to the Casimir energy. Therefore, we add
an angular dependence (1 − cos θ ) in the integration over k‖
and approximate the contribution as follows, with s = k‖a

2 ∈
(0, smax), where smax ∼ 2�

ω0

√
εs
π

:

ETE
Sup ≈ −1

2

(
2L

2πa

)2

0.2 h̄cm
∫ π

2

− π
2

dθ (1 − cos θ )
∫ smax

0
s ds

= −1

2

(
2L

2πa

)2

0.2 h̄cm
(π

2
− 1
)(2�

ω0

√
εs

π

)4

. (45)

The dispersion in energy vs linear size of the sample appears
in Fig. 13 (orange curve). Its weight in the density of states is
rather small and this implies that it gives a little contribution
to the Casimir energy. In particular, the contribution changes
sign at λ⊥

L ∼ a (see Fig. 11), but it is anyhow vanishingly
small for a > λ⊥

L .
In our model, the TE resonances arise from bound states

that are split off the delocalized AH band with threshold
h̄cmk = 1 in our units. In the superconducting phase there
is a continuum of electronic QP states of energy above the
pair-breaking threshold energy 2�. They could contribute to
the transfer of photons across the sample, so that we can
assume that there is a continuum of photonic states corre-
sponding to their energy. We comment on these delocalized
photonic states here in the following. Our model system acts
as a 1D potential well of length a which can bound states. As a
function of energy ω the change of the density of states due to
the scattering, derived from the Green’s functions defined by
G = G0 + G0 t G0 (t is the t matrix defined in Appendix A),
is given by

�ν(ω) = − 1

π
Im Tr

{
GR − GR

0

}
= 1

2π i

d

dω
ln Det S′(ω) (46)

(the label R denotes “retarded Green’s function”). As
|Det S′(ω)| = 1, �ν(ω) = 1

π

∑
j

d
dω

δ j (ω), where δ j are the
phase shifts of the two channels ( j = 1, 2).

The matrix S′ can be set in a block form, diagonal in the
channel label j. The contributions of Eq. (46) coming from
the phase shifts δ1,2 should be included in our estimate of the
Casimir energy for the longitudinal mode and compared with
the corresponding ones of the TE mode of the normal phase.
In particular, channel 1 would refer to processes which occur

FIG. 12. Various contributions to the Casimir energy differ-
ence (per unit surface) vs linear size of the sample. The red dots
are the contribution given by the plasma excitations in the normal
phase (from Fig. 6), labeled as (E+ + E−). ETM

Sup is the TM plasma
mode in the superconducting phase [blue curve, from Eq. (44)]. ETE

Sup

is the TE plasma mode in the superconducting phase induced by
coupling with pair-breaking processes [orange curve, from Eq. (45)].
The difference δE = ETM

Sup + ETE
Sup − (E+ + E−) is marked by the

black dots (the dashed black curve is a guide to the eye). The
difference �E becomes positive at larger sizes but vanishes for size
going to infinity. The threshold for pair-breaking processes at various
sizes is marked by the dashed green curve.

both in the normal metal phase and in the superconducting
phase. As for channel 2, according to our model, its influence
is only limited to the superconducting phase and mimics pro-
cesses in which propagation includes Cooper pair-breaking
events, close to energy 2�. A similar contribution was pre-
sented in the macroscopic approach for the TM modes in
Sec. III B. We argued there that pair-breaking processes make
the largest difference, but can be assumed to have little role at
our much lower incoming photon energies, except for virtual
excitation. We are not including these contributions that had
been already discarded in the case of the TM modes.

In Fig. 13 we have plotted the derivative of the phase
shift dδ2/dk vs energy k (in dimensionless units) for vari-
ous lengths of the sample in units of λ⊥

L . A sharp drop for
k � 1 in the curve for a � 1.6 marks the splitting of a bound
state related to channel 2 from the bottom of the AH energy
dispersion. The bound state appears as a π jump in the phase
shift δ2(k). Bound states appear as π jumps in both channels,
as shown in the inset of Fig. 13, where the phase shifts δ1,2

are plotted vs k, for a = 2.55. In fact, the potential formed by
the two δ functions acts as an attractive potential well for the
photons. It follows that bound states are split from the bottom
of the AH energy dispersion and move to lower energy with
increasing distance between the δ peaks. At given coupling
strength, the threshold thickness of the sample for the appear-
ance of a bound state splitted off channel 2 is a � 1.6.

B. Casimir energy difference δE = ESup − ENor

Figure 12 summarizes our estimates of the contributions to
the Casimir energy per unit area for a sample of linear size
a. The black dots are evaluations of the energy difference
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FIG. 13. Derivative of the phase shift dδ2/dk vs energy k (in di-
mensionless units) for a = 0.38, 0.88, 1.18, 1.38, 1.61 (from bottom
to top). At a ≈ 1.6 a bound state splits off the bottom of channel 2,
k = 1 and the contribute with a δ-like peak to the derivative (exag-
gerated in the picture). Inset: Phase shift δ1 (blue) and δ2 (orange) for
a = 2.55. The π jumps in δ1,2 mark two bound states in channel 1
and one bound state in channel 2.

δE = ESup − ENor = ETM
Sup + ETE

Sup − (E+ + E−) between the
superconducting and the normal phases of the sample, at few a
values. In our estimate only the contributions coming from the
plasma excitations are included. In Sec. III C, we have qualita-
tively estimated the contribution coming from the delocalized
photonic states in the normal phase as En

tot − (E+ + E−), but
we have not included them. In the energy range ω > 2� they
are also present in the superconducting phase (although with a
slightly different density of states except for energies in prox-
imity of 2�) because photonic transmission can be assisted by
the delocalized electronic QP states at these energies and we
can surmise that these terms contribute roughly equally in the
two phases. However, we have also neglected this contribution
for energies ω < 2�, which is present for the normal phase
only because, as it appears in Fig. 6, the energy difference
En

tot − (E+ + E−) is rather small not only at small sample
sizes, but even at larger sample sizes [we have plotted also 2�

in Fig. 6 (green dashed line), which is devoted to the normal
phase, for reference]. Besides, En

tot was estimated by means of
the scattering model of Sec. III C and has been adapted, but
is not homogeneous with the rest of the calculation. The brute
approximation of neglecting En

tot − (E+ + E−) altogether im-
plies that larger linear sizes of the sample are not displayed
in Fig. 12. At those sizes, the two δ potentials develop bound
states also in channel 1, as shown in the inset of Fig. 13 and
the scattering model becomes unreliable.

Inspection of the location of the black dots in Fig. 12
vs linear size of the sample [(aωp/c, δE ) ≈ (0.4,−0.1),
(0.7,−0.02), (0.9, 0), (1.2, 4 × 10−3), (1.7, 3 × 10−3)]
shows that the gain in Casimir energy δE when the sample
undergoes the phase transition sharply depends on the linear
size of the sample and can even become a loss when the size
increases. This can be justified by noting that, in the normal
phase, the absolute number of electronic QP states increases
with the size, with an increase of the |En

tot| magnitude, while
the 2� gap in the superconducting phase reduces chances

for photon transmissions assisted by QP’s and, hence, for
contributions to Casimir energy gain.

A tradeoff between temperature and linear size of the sam-
ple is also strictly required. On the one hand, a temperature
T 	 Tc implies that ωps ∼ ωp because the density of pairs
exhausts the full electron density, and δE would increase.
But, in the London theory, c/ωps ∼ λ⊥

L and a shorter λ⊥
L (for

T 	 Tc) implies that we move to larger aωp/c values with a
sharp reduction of δE . On the other hand, a temperature closer
to Tc would increase λ⊥

L and move to lower values of aωp/c of
Fig. 12, thus increasing the gain in Casimir energy δE , but ωps

would become much smaller than ωp and the magnitude of δE
is reduced. Besides, fluctuations would dramatically increase,
especially in a HTS, with a destructive role. In our derivation
we have been choosing ωps ∼ ωp.

Assuming a cubic sample, so that L = c/ωp = a and by
choosing a reference value for h̄ωps ∼ h̄ωp ≈ 40 meV we get
δE ∼ −1.4 × 10−5 eV. This is an optimistic reference energy
scale, with more than an order of magnitude uncertainty. A
better characterization of the result requires the choice for an
appropriate temperature, which also depends on estimates of
the refraction index of the sample in the normal and supercon-
ducting phase in the range of microwaves and of the plasma
frequency in the two phases.

VI. SUMMARY AND CONCLUSION

The Archimede project is designed for measuring the
effects of the gravitational field on a Casimir cavity by per-
forming a weighing measurement of the vacuum fluctuation
force on a rigid Casimir cavity [2–4]. This paper discusses
the various contributions to the Casimir energy assuming that
the “cavity” is just a metal bulk sample (a cube or slab) in
vacuum. As a reference metal we take YBCO, which under-
goes the superconducting phase transition at Tc ∼ 90 K. The
experiment will measure differences in weight between the
superconducting and the normal phase by weighting at two
different temperatures, above and below Tc.

A key point of the interpretation of the results of the exper-
iment will be the estimate of the contribution of the Casimir
energy to the total transition energy in the two phases and,
correspondingly, to the weight variation.

It has been recently proposed that the Casimir energy is
a big part of the “condensation energy” so that the driv-
ing mechanism for phase transition is the Casimir energy
itself [6].

Up to now, the Casimir force has been measured in cav-
ities of micron sizes [27] while the Casimir contribution
to the transition energy for tens of nanometer cavities has
been theoretically and experimentally investigated within a
previous experiment [4,28–30], confirming that the expected
energy range for density of state changes in the photon field
due to the presence of the cavity corresponds to far infrared
and microwaves. At least in conventional superconductors
where electron-phonon coupling is considered as the pairing
mechanism, the lattice parameter is the scale at which forces
related to condensation energy act. Photons with a wavelength
comparable to the lattice parameter have huge energy and it is
reasonable to expect that they propagate across the cavity with
no harm whatsoever.
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In this work we limit ourselves to an estimate of the
Casimir energy change by comparing the zero-point energy of
the superconducting and the normal phases in a macroscopic
sample. There are various contributions to the zero-point en-
ergy of the photon field. Let us enumerate these contributions,
starting from the normal phase and continuing with the super-
conducting phase, afterwards.

In the normal phase one contribution arises from the con-
tinuum of TM modes propagating across the sample in case
the skin depth δ of the Ez penetrating field is comparable with
the linear size of the metal slab (in direction z), while the
continuum of TE modes should not contribute, except for tiny
surface magnetization effects, due to the reduced penetration
of Bz, in the case of a paramagnetic material. Of course,
propagation can be assisted by the continuum of electronic
QP excitations in the sample via nonelastic processes. The
TM polarization contributes with plasma modes (charge exci-
tations) localized at the surface in the normal phase. There are
two plasma surface modes for the sample with two surfaces.
In case of a z ↔ −z inversion-symmetric sample, they are a
symmetric mode (SPM) and an antisymmetric plasma mode
(ASPM). They are derived in a macroscopic approach using
the Drude formula for the dielectric function which is valid
in the limit of large inelastic scattering time τ → ∞ and
are discussed in Sec. II and denoted as E±. We stress that
retardation is important to obtain the correct dispersion for
small k vectors, k‖ (parallel to the surfaces of the sample,
assumed to be planar). The energy scale which characterizes
the plasma excitations, which couple to the photonic field, is
the plasma frequency ωp, or, better ωp/

√
2 (see Fig. 3).

The contribution due to the continuum of TE modes has
been estimated by a simple analogical scattering model where
the bulk material is reduced to a potential made of two δ-
repulsive functions at distance 2d along the ẑ direction, which
provide elastic transmission and reflection of the incoming
wave. The linear thickness of the sample a has been related
to a full size of 4d = a. The model is presented in Sec. III C.
As the model has only qualitative relevance, we did not even
include difference in the propagation velocity between vac-
uum and material, for simplicity. The model is quite useful,
though, because, when continued analytically to imaginary
energies, it allows to get an estimate of the total Casimir
energy En

tot, including the plasma modes [23]. At very small
sizes a, the contribution given by the continuum of states to
En

tot is expected to be minor and we have used the information
coming from En

tot, by shifting the curve of the corresponding
energy vs linear size a so to match E+ + E− at small a. It
turns out that the discrepancy between En

tot and E+ + E− only
occurs for large a values, in a range of a values which is not
reliable for reasons that will be explained below. The model
is part of a more general model which includes two channels
to be described below, presented in Sec. IV. Analysis of the
extended model shows that when the size a increases beyond
a > 1.5, undesired resonant states are produced in the elastic
channel (see Fig. 13 inset). This is the reason why the model
should not be accepted at large a values.

Modelization of the superconducting phase requires three
energy scales. The highest one in energy is the Anderson-
Higgs threshold h̄cm (c is the propagation velocity in the
medium and m = 2π/λ⊥

L ). Photons acquire the AH mass and

a longitudinal mode arises, eating up the phase mode of the
superconducting order parameter. The intermediate one is the
superconducting plasma frequency ωps and the lowest one is
the Cooper pair-breaking threshold 2�. They are discussed
in Sec. II. At energies below the AH threshold light does not
propagate (radiation gap), unless it is coupled to quasiparticle
(QP) excitations. The difference with the normal phase is
substantial in the energy window defined by the electronic
superconducting gap �. However, QP’s can originate at finite
temperature from nodes in the gap or any type of pair-breaking
process. We do not consider the continuum of propagating
photon states for energies above the 2� threshold because
we have neglected the corresponding states in the normal
phase and, except for marked changes in proximity of 2�,
which are in any case dropped, we assume that this energy
range of both spectra roughly cancels in the difference. The
TM photon mode has Bz = 0 at the surfaces and satisfies the
macroscopic London equation. This is the reason why we can
keep a macroscopic picture when discussing the transverse
massive EM fields at the surfaces, each of which roughly
corresponds to the EM TM field of the normal phase. Both
of them couple to the plasma excitations of the sample in
the superconducting phase. There are two plasma modes in
the superconducting phase of limited geometries, which can
be derived in a hydrodynamic approach [22]: The Mooij and
Schön (MS) acoustic mode and the Carlson-Goldman (CG)
mode. The first one corresponds to the SPM of the normal
phase and has a

√
k‖ dispersion and lies within the supercon-

ducting gap (see Fig. 5). The CG mode is in proximity of the
2� threshold and involves QP’s which neutralize the charge
in a sort of ASPM. This mode, being neutral, does not couple
with radiation and is ignored. In addition, resonances can
appear in the radiation gap, even in the 2� gap, which split off
the AH threshold by virtual interaction with the Cooper pair
condensates of the a − b planes (see Fig. 11). They provide
resonances which make the longitudinal massive mode propa-
gating in the superconducting gap. We have shown that this is
possible by setting up the scattering model of Sec. IV, with an
elastic channel and a closed channel. Of the two resonances,
a symmetric and an antisymmetric one, only one is present at
energy below 2�, depending on the linear size of the sample.
The antisymmetric one is only at low energies, when the size
of the sample is a > 2λ⊥

L (see Fig. 11).
With the mentioned approximations, an estimate of the

Casimir energy difference between the two phases δE =
ESup − ENor = ETM

Sup + ETE
Sup − (E+ + E−) ∼ −10−5–10−6 eV

is reported for a few linear sizes of the sample in Fig. 12
for a reference area a2, where length is in units of c/ωp and
is marked by the black dots in the figure. The dependence
on the linear size of the sample is ∼1/a4, for large sizes,
as found in the measurement of the Casimir-Polder force
[27]. The pair-breaking threshold 2� is also reported for
comparison and longer samples imply that the energy
window in the superconducting gap shrinks. To achieve
these estimates, quite different qualitative models have been
invoked: A macroscopic model for the TM polarization,
a scattering “microscopic” model for the TE polarization
both in the form of one-channel elastic scattering and in
the form of a two-channel scattering. As the models have
little justification and the correspondence between them is

134502-14



QUANTUM ZERO POINT ELECTROMAGNETIC ENERGY … PHYSICAL REVIEW B 106, 134502 (2022)

arbitrary, the results cannot be considered as quantitative.
They are just an indication of the physics involved, which
should be checked carefully in the course of the experiment.
It is clear that the largest contributions to the difference δE
arise from the superconducting gap window and from the
energy window across the pair-breaking threshold for the
TM polarization (see Fig. 2). The latter contribution has
been qualitatively discussed in Appendix C, but has not been
included in our estimate and requires further consideration.
The reference linear size of the sample is a ∼ c/ωp which
is ∼λ⊥

L if ωp ∼ ωps. This is the choice that has been done to
simplify our estimates, but we stress that it is the crucial point
in the design of the experiment. As discussed in Sec. V B,
an appropriate tradeoff between temperature and linear size
of the sample is required. ωp ∼ ωps implies that the pair
electron density ns exhausts the total electron density n, but
this only happens at very low temperatures T 	 Tc. At
these temperatures the effective linear scales of the normal
and superconducting phases, which are dictated by the
penetration depth of the photon field, are of the same order,
provided the sample is close to be an ideal metal (ωτ � 1).
However, the small value of λ⊥

L implies that the linear size
of the sample should be small if the boundary surfaces of
the sample are supposed to have Casimir interaction and a
very homogeneous slab should be synthesized, which reduces
the measured weight. One can envisage a layered structure,
which is also being considered by the team involved in the
experiment [11].
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APPENDIX A: t MATRIX AND CHANGE
IN THE DENSITY OF STATES

With G = G0 + G0 t G0, we have

�ν(ω) = − 1

π
Im Tr

{
GR − GR

0

}
= − 1

π
Im Tr

{
GR

0 t GR
0

}
, (A1)

GR
0 = [ω + i0+ − H0]−1

,
dG0

dω
= −G2

0,

Tr{G0 t G0} = Tr
{
G2

0 t
} = Tr

{
−d G0

dω
t

}
.

As t = V
∑∞

n=0(GR
0 V )n, we have

Tr

{
−dG0

dω
t

}
= Tr

{
−dG0

dω
V

∞∑
n=0

[G0 V ]n

}

=
∞∑

n=1

Tr

{
−dG0

dω
V [G0 V ]n−1

}

=
∞∑

n=1

1

n
Tr

{
− d

dω
[G0 V ]n

}

= d

dω
Tr
{
ln
[
1 − GR

0 V
]}

. (A2)

It follows that

−Im Tr
{
ln
[
1 − GR

0 V
]} = − 1

2 i

[
Tr
{

ln
[
1 − GR

0 V
]− ln

[
1 − GA

0 V
]}] = 1

2 i

[
Tr
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ln
[(
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0 V
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)−1]}]

,

(
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0 V
) (
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)−1 = (1 − GA

0 V
) (

1 + GR
0 V + GR

0 V GR
0 V + · · · )
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0 − GR

0

)− GA
0 V GR

0 V + GR
0 V GR
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= 1 − (GA

0 − GR
0

)[
V + V GR

0 V + · · · ] = 1 − (GA
0 − GR

0

)
t,

GA
0 − GR

0 = 2 i δ(ω − H0), S(ω) = 1 − 2π i δ(ω − H0) t (ω),

�ν(ω) = −Im
d

dω
Tr
{
ln
[
1 − GR

0 V
]} = 1

2π i

d

dω
Tr{ln [1 − 2π i δ(ω − H0) t (ω)]}

= 1

2π i

d

dω
Tr{ln S(ω)} = 1

2π i

d

dω
ln Det S(ω) = 1

π

∑
j

d

dω
δ j (ω) (A3)

as S(ω) = diag[e2 i δJ (ω)].

APPENDIX B: DERIVATION OF THE S MATRIX FOR
SCATTERING ACROSS ONE SUPERCONDUCTOR PLANE

Starting from Eqs. (38) and (32) and projecting Eqs. (33)
and (34) onto our basis (we trace on the state of the

superconducting condensate), we get equations for α, β

〈0, K||ψL(0)〉 → 1 + r = 1 + (α + β ) cos θ,
(B1)〈1, K||ψL(0)〉 → s = (α − β ) sin θ ),
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〈0, K||ψR(0)〉 → t = 1 + (α + β ) cos θ,

〈1, K||ψR(0)〉 → τ = (α − β ) sin θ, (B2)

|dev〉 = d|ψL〉
dz

∣∣∣∣
z=0−

− d|ψR〉
dz

∣∣∣∣
z=0+

= g [|�〉V + |�′〉V ∗]

〈0, K||dev〉 → i k(1 − r − t ) = g[V (1 + α) + V ∗β] cos θ

〈1, K||dev〉 → κLs + κRτ = g[V α − V ∗β] sin θ, (B3)

where |�〉 and |�′〉 are defined in Eqs. (30) and (31). Here we
observe that the structure reflects the usual δ-function poten-
tial in a one-dimensional Schrödinger equation. Continuity of
wave function and jump in the derivative provide (g > 0 →
repulsive δ barrier in the following)

1 + r = t, ik(1 − r) − ikt = −gt,

1 + r = t, 1 − r =
(

1 − g

i k

)
t,

t = 1(
1 + i g

2k

) , r = −i
g

2k
t, |t |2 + |r|2 = 1. (B4)

We use Eq. (B3) together with Eqs. (B1) and (B2) to derive
the dependence of α, β on κL, κR, k (κ+ = κL + κR):

r = (α + β ) cos θ, s = τ = (α − β ) sin θ,

1 − t = −(α + β ) cos θ, (B5)

− 2i k (α + β ) = g[V (1 + α) − V ∗β],

κ+(α − β ) = g[V α + V ∗β]. (B6)

Solving Eq. (B6) with respect to α, β, we get, to lowest order
in g,

α + β = g V

2κ+

[
1 + κ+

2 i k

]
, α − β = gV

2κ+

[
1 − κ+

2 i k

]
. (B7)

κ should depend on the interaction V̂ , but, in the absence of
information about the interaction V̂ , we take it as a function
of the κ ′s themselves. We take

gV

2κ+
= −i

κ+
2 k

1

1 + ( κ+
2 |k|
)2 . (B8)

This choice is consistent with unitarity of the S matrix which
implies S† = S−1:

S† =
(

r† t†

t ′† r′†

)
=
( [

r − t ′ r′−1t
]−1 −[r − t ′ r′−1t

]−1
t ′ r′−1

−r′−1t
[
r − t ′ r′−1t

]−1
[r′ − t r−1t ′]−1

)
, (B9)

r†−1 = r − t ′ r′−1t, t ′†−1 = t ′ − r t−1r′. (B10)

Consistency of Eq. (B8) can be easily seen in the case of a
single channel with t = t ′ for time-reversal invariance. From
unitarity,

r

r′∗ = − t

t∗ , (B11)

so that, if we substitute this into Eq. (B10) we get

r − r∗−1 = −r∗−1t t∗, r∗−1 = r [1 − tt∗]−1
, (B12)

t∗−1 − t = r∗ r t−1 tt∗−1
, [1 − r∗ r]t∗−1 = t .

(B13)

As r∗r + t t∗ = 1, the second of Eq. (B13) is t = t , while the
second of Eq. (B12) is satisfied by r = t − 1 if t = 1/(1 +
i κ+

2 k ). The result is

t = 1

1 + i κ+
2k

, r = t − 1 = − i κ+
2k

t, (B14)

which is what is found in case of a δ-function potential.

APPENDIX C: SIGNATURE OF THE PAIR-BREAKING
PROCESSES IN THE DIELECTRIC FUNCTION AT k0 = 2�

h̄c

An approximate comparison between ε1(ω) for the nor-
mal and the superconducting phases is reported in Fig. 2.

According to Eq. (4) and the arguments given above, the two
functions should acquire the same functional behavior at very
low temperature, both at low and high frequencies, if the metal
is assumed close to being ideal.

At very low temperature and frequency the difference is
very small, due to the contribution of the δ function at zero
frequency to the Kramers-Kroenig transform of Eq. (2), with
ωps ≈ ωp. In fact, the δ zero-frequency peak of the supercon-
ducting phase provides ε(ω) given by Eq. (4), which is the
same as in the case of an ideal normal metal (with ωτ �
1). Increasing the temperature the quasiparticles contributing
to the normal metal phase are absent in the superconduc-
tor, inside the energy gap, and a difference emerges. In
Fig. 2 we report the difference between the superconducting
and normal metal response at microwave frequency, which
vanishes at zero temperature well below 2�/h̄. The sharp
peak at ω ∼ 2�/h̄ heralds the enhancement of QP excita-
tions at the pair-breaking energy. Correspondingly, there is
a dip in the mode dispersion of the superconducting phase,
as compared to the normal phase, which is concentrated at
the pair-breaking frequency ωτ = 2. This can be seen by
comparing the two equations derived from Eq. (11) for the
symmetric mode, between the normal and superconducting
case:

−εS (ωS ) = κS

κ0
coth

κSa

2
, −εN (ωN ) = κN

κ0
coth

κN a

2
.

If we neglect retardation in this frequency range, κS ≈ κN ≈
κ0 = k‖, so that, with εS (ωS ) ≈ εS (ωN ) + δω ∂εS (ω)

∂ω
|ωN , we
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observe that

εS (ωN ) − εN (ωN ) + δω
∂εS (ω)

∂ω

∣∣∣∣
ωN

= 0. (C1)

Immediately before the peak, the difference is positive and
the derivative is positive, so that δω < 0. Immediately after
the peak, the derivative becomes negative so that δω > 0 and

they form a cusp pointing downward. After the peak, the
difference is negative and the derivative is positive, so that
δω > 0 increases again. The location of the cusp is about
k0 = 2�

h̄v
where v ∼ 108 cm/s is the velocity of the electron

in the metal, giving k0 = 250 (μm)−1 which is a k vector
sampling distances of the order of the lattice spacing, beyond
the validity of this approach.
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