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Abstract: In recent years, we found that some multiscale methods applied to fractional differential
problems, are easy and efficient to implement, when we use some fractional refinable functions
introduced in the literature. In fact, these functions not only generate a multiresolution on R, but
also have fractional (non-integer) derivative satisfying a very convenient recursive relation. For this
reason, in this paper, we describe this class of refinable functions and focus our attention on their
approximating properties.
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1. Introduction

In the last decades, fractional calculus has increased in popularity, owing to the
awareness that many physical problems, such as viscoelasticity, Brownian motion, medical
issues and so forth, require fractional derivatives to be modeled appropriately. For a better
understanding, please see [1,2].

Analytical solutions for certain problems have been found. They are expressed through
the Mittag–Leffler function [3], which is a series expansion, and thus require numerical
tools to be computed. For this issue and for the other unsolved problems, the literature
provides many ways to numerically solve fractional differential problems. Most of the
methods employ the quadrature rule to compute the fractional derivatives [4]; others use
spectral or Galerkin methods [5].

In recent papers [5–7], the authors proved that the multiscale collocation methods
are easy and efficient to implement, when using certain fractional refinable functions
introduced in [6,8]. In fact, these functions not only generate a multiresolution on R, but
also satisfy a fractional derivative convenient formula. Moreover, the collocation technique
allows one to obtain an algebraic system from a differential problem.

The coefficient matrix is given by the collocation of basis functions into the collocation
nodes. In this way, the result is given by the solution (often in a least-squares sense) of a
linear algebraic system. The goal of this paper is to prove further approximating properties
of this class of fractional refinable functions with respect to [6,8], suitable to the solution of
fractional differential problems.

More precisely, in [6,8], we proved the basis properties of the class ϕα,h, for α > 2. The
novelty of this paper, is that here we prove that these properties are also valid for α > 1
and that other important approximating and smoothing properties can be proved, e.g., the
order of polynomial reproducibility. In this way, we enlarge the class of fractional refinable
functions from α > 2 to α > 1 and thus, also its applicability to a wider class of fractional
differential problems . Furthermore, we prove that all the properties derive from a suitable
convolution formula. Note that when we apply these functions to a differential problem
with fractional derivative γ, we have to choose refinable functions of approximation order
α such that α− γ > 1.
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The paper is organized as folllows. Section 3 introduces some fractional derivative
definitions, that can be computed by numerical quadrature rules. We choose the Ca-
puto derivative for several reasons: computational efficiency, minor regularity required,
stability [2]. Section 4 explains Multiresolution Analysis (MRA) properties on R and on the
interval. Section 5 describes the collocation and the Galerkin methods constructed with
MRA. Section 6 lists the main properties of the fractional B-splines, introduced in [9,10],
emphasizing the fractional derivative properties. Section 7 describes the new class of frac-
tional refinable functions constructed introduced by [6,8], through a convolution formula
involving the functions in [11] and with a continuos dependence from a parameter h. We
prove that these functions satisfy new properties that are similar to those of the fractional
B-splines, such as, for example, the polynomial reproducibility. Furthermore, we prove a
differentiation formula that makes them particularly interesting in the fractional derivative
context. In the conclusions, we explain all the advantages of this new class of fractional
refinable functions, including an example on polynomial reproducibility.

2. Fractional Derivatives

The fractional derivative can be defined in many ways: for example, in the Caputo
sense or in the Riemann Liouville way.

The Caputo definition of the fractional derivative is:

cDγ
t y(t) :=

(
J (k−γ)y(k)

)
(t) , k− 1 < γ < k , k ∈ N , t > 0 , (1)

where J (β) is the Riemann–Liouville integral operator

(
J (β)y

)
(t) :=

1
Γ(β)

∫ t

0
y(τ) (t− τ)β−1 dτ β ∈ R, (2)

and Γ denotes Euler’s gamma function

Γ(β) :=
∫ ∞

0
τβ−1 e−τ dτ . (3)

Hence,

cDγ
t y(t) :=

1
Γ(k− γ)

∫ t

0
y(k)(τ) (t− τ)k−γ−1 dτ, k = dγe. (4)

For example, if γ = 0.5 then k = 1 and:

cD0.5
t y(t) :=

1
Γ(0.5)

∫ t

0

y′(τ)√
(t− τ)

dτ . (5)

If, for example, y(t) = tn then

cDγ
t y(t) :=

Γ(n + 1− γ)

Γ(n + 1)
tn−γ. (6)

Riemann–Liouville definition is instead

RLDγ y(t) :=
dk

dtk

(
J (γ)y

)
(t) , t > 0 . (7)

They both reduce to the usual differential operator when γ ∈ N. In the general case,
we have the following relation between the Caputo and the Riemann derivatives

cDγ y(t) =RL Dγ

(
y(t)−

k

∑
l=0

tl

l!
y(l)(0+)

)
. (8)
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The definitions coincide for homogenous boundary initial conditions.
In the Fourier domain one has

F
(

Dγ , y(t)
)
= (iω)γF (y(t)) , γ ∈ R+ , ω ∈ C (9)

where F (y) is the Fourier transform of the function y.

3. MRA and Refinable Spaces

A sequence of functional spaces {Vj, j ∈ Z} ⊂ L2(R), forms a multiresolution analysis
(MRA) of L2(R) if

1. Vj ⊂ Vj+1, j ∈ Z,
2. ∪j∈ZVj = L2(R);
3.

⋂
j∈Z Vj = {0};

4. f (t) ∈ Vj ↔ f (2t) ∈ Vj+1, j ∈ Z;
5. there exists a L2(R)-stable basis in V0.

MRA Based on Refinable Functions

An MRA can be generated by a refinable function φ, i.e., a function that satisfies a
refinement functional equation

φ(t) = ∑
k∈Z

ak φ(2 t− k) , t ∈ R . (10)

It is known that if the mask coefficients {ak, k ∈ Z} form a finite sequence and have
some particular properties, then the existence of a unique solution to (10) in L2(R), can be
proved [12]. Moreover, the shifted refinable functions {φ(t− k), k ∈ Z} give rise to a stable
basis in V0, i.e., the space they span.

It is important to associate (10) with its symbol

bn(z) = ∑
k

ak zk

When the mask is an infinity sequence, under suitable conditions the solution exists
as proved in [8].

Now, we can define the spaces Vj of the multiresolution:

Vj := span {φjk(t) := φ(2j t− k) , k ∈ Z} , j ∈ Z , t ∈ R . (11)

Since we are taking into account differential problems of order n with initial conditions,
it is also important to define an MRA on an interval [0, T], belonging to Ł2([0, T]).

Let us suppose that the support of φ is compact, i.e., supp φ = [0, σ]. Then, we can
define an MRA on the interval.

V0
j [0, T] = span {φ0

jk(t) , k ∈ Nj} , j ≥ j0 , t ∈ [0, T] , (12)

where
φ0

jk(t) := {φjk|[0,T] : φjk(0) = φ′jk(0) = · · · = φ
(n−1)
jk (0) = 0};

Nj ⊂ Z, with #Nj = Nj = 2j + σ− 1, is the set of admissible index k and j0 is the
initial multiresolution scale, i.e., the minimal index such that supp φ0

j00 ⊂ [0, σ].
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4. The Collocation Method and the Galerkin Method

We use the MRA to approximate each fractional differential problem by the collo-
cation method and Galerkin method. For both methods, we pose the solution in the
following form:

yj(t) = ∑
k∈Nj

cjk ζ jk(t) (13)

where ζ jk is a refinable function generating an MRA.

• In the collocation method, we substitute (13) in the differential problem and we
collocate it in the dyadic nodes {tp = p/2s, p = 0, . . . , Ns, s ≥ j}. So, we obtain a

linear algebraic system in Ns equations and Nj unknowns {cjk}
Nj
k=1. Usually, we solve

the system by least-squares method.
• In the Galerkin method, we rewrite the differential problem in a weak form, and we

substitute (13), using ζ jk as trial and test functions. In this way, the resulting linear
algebraic system, will contain as the coefficient matrix, the integrals between u and
the test (trial) functions ζ jk (Stiffness matrix).

In this way, the differential problem is converted into a system of algebraic equations that
is suitable for computer programming.

Note.
If u also depends on x, i.e., u(t, x), then the coefficients are cjk = cjk(x) [5,6].

5. Fractional B-Splines

A particular class of refinable functions is provided by the cardinal B-Splines of degree
n, i.e., functions that are positive and compactly supported in [0, n + 1], in each interval
of the partition are polynomials of degree at most n and in R have regularity Cn−1(R).
The Fourier transform of the classical B-Splines is:

B̂n(ω) =

(
1− e−iω

iω

)n+1

, n = 0, 1, · · · (14)

We can define a fractional B-Spline starting with its Fourier transform obtained intro-
ducing a fractional (non-integer) exponent in (14):

B̂α(ω) =

(
1− e−iω

iω

)α+1

, α > −1 (15)

It is proven that for α > −1, the antitransform Bα is in L1(R), while Bα is in L2(R) for
α > −1/2 [9].

In the time domain, the cardinal B-Splines Bn, are defined in the following way. Let
t+ := max(0, t) be the usual truncated power function and the finite difference operator

∆n v(t) := ∑
k∈N0

(−1)k
(

n
k

)
v(t− k) , n ∈ N (16)

Then, Bn(t) can be defined as:

Bn(t) :=
∆n+1 tn

+

(n + 1)!
, (17)

whose symbol is

bn(z) =
1
2n (1 + z)n+1
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In the non-integer case, we define the generalized finite difference operator

∆γ v(t) := ∑
k∈N0

(−1)k
(

γ

k

)
v(t− k) , γ ∈ R+. (18)

When γ ∈ N, {(γ
k)}k is a compactly supported sequence and we get the usual finite

difference operator.
On the other hand, when γ ∈ R+\N, then(

γ

k

)
:=

Γ(γ + 1)
k! Γ(γ− k + 1)

= O(k−γ−1) , k ∈ N0, γ ∈ R+

and thus the sequence {(γ
k)}k is absolutely summable and the limit of the series (18) exists

under suitable hypothesis on v. [9]
The fractional B-spline, i.e., the B-spline of non-integer order, in the time domain is

defined as:

Bα(t) :=
∆α+1 tα

+

Γ(α + 1)
, α > −1

2
, (19)

The following theorem writes, with a different proof with respect to [9].

Theorem 1. The fractional derivative of a B-Spline is a fractional B-Spline. More precisely,

DγBn(x) =
∆n+1tn−γ

+ (x)
Γ(n + 1− γ)

= ∆γBn−γ(x) (20)

In fact, one has

DγBn(x) = Dγ ∆n+1tn
+(x)

(n + 1)!
= ∆n+1 Dγtn

+(x)
(n + 1)!

=

Γ(n + 1)
Γ(n + 1− γ)

∆n+1tn−γ
+ (x)

(n + 1)!
=

∆n+1tn−γ
+ (x)

Γ(n + 1− γ)

Proof. Now, for the rule of the difference finite operator composition

∆γ∆n−γ+1 = ∆n+1,

it is easy to verify that

∆n+1tn−γ
+ (x)

Γ(n + 1− γ)
=

∆γ∆n−γ+1tn−γ
+ (x)

Γ(n + 1− γ)
= ∆γBn−γ(x).

The theorem is proved.

It is also worthwhile to define the symbol bα of Bα, i.e.,

bα(z) =
1
2α

(1 + z)α+1

5.1. Main Properties of Fractional B-Splines

In the study by [9], fractional B-splines are introduced for the first time and their
main properties are proved. We summarize these properties in the following propositions
avoiding the proof.
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Proposition 1. The fractional B-Splines Bα belong to L1(R), for α > −1 and to the Sobolev space
Wr

2(R), 0 ≤ r < α + 1
2 , for α > − 1

2 ; where Wr
2(R), represents the Banach subspace of L2(R),

equipped with the norm
|| f ||r = || f ||2 + ||Dr f ||2

Proposition 2. When α > −1/2, the fractional B-Splines are α-order continuous, i.e., they can be
derived up to the order α but ∂α is in general only bounded.

Moreover, they generate an MRA of L2(R)

Proposition 3. The fractional B-splines reproduce polynomials up to degree dαe, but they do not
satisfy Strang and Fix theory. In fact, they have fractional approximation order α + 1, instead of
dαe+ 1.

For the CAGD and isogeometric context, it is important to know that they form a
partition of unity for α > −1.

Proposition 4. It is also important to consider the following fractional derivation rule that is a
generalization of the Formula (20)

Dγ (Bα) = ∆γ Bα−γ (21)

where Dγ is the usual derivative of order γ.

There is also a formula that allows us to assume that a fractional B-spline preserves
the order of approximation of any refinable function of order α.

Proposition 5. Let φα be a refinable function generating an MRA in L2(R), of order of approxi-
mation α. Then, φα can be factorized as

φα = Bα ∗ φ0, (22)

α ≥ 0 and φ0 is a distribution such that
∫

φ0 = 1 [10].

Let us observe that all the previous propositions can be proved by starting from
Proposition 5.

5.2. Fractional Derivative of Refinable Functions

If we consider a generic function φα of order α, it is possible to generalize the differen-
tiation rule (21).

In fact, let it be that φ0 ∈ C0(R), then φα ∈ Cdαe(R) and

Dγ φα = Dγ (Bα ∗ φ0) = ∆γ (Bα−γ ∗ φ0) = ∆γφα−γ , 0 < γ ≤ α . (23)

The claim follows from some results in [10].
For shifted functions φα,k(t), we obtain a similar result.

Proposition 6. Let φα,k(t) := φα(t− k). Then,

Dγ
t φα,k = ∆γ φα−γ,k , 0 < γ ≤ α . (24)

Let us note that since φ ∈ L2(R) and the generalized binomial coefficients decay similar
to k−γ−1 as k → +∞, thus the series in (24) converges. Thus, in practical computation,
∆γφα−γ,k is a finite sum.
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6. Fractional GP Refinable Functions

We present here the main results regarding a new class of refinable functions of frac-
tional order α, obtained starting by a suitable refinable function (of support [0, 2]) introduced
in [11]. We consider

φα,h =
1
2

Bα−2∗φ1,ĥ , 0 ≤ α ≤ h , (25)

where φĥ ∈ L2(R) is the elementary refinable function, solution of the refinement equation

φ1,ĥ(t) =
2

∑
k=0

aĥ,k φh(2t− k) , t ∈ R , (26)

with mask coefficients in [11] and ĥ = h− α + 1. h is a real shape parameter that controls the
shape of φα,h. The symbol of φn,h in general is

bn
h (z) =

1
2h [(1 + z)n+1 + 4(2h−n − 1)z(1 + z)n−1].

that, for n = 1 reduces to

b1
h(z) =

1
2h [(1 + z)2 + 4(2h−1 − 1)z].

In the Fourier domain, the definition of φα,h becomes:

F (φα,h)(ω) =

(
1− e−iω

iω

)α−1

φ̂ĥ(ω)

We observe that when α ∈ N, α ≥ 0, then φα,h is compactly supported, belongs to
∈ Cα−1(R) and is a GP function as in [11]; in particular for h = α it reduces to a cardinal
B-Spline. Instead, when α is not an integer but h = α, then φα,α is a fractional B-spline
in [9].

It is easy to show that φα,h can be also obtained by placing a fractional index in the

mask of φn,h, i.e., aα,h,k =
1
h

[
(α+1

k ) + 4(2h−α − 1)(α−1
k−1)

]
and, in this case φα,h becomes:

bα
h(z) =

1
2h [(1 + z)α+1 + 4(2h−α − 1)z(1 + z)α−1]

Therefore, it is not difficult to prove that:

bα
h(z) =

1
2

bα−2(z) b1
ĥ(z) (27)

where
bα−2(z) =

1
2α−2 (1 + z)α−1 and ĥ = h− α + 1

In fact,

bα
h(z) =

1
2h (1 + z)α−1[(1 + z)2 + (2h−α+2)− 22)z] =

=
1

2α−2
1

2h−α+2 (1 + z)α−1[(z2 + (2h−α+2)− 2)z + 1].

Observe that from (29), we deduce that Bα−2 carries all the approximation properties
of ϕα,h. In fact, since φĥ is summable, the convolution preserves all the properties of Bα−2.
So, we have the following theorem,
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Theorem 2. For any admissible α and h, φα,h belongs to Cbαc−2(R) (and decays to the infinity
rather rapidly so that in practice it can be assumed compactly supported).

Moreover, it has derivative ∂α−1, but it is only bounded, not necessary continuous; one says
that it is α- continous. As for the order of approximation, φα,h has order of approximation α− 1
and order of polynomial reproducibility dαe − 1; so it does not verify the Strang and Fix theory.

Finally, the differentiation rule is specified in

Dγ
t φα,h(t) = ∆γ φα−γ,h−α+2(t) =

∑k∈N0
(−1)k (α

k) φα−γ,h−α+2(t− k), 0 < γ ≤ α .

Proof. The properties of φα,h are the same properties of Bα−2 [9] that are preserved through
the convolution Formula (27) since φ1,ĥ is summable.

7. Conclusions

Since, as in the classical B-spline case, the fractional derivative of a GP refinable
function is a GP fractional refinable function, we deal in this paper with fractional GP
functions stemming from the fractional derivative of GP refinable functions. In this way,
we obtain a class of refinable functions, closed with respect to the fractional derivative.

Another advantage of these fractional GP refinable functions φα
h with respect to the GP

refinable function, is that, in practice, due to the rapid decay of φα
h , their supports appear

strictly contained in the supports [0, n + 1] of φn,h, but the order of exactness is the same,
i.e., n− 1. This property, in addition to derivative Formulas (23) and (24), renders them
highly suitable for solving fractional differential problems, as shown in [5,6].

More precisely, if, for example, we consider φα
h , with α = 1.5, then the order of

polynomial reproducibility is dαe − 1 = 1, that is the straight line can be reproduced, in the
same manner as classical GP refinable, when n = 1, and support [0, 2].
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