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Abstract: The present study illustrates an operational approach estimating individual and aggregate
vineyards’ canopy volume estimation through three years Tree-Row-Volume (TRV) measurements
and remotely sensed imagery acquired with unmanned aerial vehicle (UAV) Red-Green-Blue (RGB)
digital camera, processed with MATLAB scripts, and validated through ArcGIS tools. The TRV
methodology was applied by sampling a different number of rows and plants (per row) each year
with the aim of evaluating reliability and accuracy of this technique compared with a remote approach.
The empirical results indicate that the estimated tree-row-volumes derived from a UAV Canopy
Height Model (CHM) are up to 50% different from those measured on the field using the routinary
technique of TRV in 2019. The difference is even much higher in the two 2016 dates. These empirical
findings outline the importance of data integration among techniques that mix proximal and remote
sensing in routine vineyards’ agronomic practices, helping to reduce management costs and increase
the environmental sustainability of traditional cultivation systems.

Keywords: precision viticulture; TRV; CHM; unmanned aerial vehicle; digital models; grapevine
canopy measurement

1. Introduction

Precision farming techniques assume the optimal use of inputs to improve production
efficiency and sustainability [1–4]. A more efficient use of plant protection products and
tools leads to fewer pollution loads to rural environments, higher crop quality, less monetary
costs, and increased production rates, impacting the economic and ecological sustainability
of farms in a positive manner [5–10].

The vineyard is a heterogeneous environment where spatial monitoring techniques
application for biomass development and volume characterization can be integrated into a
decision support system optimizing plant protection strategies—a crucial issue for precision
viticulture [11–22]. Farm field measurements are routinely carried out, determining the
total amount of plant protection products via simplified mathematical approaches that
require direct measurement of canopy height, thickness, and distance between canopies.
More specifically, the Tree-Row-Volume (TRV) technique, requiring manual measurements
of the vineyard, estimates the total plant volume by ground unit (m3 ha−1) in vineyard
crown height, width, and inter-row distance [23–26]. TRV is relatively well known to grape
growers and agronomists. This method has been extensively used for various purposes,
including (rough) estimation of the adequate dosage treatment for plant protection within
a specific vineyard, leading to a more comprehensive management of the canopy. Other
volume measurement systems such as leaf wall area (LWA) and Unit Canopy Row (UCR)

Remote Sens. 2022, 14, 130. https://doi.org/10.3390/rs14010130 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14010130
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1010-3495
https://orcid.org/0000-0002-4636-8957
https://orcid.org/0000-0002-7536-3901
https://doi.org/10.3390/rs14010130
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14010130?type=check_update&version=1


Remote Sens. 2022, 14, 130 2 of 14

were not considered in this study because they primarily referred to viticultural contexts
with peculiar territorial or productive characteristics. Despite a consensus application to
plant/row monitoring in largely variable agronomic and ecological field conditions in
Europe as well as in other productive contexts, TRV determination is a labor-intensive and
time-consuming task. To our knowledge, a specific analysis of model errors and uncertain-
ties when using this routine approach is still lacking, despite the intense development of
proximal techniques monitoring the vineyard’s canopy [27,28].

At the same time, a precise characterization of plants’ structure was more recently
performed using remote sensing tools such as image analysis techniques, stereoscopic
photography, analysis of the light spectrum, ultrasonic ranging, and optical ranging [29–35].
Earlier Structure from Motion (SfM) approaches provided a basic framework for 3D vine-
yard point clouds reconstruction, with the aim of quantifying grapevine canopy volume
and leaf area index (LAI) [36–38]. These estimations were extensively used to optimize
canopy management and pest control, especially when variable rate technology (VRT) was
employed [39]. More recently, the acquisition of high-resolution unmanned aerial vehicle
(UAV) RGB imagery of the canopy has proved to be an effective tool for estimating plant
architecture (e.g., vegetation height, canopy, density) through computation of accurate and
reliable digital models [40–43]. The use of Ground Control Points (GCPs), located within
the orchard’s scene, represents an essential practice for spatial accuracy and minimization
of model’s errors [44,45].

Based on these premises, the present study illustrates a methodology estimating
individual and aggregate vineyard’s canopy volume through UAV remotely sensed imagery
acquired with an RGB digital camera, analyzed with MATLAB 2018b scripts, and validated
by ArcGIS 10.7.1 tools at various growth phases. More specifically, canopy volumes
routinely measured on the field following a TRV approach were compared to remotely
acquired volumes from an integrated analysis of Digital Surface Models (DSMs), Digital
Terrain Models (DTMs), and Canopy High Models (CHMs) derived from SfM assessment at
different time points. These results contribute to assess the reliability of the TRV technique,
verifying if the estimated volumes derived from UAV detection are comparable with, or
statistically different from, the figures measured in the field.

2. Materials and Methods
2.1. Study Area

The survey took place in an experimental field of 0.8 ha (Figure 1) in Usini, North-
Eastern Sardinia, Italy (Lat. 40◦40′10.13′′; Long. 8◦29′37.35′′ WGS84 EPSG 4326), at 144 m
above the sea level. The grapevines (Cagnulari cv.) were planted in a clay-loam soil with a
0.90 × 2.10 m spacing (East-West row orientation) and trained as Vertical Shoot Position
(VSP). A GNSS Leica 900 RTK receiver (Leica Geosystems) was used to record the X-Y
coordinates of six Ground Control Points (GCPs) for accurate georeferencing of the ortho-
mosaics analyzed in this study. Twenty-four additional sample points were identified over
the entire surface area and geo-referenced to characterize the canopy after every UAV flight.
Field measurements were run under sunny, clear sky conditions during the vine growing
season in 2016 (July and August), 2017 (July), and 2019 (June), at the same phenological
phase based on the specific year’s weather profile.

2.2. TRV-Based Field Measurements

In 2016, twelve measurements (every ten plants) for nine random rows were extracted,
whereas 105 measurements (one for each plant of the row) were collected for four random
rows used in 2017 and for six random rows in 2019. For TRV estimation, measurements
were taken using a rolling tape marked on a wooden rod to facilitate height/width detection
and limit the operator fatigue.

In 2016, field measurements were performed considering the highest and widest
extension reached by the plant (even isolated shoots, highlighted in red color in Figure 2b)
in a measurement point conventionally identified as the plant’s center (Figure 2a). In
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2017 and 2019, the shoots outside the uniform row shape (falling inside the blue polygon
in Figure 2b) were not considered during the measurement operations. Since height
measurements were performed considering the distance from the ground surface to the
highest part of the row—also taking account of the height of the trunk—each height
measurement was referred to the canopy by subtracting 0.90 m from the total value. The
“cutting height” of 0.90 m (represented by the red line parallel to the ground in Figure 2a)
matches the branches production zone in the cultivation system considered in this study.
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Figure 2. (a) The measurements of height and width rows using the wooden rod. Canopy heights
were calculated subtracting 0.90 m (red line) from the total measure; (b) an exemplification of the
influence of isolated shoots (in red) in height and width determination during field measurements.
The blue shape represents the volume estimated in 2017 and 2019, excluding the shoots out of the
row’s shape considered in 2016.
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TRV was calculated [23] multiplying the average rows height and width values, by an
aerial conversion factor (10,000) (1 ha = 10,000 m2), in turn divided by the inter-row width
(Equation (1)):

TRV =
H ∗W∗10000

I
(1)

where H is the average row height (m), W is the average row thickness (m), and I is the
inter-row width (m).

2.3. UAV-Based Sensing

Data acquisition in the first survey year was carried out using a customized hexacopter
equipped with a CMOS sensor Canon EOS 750D of 24 megapixels resolution, sensor size
22.3 mm × 14.9 mm, focal length 50 mm f/2.8. In the following years, a DJI Phantom
4 Pro (Shenzhen, China) equipped with RGB CMOS 1" sensor of 21 megapixels resolution,
Field of View (FOV) 84◦, 8.8 mm/24 mm (35 mm format equivalent), f/2.8-f/11 autofocus
1 m-∞ was adopted for field measurement. The photographic sets were acquired with a
75% front overlap and 85% side overlap at 35 m height above ground level (AGL) in 2016
and 2019, and 50 m in 2017. The different sensors and the flight altitude, combined with
specific elaboration processes, involved a different Ground Sampling Distance (GSD) of the
digital models in the five dates. Survey information about Day of Year (DOY), Biologische
Bundesanstalt, Bundessortenamt und CHemische Industrie (BBCH), and Growing Degree
Day (GDD) are summarized in Table 1.

Table 1. The details of the flight surveys, ortho-mosaics’ properties, Ground Sample Distance (GSD),
vineyard Day of the Year (DOY), BBCH, and Growing Degree Day (GDD) values.

Year Date Orthomosaics Vineyard Phenology
GSD (cm) RMSE (cm) DOY BBCH GDD

2016
7 July 0.26 3.3 189 79 798

2 August 0.26 3.1 215 81 1176

2017
17 July 0.90 6.4 198 79 798
31 July 1.22 5.7 212 81 1282

2019 26 June 0.92 2.5 177 71 665

2.4. Identification of the Canopy Height Model

Standard approaches to create 3D models derived from SfM processing and CHM [44,46]
adopt the absolute height of crop canopies as a target variable and define a CHM as the
difference between the DSM and the DTM. In the present study, Agisoft Metashape allowed
the estimation of the vineyard’s soil surface elevation profile (DTM) through the classifi-
cation of the dense cloud, the essential 3D model needed to obtain the 2D digital models
(DSM and DTM) in the Agisoft Metashape’s workflow. The specific tool named “Classify
Ground Points” (located into the Dense Cloud Tools’ menu) for points’ classification, was
used to detect the ground points and enhance the hole filling derived by the removal of
the canopy points. The models’ approximation derives from the inability of nadir images,
taken from above, to reconstruct the lower part of the plants (Figures 3 and 4a).

Starting from the resolution of each digital model (defined by the surface occupied
by a single pixel), MATLAB and ArcGIS CHMs analysis extracted the covered area height
information from the vineyard rows by integrating the volume of all individual pixels
that constitute the canopy. This approach generated a file containing the height values
on a reference plane placed 0.90 m above the soil’s surface (represented by the red line
in Figure 2a). This height matches the production zone where the branches are located,
contributing to remove the influence of soil surface and the stumps, and allowing the
effective measurement of the volume occupied by the canopy. The height information
contained in the CHM is free from interference derived by background colors, shadows, or
infesting plants, at least until their height exceeds the set limit of 0.90 m.
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Figure 4. (a) The three-layer typologies used to obtain canopy volumes through ArcGIS; (b) an
exemplification of the Canopy Height Model (CHM) derived from the difference between DSM and
Digital Terrain Model (DTM) rasters. Each square represents a pixel with the relative altitude above
the sea level (DSM and DTM) and height above ground (CHM). The CHM height values were used
to calculate the rows’ volumes.

The MATLAB analysis was run solely on DSMs (Figure 3). The altitude of each row
was estimated by averaging the visible soil values between each row. Measurements were
performed creating a rows x columns pixel raster matrix of 0.26 cm/pixel in 2016, 0.90
and 1.22 cm/pixel in 2017, and 0.92 cm/pixel in 2019 (based on the Ground Sampling
Distance) and dividing the raster matrix into blocks of 0.90 m × 2.10 m. The raster matrix
was oriented so that the x columns and y rows were parallel and perpendicular to the
vines’ rows, respectively, and each block included the canopy and a small part of the
ground (Figure 3). This approach allowed the reduction of the influence of vineyard
slope (represented by a pseudo-color palette ranging from purple to orange color) on the
canopy height measurement, providing a reference surface that consists of pixels with
the same elevation. All pixel values included in the volume estimation were obtained by
extracting height information above 0.90 m from the reference plan (ground) consisting of
the minimum values in each block.
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ArcGIS measurements were performed by subtracting the elevation value included in
the first basic input raster (DTM) from the second input raster (DSM) pixel-by-pixel value
and deducting 0.90 m from each pixel height (Figure 4) using the “Raster Calculator” tool.
The raster output (CHM), containing the new reference plane and the canopy, was used to
calculate the volumes occupied by each row by multiplying every pixel surface to its height
without any interference related to the vineyard’s slope. The Agisoft Metashape—ArcGIS
CHM generation followed the same methodology of [31]. Both MATLAB and ArcGIS
methods allowed an easy calculation of the green canopy cover as the percentage of field
surface occupied by grapevine vegetation. The number of canopy pixels above the cutting
edge of 0.90 m (as summarized in Figure 5) were counted and expressed as a per cent share
in the total number of pixels in the field.
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3. Results

Table 2 reports the canopy volumes determined for all grape-vine rows through field
measurement and the average percentage of the Green Canopy Cover (GCC) area [47]. The
measurements were performed using the TRV technique (Equation (1)) and automatic ap-
proaches based on UAV-derived digital models created using ArcGIS and MATLAB software.

Table 2. The Tree-Row-Volume (TRV) field measurements compared with the grapevine volumes
calculated by ArcGIS and MATLAB, and the Green Canopy Cover (GCC), at five different dates.

Date Field
TRV(m3/ha)

ArcGIS
TRV(m3/ha)

MATLAB
TRV(m3/ha)

MATLAB
GCC (%)

7 July 2016 5971 1 1991 1898 29
2 August 2016 5984 1 1649 1580 26

17 July 2017 1271 2 1343 1427 24
31 July 2017 1311 2 1316 1353 30
26 June 2019 2360 3 1550 1572 32

1 Twelve measurements repeated for nine rows were used to extract the value of TRV; 2 One hundred measure-
ments repeated for four rows were used to extract the value of TRV; 3 One hundred measurements repeated for
six rows were used to extract the value of TRV.
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The intrinsic differences between the three years reflect differential plant growth and
vineyard management expressed by different volume estimation through TRV, ArcGIS, and
MATLAB techniques.

3.1. TRV Measurement Results

When estimating the vineyard’s characteristics on the field, the TRV technique, based
on width and height field measurements of rows, was frequently regarded as honest
representation of the canopy structure. Canopy volumes estimation in 2016 was similar
on both dates, and the same result was observed for 2017. In 2019, the estimated volume
reached an intermediate value between 2016 and 2017. These differences are related to
natural canopy growth differences among years and different measurement approaches.
The number of rows and the measurements for each row played a crucial role in volume
evaluation. A statistical analysis demonstrating the substantial instability of field estimation
of canopy volumes, based on a subsample of rows, is reported in Figure 6. In this exercise,
TRV was routinely re-calculated considering progressively smaller (randomly selected)
samples of rows in the vineyard. TRV was expressed as a percentage departure from the
TRV measure derived from the full sample. Particularly, heterogeneous results of this
analysis carried out at the different experimental dates for 2016, 2017, and 2019, indicate a
limited robustness of the TRV estimate at decreasing sample sizes. For instance, calculating
TRV on sub-samples with half number rows led to a mis-estimation above 10% of the
estimated value on the whole sample. Only estimations based on a sub-sample with a
high (or very high) proportion of plants, in respect of the total population, provide reliable
canopy volume values. These results are consistent at different survey dates over the three
study years.
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3.2. MATLAB and ArcGIS Results

Significant differences between field and remote measurements were also observed in
this study. Conversely, the remotely sensed canopy volumes estimated through MATLAB
and ArcGIS procedures provided similar results for the three years of investigation. Com-
pared to TRV results, the remote sensing data appeared different at both dates in 2016 and
slightly different in 2019. These discrepancies may confirm reliability and precision of the
digital model to obtain canopy volume estimation compared with manual measurements.
Considering non-parametric inference, differences in volume estimates derived from Ar-
cGIS and MATLAB software were statistically insignificant (Mann Whitney U test, p > 0.05).
By contrast, differences in volume estimates derived from field TRV measurement and
MATLAB software (or ArcGIS software) were, in both cases, statistically significant (Mann
Whitney U test, p < 0.05). The 2017 and 2019 field data had a slightly higher similarity with
the values obtained through software elaboration. These results can be justified with (i) the
different measure extraction process (in 2016 the measurements were performed consider-
ing the highest and widest extension reached by the plant, even isolated shoots) and (ii)
the extension of measurements to all the plants of the investigated rows (four rows in 2017
and six in 2019). In 2019, 20 orange cards were uniformly applied in different plants over
the field area to evaluate the precision of the CHM reconstruction. A comparison between
the height values extracted by ArcGIS and MATLAB software, and those measured in the
field, confirms the CHM model precision (R2 = 0.80, p < 0.001, RSME = ±10.28). The GCC
range of 24% and 32% obtained in July and August was similar to the values correlated
with LAI obtained by Ballesteros et al. [47] on red grapevine Tempranillo cv. and Cabernet
Sauvignon cv. TRV and GCC had a similar pattern of development.

Figure 7 highlights the importance of selecting the correct cutting height during the
CHM elaboration to have a representative volume of the canopy. Its variation involves a
constant reduction in volume and a non-linear change in surface area due to the progressive
narrowing of canopy width from the bottom part to the upper. Surface and volume
variations were calculated for seven different cutting heights, ranging between 0.4 m up
to 1.0 m, with 0.1 m intervals. Based on this elaboration, Figure 7 indicates how canopy
volumes in June 2019 vary almost linearly, differently from the surfaces, quite limited in
the early stages and decreasing afterward with the same time pattern observed for 2016
and 2017.
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4. Discussion

The study aimed at estimating volume and surface variation on an experimental
vineyard over three years (2016, 2017, and 2019) by correlating TRV field measurements
with RGB-UAV remote sensed estimations. The combination of UAV and SfM algorithms
revealed appropriate for vineyard volume and GCC calculation, contributing to a com-
prehensive description of grapevines canopy structure. These tools are of relevance since
traditional methods for physiological variable estimation, routinely used by winemakers,
are often time-consuming and require expensive and long-term procedures in both the field
and laboratory [46].

Compared with classic methods for row volume calculation, such as the TRV, the pro-
posed approach provided larger information, greater measurement detail, and a precision
level not subjected to annual variability derived from different measurement approaches
and operators’ skills over the years [27]. The canopy evaluation by UAV-based imagery
allows a non-destructive and standardized framework [28] avoiding (or at least reducing)
the sampling error intrinsic in manual measurements [47]. The intrinsic variability of man-
ual measurements and the related sampling errors derive from the difficulty to measure the
exact height and width of the canopy, often compromised by the presence of single shoots
coming out from the main volume of the row and thus affecting the overall measure [31].
Furthermore, large surface extension and a high amount of sampling points determine
operator’s fatigue and may lead to a high (and hardly controlled) level of measurational
approximation [32]. Based on the empirical results of this study, UAVs’ high-resolution
datasets provide accurate geo-referenced imagery with a high spatial and temporal resolu-
tion that is near-real-time delivered [33]. The immediate availability of data would lead
farmers to consider remote sensing technology as a useful tool for timely operations [34].
Further efforts should be made to develop dedicated and user-friendly software for image
analysis and automatic detection of relevant management indexes for specific agronomic
practices, such as the TRV.

In this study, we proposed two simulation exercises on remotely sensed input data,
respectively based on a simplified approach grounded on a user-friendly software (Ar-
cGIS) and on a less intuitive programming scheme developed through MATLAB software.
These two approaches represent different computational strategies, the former reflecting
a possible software implementation for visual integration of proximal (field) and remote
sensing at the vineyard/farm scale, and the latter reflecting a generalized application for
batch computation and assessment over larger spatial scales [40]. Interestingly, remote
measurement techniques showed comparable results in terms of the output variable (i.e.,
estimated row volumes), suggesting how use of a user-friendly approach and a more
complex programming scheme does not affect the final estimation of the target variable [33].
However, MATLAB scheme allows calculation of the canopy volume directly from the
DSM, thus overcoming the use of third-part software (in our case, Agisoft Metashape)
to estimate differences between DSM and DTM as a preliminary step to the creation of
the CHM.

Measurement heterogeneity was associated, in large part, with the difference between
manual estimates and remote analysis methodologies [48–52]. Based on this evidence,
and thanks to the intrinsic variability of the canopy structure across rows, it seems unrea-
sonable to estimate TRV based on individual model rows or even representative plants,
although this practice was frequently adopted to expedite fieldwork [37]. We demonstrated
how whole-sample estimations are frequently biased when using a sub-sample of mea-
sures. Although earlier studies have been devoted to optimal measurement of canopy
geometric features, indicating TRV techniques as a reliable reference to estimate canopy
volumes [11,53], we assume that the TRV scheme cannot be used as an accurate representa-
tion of geometric canopy characteristics of the whole vineyard, due to its inability to detect
heterogeneity with a reduced amount of sampling [36]. For this reason, TRV measures
should be considered as unrepresentative (or largely biased) in comparison with results
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from UAV analysis, unless TRV is performed under a huge number of measurements,
which is time-consuming and unrealistic for the purposes of standard fieldwork.

In this direction, the empirical results of this study document a significant difference
between the estimated volume derived from UAV techniques and TRV field measures. A
precise estimation of vineyard’s row volumes is key for (i) planning agrochemical spraying
on both small- and large-scale plant protection schemes, (ii) monitoring agronomic opera-
tions associated with the crop status, and (iii) preserving the quality of the final product,
especially for cultivars that require specific canopy volume extension. In this perspec-
tive, the directive 2009/127/EC [54] and 2009/128/EC [55] of the European Parliament,
referring to the sustainable use of pesticide, focused on the possible strategies to contain
volume distribution excess doses. Assuming the crucial role in determining pesticide
doses appropriate for a given vineyards, the possible overestimation of TRV based on field
measures may determine a sub-optimal (e.g., excessive) use of chemicals, with negative
implications for both economic management and environmental quality of farms [28].

The remote sensing methodology illustrated here allowed for an easy detection of
plants (i.e., automatically scanning the whole surface relevant to measurement), evaluating
apparent variations in the thickness of the canopy [34]. Moreover, this technique allowed
row segmentation by using canopy pixels selected through the CHM [33]. In the vineyard,
remote sensing is also crucial to exclude the soil and surface weeds from the analysis in
order to avoid the mis-estimation of canopy pixel values [31]. Computer performance
did not represent a limit for processing operations, needing only 2 to 4 hours for the
models proposed here—and resulting in significantly less effort than the manual field
measurements [27]. Such a simple approach becomes more complex when images from the
top and the derived digital models are not available. GCC values were comparable to the
results of earlier studies reporting canopy coverage between 30% and 40% in similar trellis
systems [56,57]. These results were achieved after shoot pruning and remained constant
until harvest [47]. Since the BBCH values reported in Table 1 for the three survey years
range from fruit set (BBCH-71) to veraison (BBCH-81), the GCC results of this study can be
perfectly comparable with those mentioned above. To obtain a more reliable indicator of
canopy status, this variable can be considered when estimating row volumes.

Disadvantages of UAV remote sensing applications lie in the inability to perform
flights under adverse meteorological conditions, which might damage the UAV and pro-
vide unreliable data due to insufficient sunlight irradiation of the crop. Compared with
other technology developed for similar purposes, UAVs are relatively inexpensive with
critical limitations derived from the need for specific piloting skills and knowhow to
process and analyze the acquired data and to convert it into useful information for wine-
growers [37]. These findings suggest the need of new technical skills able to fill the gap
between winegrowers and information technologies and develop user-friendly tools to
spread their use, especially in rural areas specialized in high-value wine production. The
main limitation is the integration of this innovation into a complex decision support system
aimed at optimizing crop management, reducing costs, operator fatigue, and the release of
pollutants derived by agrochemicals’ over-dosage.

The specific ArcGIS exercise developed in our study may answer this limitation, pro-
viding a simplified interface for the collection and processing of remotely sensed data and
guaranteeing an easy management and integration of data recorded on the field. This
technology would help farmers to control grapevine vigor and canopy growth patterns, im-
prove support decisions for crop management, optimize pesticide and fertilizer application,
and enhance yield forecasting [27]. The use of dedicated software allows for a more precise
volume evaluation, analyzing the smallest details, at least in the visible parts from the top
of each plant [46]. The height model resolution was demonstrated to be comparable with
results derived from more expensive sensors, such as the Lidar [26,58].



Remote Sens. 2022, 14, 130 11 of 14

5. Conclusions

This contribution focused on the possible use of additional techniques replacing TRV
field estimation with remote estimation. The empirical results of our study confirm the
appropriateness of integrating (or even replacing) field measures with more precise and
accurate techniques when estimating orchards structural characteristics for optimization of
chemical application and other agronomic practices with a direct impact on economic costs
and ecological sustainability. Although field estimation of TRV is a routinary sampling
methodology still applied in many agronomic contexts, we demonstrate that remote ap-
plications may provide reliable and accurate tools to estimate TRV. Based on these results,
extensive use of TRV is recommended, when supported by remote sensing, to better qualify
errors and heterogeneities in field estimates. This is particularly important when decisions
on cost estimation, agronomic practices, and sustainability issues are uniquely taken based
on information derived from TRV field assessment.

Proximal and remote sensing together represent promising tools in precision viti-
culture. In this perspective, further studies should propose new (or refined) techniques
quantifying specific canopy characteristics (in addition to height and volume) from an
expert interpretation of unmanned aerial vehicles’ images. This specific knowledge may
provide the necessary information for a comprehensive understanding of structural charac-
teristic and functional traits of vineyards, having the final objective of enhancing together
economic performances and environmental sustainability of productive farms.
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