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Abstract
Abiotic	 factors	 are	 usually	 considered	 key	 drivers	 of	 species	 distribution	 at	macro	
scales,	while	biotic	interactions	are	mostly	used	at	local	scales.	A	few	studies	have	ex-
plored	the	role	of	biotic	interactions	at	macro	scales,	but	all	considered	a	limited	num-
ber	of	species	and	obligate	 interactions.	We	examine	the	role	of	biotic	 interactions	
in	large-	scale	SDMs	by	testing	two	main	hypotheses:	(1)	biotic	factors	in	SDMs	can	
have	an	important	role	at	continental	scale;	(2)	the	inclusion	of	biotic	factors	in	large-	
scale	 SDMs	 is	 important	 also	 for	 generalist	 species.	We	used	 a	maximum	entropy	
algorithm	to	model	the	distribution	of	177	bat	species	in	Africa	calibrating	two	SDMs	
for	each	species:	one	considering	only	abiotic	variables	(noBIO-	SDMs)	and	the	other	
(BIO-	SDMs)	 including	 also	 biotic	 variables	 (trophic	 resource	 richness).	We	 focused	
the	 interpretation	 of	 our	 results	 on	 variable	 importance	 and	 response	 curves.	 For	
each	species,	we	also	compared	the	potential	distribution	measuring	the	percentage	
of	change	between	the	two	models	in	each	pixel	of	the	study	area.	All	models	gave	
AUC	>0.7,	with	values	on	average	higher	 in	BIO-	SDMs	compared	to	noBIO-	SDMs.	
Trophic	resources	showed	an	importance	overall	higher	level	than	all	abiotic	predic-
tors	in	most	of	the	species	(~68%),	including	generalist	species.	Response	curves	were	
highly	interpretable	in	all	models,	confirming	the	ecological	reliability	of	our	models.	
Model	comparison	between	the	two	models	showed	a	change	in	potential	distribution	
for	more	than	80%	of	the	species,	particularly	in	tropical	forests	and	shrublands.	Our	
results	highlight	the	importance	of	considering	biotic	interactions	in	SDMs	at	macro	
scales.	We	demonstrated	that	a	generic	biotic	proxy	can	be	important	for	modeling	
species	distribution	when	species-	specific	data	are	not	available,	but	we	envision	that	
a	multi-	scale	analysis	combined	with	a	better	knowledge	of	the	species	might	provide	
a	better	understanding	of	the	role	of	biotic	interactions.
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1  |  INTRODUC TION

The	 distribution	 of	 animals	 and	 plants	 is	 linked	 to	many	 different	
components,	 going	 from	 evolutionary	 history	 to	 abiotic	 (e.g.,	 cli-
mate,	 land	cover,	 topography)	and	biotic	 (e.g.,	parasitism,	competi-
tion,	predation)	factors.	Traditionally,	abiotic	factors	like	climate	are	
considered	 the	main	 drivers	 of	 biodiversity	 at	macro	 scales	 (from	
regional	 to	continental),	whereas	biotic	 factors	are	considered	 im-
portant	almost	only	at	local	scales	(e.g.,	from	landscape	to	individual	
home-	range)	(Pearson	&	Dawson,		2003;	Soberón,	2007).	In	partic-
ular,	the	productivity	hypothesis	postulates	that	energy	and	water	
availability	are	the	main	factors	that	explain	the	spatial	distribution	
of	biodiversity	richness	across	broader	scale	(Hawkins	et	al.,	2003; 
Whittaker,	 1975).	 Often,	 this	 is	 translated	 into	 calibrating	models	
with	variables	such	as	mean	temperature	and	precipitation	(Thuiller	
et	al.,	2004)	without	considering	any	type	of	biotic	factors.

However,	 biotic	 interactions	 clearly	 have	 a	 direct	 influence	on	
species'	 spatial	 patterns	 with	 many	 different	 mechanisms,	 going	
from	 predation	 to	 competition,	 from	 resource–	consumer	 interac-
tions	to	host–	parasite	 interactions	 (e.g.,	Bascompte,	2009).	Gilman	
et	al.	(2010)	suggested	that	species	interactions	can	strongly	influ-
ence	how	climate	change	affects	species	distribution	at	every	scale	
and	failing	to	incorporate	these	interactions	in	species	distribution	
models	 certainly	 limits	 our	 ability	 to	 predict	 species	 responses	 to	
climate	 change.	 This	 is	 true	 particularly	 for	 positive	 interactions	
(e.g.,	facilitation)	which	may	be	detectable	at	large	scales,	while	neg-
ative	 interactions	 (e.g.,	 competition),	 being	more	 scale-	dependent,	
are	 often	 assumed	 to	 be	 important	 only	 at	 local	 scales	 (Araújo	&	
Rozenfeld,	2014;	Belmaker	et	al.,	2015).

Wisz	 et	 al.	 (2013)	 reviewed	 the	 literature	 on	 interspecific	 in-
teractions	 searching	 for	 evidence	 of	 their	 importance	 in	 shaping	
large-	scale	 species	 distributions.	 They	 found	 few	 empirical	 stud-
ies	 (e.g.,	 Araújo	 &	 Luoto,	 2007;	 Heikkinen	 et	 al.,	 2007;	 Koenig	 &	
Haydock,	 1999)	 mostly	 focused	 on	 a	 limited	 set	 of	 species	 with	
“obligate”	 interactions	 (e.g.,	 butterfly-	plants).	 For	 example,	 Araújo	
and	 Luoto	 (2007)	modeled	 the	 distribution	 of	 the	 clouded	Apollo	
butterfly	(Parnassius mnemosyne)	by	using	climate	variables	only,	cli-
mate	variables	plus	the	occurrence	of	four	larval	host	plants	as	biotic	
variable,	 and	biotic	 variables	only.	According	 to	 their	 findings,	 the	
inclusion	of	 a	biotic	 interaction	can	 significantly	 alter	 species'	dis-
tribution	at	macro	scales	for	both	the	current	time	and	under	future	
climate	change	scenarios.	These	results	were	not	unexpected,	since	
the	study	is	focused	on	one	butterfly	species	highly	dependent	on	
the	three	host	plant	species	during	its	larval	stage.

In	 the	 last	 few	 years,	 only	 a	 handful	 of	 studies	 have	 been	
added,	 focusing	on	 trophic	 (Arumoogum	et	 al.,	2019),	 competitive	
(Labadessa	&	Ancillotto,	2022;	Stephenson	et	al.,	2022),	and	animal–	
host	interactions	(González-	Salazar	et	al.,	2013).	Alaniz	et	al.	(2020)	
provided	an	interesting	example	considering	the	Magellanic	wood-
pecker	 (Campephilus magellanicus)	 and	 its	 preys	 in	 South	America.	
They	demonstrated	that	the	inclusion	of	biotic	interactions	(specif-
ically	the	distribution	of	prey	species)	helped	 in	defining	the	niche	
and	distribution	of	a	specialist	predator	at	the	continental	scale.	All	

these	 analyses	have	been	performed	 considering	 relatively	 simple	
systems,	with	a	good	level	of	knowledge,	and	focusing	on	specialist	
species,	 leaving	an	open	discussion	on	the	generalizability	of	 their	
results.

Braga	 et	 al.	 (2019)	 extended	 these	 results	 considering	 a	 food-	
web	 database	 to	 model	 the	 distribution	 of	 terrestrial	 vertebrates	
in	Europe.	However,	these	analyses	rely	on	food-	web	data	or	more	
generically	on	biotic	interactions	data,	which	are	often	not	available	
in	many	regions	of	the	world	(the	so-	called	Eltonian	shortfall;	Hortal	
et	al.,	2015),	especially	in	areas	with	a	high	level	of	biodiversity	and	
limited	knowledge	of	complex	trophic	interaction	webs,	such	as	the	
African	continent.

Several	studies	overcame	the	paucity	of	data	using	proxies	for	
biotic	interactions	like,	for	example,	richness	of	prey	species	(Aragón	
&	 Sánchez-	Fernández,	 2013;	 de	 Araújo	 et	 al.,	 2014;	 Gherghel	
et	 al.,	2018).	 All	 these	 studies	 found	 that	 proxies	 for	 biotic	 inter-
actions	can	be	important	in	modeling	species	distributions	at	large	
scales,	 but	 all	 of	 them	 focused	 on	 a	 single	 predator	 and	 its	 preys	
(e.g.,	Aragón	&	Sánchez-	Fernández,	2013)	or	on	a	limited	set	of	spe-
cies	within	peculiar	ecological	systems	(e.g.,	5	species	of	sea	kraits	in	
South-	East	Asia;	Gherghel	et	al.,	2018).

Here,	we	investigate	the	importance	of	including	biotic	variables	
in	 large-	scale	 species	 distribution	models	 while	 considering	many	
species	with	 very	 different	 trophic	 ecology.	We	modeled	 the	 dis-
tribution	of	all	bat	species	occurring	in	Africa	calibrating	two	SDMs	
for	each	species:	one	“traditional”	SDM	calibrated	with	abiotic	vari-
ables	 only	 (hereafter	 noBIO-	SDM)	 and	 one	 SDM	 calibrated	 with	
both	biotic	and	abiotic	variables	(hereafter	BIO-	SDM).	We	compared	
variable	 importance	in	the	two	sets	of	SDMs	to	test	two	main	hy-
potheses:	 (1)	biotic	factors	 in	SDMs	can	have	an	 important	role	at	
the	continental	scale	and	(2)	the	inclusion	of	biotic	factors	in	large-	
scale	SDMs	is	important	also	for	generalist	species.

Bats	 represent	 one	 of	 the	 most	 successful	 radiations	 among	
mammals,	with	more	 than	 1400	 species,	 a	 global	 distribution	 (ex-
cept	for	the	polar	regions),	and	a	huge	variety	of	ecological	niches	
(Simmons,	2005).	 Their	 trophic	 ecology	 covers	 a	huge	diversity	 in	
both	 the	 food	 items	 consumed	 (e.g.,	 plants,	 arthropods,	 or	 verte-
brates)	 and	 the	 degree	 of	 dietary	 specialization.	 In	 addition,	 they	
are	often	sensitive	to	climatic	and	environmental	variation	(Cooper-	
Bohannon	et	al.,	2016;	Schoeman	et	al.,	2013),	making	them	an	inter-
esting	case	study	for	testing	our	hypotheses.

2  |  METHODS

2.1  |  Species distribution data

We	considered	 all	 314	 species	of	 bats	 present	 in	Africa	 (Wilson	
&	Mittermeier,	 2019; Figure S1.1	 in	 Appendix	 S1	 in	 Supporting	
Information)	 and	 we	 obtained	 117,928	 occurrences	 from	 the	
African	 Chiroptera	 Report	 database	 (Van	 Cakenberghe	 &	
Seamark,	 2020).	 Two	 co-	authors	 (V.V.C.	 and	 E.S.)	 provided	 ad-
ditional	 unpublished	 locations;	 the	 final	 occurrences	 database	
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    |  3 of 10COSENTINO et al.

included	159,380	locations	for	310	species.	For	137	species	with	
few	(<20)	or	no	occurrences,	we	looked	for	additional	data	from	
online	 databases	 (e.g.,	 GBIF	 and	 iNaturalist),	 and	 peer-	reviewed	
literature	(the	complete	list	of	data	sources	and	references	is	given	
in	Appendix	S1 Table S1.2	and	Table S1.3)	and	we	obtained	3232	
additional	 locations	 for	 84	 species.	 The	 full	 database	 included	
162,612	locations	for	310	species.

We	 removed	 all	 locations	 without	 coordinates,	 all	 duplicated	
records,	and	all	records	with	dubious	taxonomy.	We	excluded	from	
further	analyses	4	species	for	which	no	presence	data	were	available	
as	well	as	133	species	with	less	than	20	occurrences	which	would	re-
sult	in	unstable	and/or	unrealistic	models	(van	Proosdij	et	al.,	2016; 
Wisz	et	al.,	2008).

To	limit	autocorrelation	in	the	data,	for	the	remaining	177	spe-
cies,	we	kept	only	one	location	per	1	km2	obtaining	a	total	of	22,730	
locations,	 with	 an	 average	 of	 128	 locations	 per	 species	 (range:	
20–	944).

For	the	entire	set	of	314	species,	we	also	collected	data	on	trophic	
guild	(frugivores	vs	insectivores)	and	diet	specialization	(number	of	
food	items	registered	in	the	diet)	from	the	Bat	Eco-	Interactions	data-
base	(Geiselman	&	Younger,	2020; http://batba	se.org/)	and	Wilson	
and	Mittermeier	(2019).	Food	items	were	obtained	at	the	family	level	
for	plants,	and	at	the	order	level	for	arthropods.	All	species	feeding	
on	plant	resources	(fruits,	nectar,	other	plant	parts)	were	classified	
as	frugivores	while	those	feeding	mainly	on	arthropods	were	classi-
fied	as	insectivores	(Appendix	S1 Table S1.4).	Focusing	on	visitation,	
consumption,	and	predation	of	food	resources,	we	defined	as	gener-
alists	all	bat	species	feeding	on	more	than	one	food	item.

2.2  |  Environmental and biotic data

We	 included	 in	our	 analyses	 as	many	variables	 as	possible	 among	
those	potentially	 important	 in	 shaping	 species	distribution	 in	bats	
(Cooper-	Bohannon	et	al.,	2016;	Herkt	et	al.,	2016).	We	included	abi-
otic	variables	(climate,	terrain	ruggedness,	distance	to	waters),	biotic	
variables	(richness	of	trophic	resources),	and	anthropogenic	factors	
(human	population	density).	All	layers	considered	were	resampled	at	
1	km2	resolution	(Appendix	S1 Table S1.5).	All	data	management	was	
performed	 in	 R	 4.1.2	 (packages	 ‘usdm’,	 ‘fossil’,	 ‘randomForest’)	 and	
ArcGis	Pro	2.8.3	(ESRI	©).

All	abiotic	variables	we	included	are	linked	directly	or	indirectly	
to	the	habitat	used	by	bats.	We	included	a	Terrain	Ruggedness	Index	
(TRI)	as	a	proxy	for	roost	availability,	assuming	that	more	complex	
topographies	are	associated	with	greater	availability	of	rock	crevices	
(including	cave-	like	roosts;	Kunz,	1982).	We	calculated	the	TRI	fol-
lowing	Nielsen	et	al.	(2004)	using	a	90 m	resolution	digital	elevation	
model	(SRTM	v4.1;	Jarvis	et	al.,	2008).

Inland	water	availability	is	a	critically	important	factor	for	many	
bat	species,	especially	in	hot	and	dry	areas	such	as	those	present	in	
the	African	continent	(Korine	et	al.,	2016).	Water	springs,	streams,	
rivers,	 ponds,	 and	 lakes	 are	 crucial	 not	 only	 for	 drinking	 but	 also	
for	 plant	 and	 invertebrate	 abundance	 (McCain,	 2007;	 Monadjem	

et	 al.,	2018).	We	 included	water	 availability	 in	 our	 analyses	 using	
two	layers	of	distance	to	water:	permanent	water	bodies	and	tem-
porary	water	bodies.	To	define	permanent	 inland	waters,	we	used	
permanent	lakes,	ponds,	rivers,	and	streams	obtained	combining	the	
World	Waterbodies	database	(ESRI	©),	the	World	Waterlines	data-
base	(ESRI	©)	and	the	Global	Surface	Water	database	(GSW;	Pekel	
et	al.,	2016).	The	two	ESRI	databases	include	vector	layers	while	the	
GSW	is	a	raster	database	with	30 m	resolution.	From	the	GSW,	we	
considered	the	water	 transition	 layer	with	10	water	classes	 repre-
senting	 changes	 in	water	 presence	 between	 any	 two	 consecutive	
years	(from	1984	to	2015).	We	focused	on	permanent	water	(classes	
1,	2,	and	7).	To	define	temporary	inland	waters,	we	considered	the	
other	7	classes	in	the	same	GSW	layer	and	temporary	waterbodies,	
and	ponds	from	the	two	ESRI	databases.	Furthermore,	we	included	
temporary	waterbodies	 (3rd,	4th,	and	5th	Strahler	order)	 from	the	
AQUAMAPS	 Rivers	 of	 Africa	 database	 (FAO,	 2014; https://data.
apps.fao.org/aquamaps).

Climate	 variables	 (e.g.,	 temperature	 and	 precipitation)	 are	 im-
portant	predictors	of	habitat	 suitability	 for	many	bat	 species	both	
directly	 given	 their	 physiological	 constraints	 (Jones	 et	 al.,	 2009; 
Ortega-	García	et	al.,	2017)	and	indirectly	considering	the	seasonal	
changes	 in	 the	 availability	 of	 their	 trophic	 resources	 (Cumming	&	
Bernard,	1997).	Therefore,	we	considered	an	initial	set	of	19	biocli-
matic	variables	at	30	arc-	seconds	resolution	 (roughly	1	km2	at	 the	
equator)	obtained	from	Chelsa	V2.1	(Karger	et	al.,	2017).

We	obtained	human	population	density	from	the	SEDAC	data-
base	(Gao,	2020; https://sedac.ciesin.colum	bia.edu)	which	gives	the	
number	of	people	living	in	each	30	arc-	seconds	resolution	pixel.	We	
considered	 this	 variable	 as	 a	 proxy	 for	 human	 disturbance	 repre-
sented	by	threats	 like	habitat	 loss	and	roosts	disturbance	(e.g.,	 for	
mining,	cave	tourism)	as	well	as	persecution	and	harvesting	pressure	
for	human–	wildlife	conflicts	(e.g.,	orchards	farmers)	(Aziz	et	al.,	2016; 
Mildenstein	et	al.,	2016).

No	 information	 is	 available	 on	 trophic	 resource	 availability	 for	
bats	at	the	scale	of	the	entire	African	continent.	Therefore,	we	in-
cluded	 in	 the	 analyses	 a	 model	 of	 trophic	 resource	 richness	 as	 a	
proxy	for	biotic	 factors.	From	Cosentino	and	Maiorano	 (2021),	we	
selected	 occurrences	 for	 plants	 (at	 the	 genus	 level)	 and	 arthro-
pods	 (at	 the	 family	 level)	 consumed	by	African	 bats	 (Geiselman	&	
Younger,	2020;	Wilson	&	Mittermeier,	2019).	We	used	a	bias	 cor-
rected	 version	 of	 these	 data	 to	 calibrate	 a	 Random	 Forest	model	
(1000	 trees;	 Breiman,	 2001)	 for	 plants	 and	 for	 arthropods,	 using	
richness	of	taxa	(Gotelli	&	Colwell,	2011)	as	response	variables	and	
climate	 (annual	mean	 temperature,	 precipitation	 seasonality,	 tem-
perature	annual	range,	precipitation	of	warmest	quarter,	precipita-
tion	of	 coldest	quarter),	 TRI,	 and	water	 availability	 (km2	 of	water/	
km2	pixel)	as	explanatory	variables.

To	 exclude	 collinearity	 between	 predictors,	 we	 performed	 a	
variance	inflation	factor	(VIF)	analysis	with	all	predictors,	and	we	re-
tained	only	variables	with	a	VIF < 3	(Zuur	et	al.,	2010;	Appendix	S2 
Table S2.6).	The	 final	 set	of	variables	 included	climate	 (mean	 tem-
perature	 of	 wettest	 quarter,	 mean	 temperature	 of	 driest	 quarter,	
precipitation	of	driest	month,	precipitation	seasonality,	precipitation	

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9855 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [21/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://batbase.org/
https://data.apps.fao.org/aquamaps)
https://data.apps.fao.org/aquamaps)
https://sedac.ciesin.columbia.edu


4 of 10  |     COSENTINO et al.

of	 coldest	quarter),	 distance	 to	permanent	 and	 temporary	waters,	
human	population	density,	TRI,	and	trophic	resources.

2.3  |  Species distribution models and 
statistical analysis

For	each	species,	we	calibrated	two	species	distribution	models,	one	
(noBIO-	SDM)	 considering	 only	 abiotic	 variables	 (climate,	 TRI,	 dis-
tance	to	permanent	and	temporary	waters,	and	human	population	
density)	and	the	other	(BIO-	SDM)	including	all	abiotic	variables	plus	
trophic	 resource	 availability.	 To	 calibrate	 the	 two	 SDMs	with	 the	
same	number	of	explanatory	variables,	we	added	to	the	noBIO-	SDM	
a	dummy	variable	set	to	zero	over	entire	Africa,	therefore	ensuring	a	
full	comparability	between	the	two	models	(Zhang	et	al.,	2022).	We	
calibrated	all	models	using	a	maximum	entropy	algorithm	 (Maxent	
v.3.4.1;	Merow	et	al.,	2013)	with	default	parameters	which	produce	
reliable	and	accurate	species	distribution	models	(Valavi	et	al.,	2022).

Although	 a	 target-	group	 approach	 is	 recommended	 to	 re-
duce	 the	 sampling	 bias	 when	 citizen	 science	 data	 are	 used	 (Ranc	
et	al.,	2017),	our	database	on	bat	occurrences	does	not	present	any	
particular	environmental	bias	(Appendix	S2 Figure S2.7).	Therefore,	
we	considered	for	all	species	the	same	set	of	10,000	random	back-
ground	points	covering	the	entire	African	continent	(Barbet-	Massin	
et	al.,	2012).	We	calibrated	all	models	using	a	random	80%	sample	of	
the	species	occurrences	and	we	used	the	remaining	20%	for	model	
evaluation	and	we	repeated	the	same	procedure	for	10	replicates.	
For	 each	 replicate,	 we	 evaluated	 the	 predictive	 capacity	 of	 each	
model	 calculating	 the	 area	 under	 the	 curve	 (AUC)	 of	 the	 receiver	
operating	characteristic	(ROC;	Swets,	1988),	the	true	skill	statistics	
(TSS;	Allouche	et	al.,	2006),	and	the	Boyce	index	(Boyce	et	al.,	2002).	
We	 evaluated	 the	 differences	 in	 predictive	 capacity	 between	 the	
BIO-	SDMs	 and	 noBIO-	SDMs	 performing	 a	 Wilcoxon	 test	 on	 the	
evaluation	statistics	(Wilcoxon,	1945).	The	final	model	was	obtained	
by	 averaging	 all	 replicates	 with	 AUC > 0.7.	 For	 each	 replicate,	 we	
also	measured	variable	importance	using	a	jackknife	approach	which	
removes	one	variable	at	 time	and	 records	 the	change	 in	 the	AUC:	
the	higher	 the	 change,	 the	more	 important	 the	 variable	 (Peterson	
et	al.,	2011;	Shcheglovitova	&	Anderson,	2013).	To	compare	the	vari-
able	importance	between	the	two	models,	for	each	predictor	vari-
able,	we	calculated	the	average	and	standard	deviation	importance	
among	all	177	bat	species	 for	BIO-	SDMs	and	noBIO-	SDMs.	Using	
the	same	strategy,	we	also	compared	variable	importance	between	
the	two	models	considering	only	generalist	species.

For	 each	 species	 and	 for	 both	 the	 BIO-	SDM	 and	 the	 noBIO-	
SDM,	 we	 mapped	 the	 potential	 species	 distribution	 in	 Africa.	 All	
final	models	were	binarized	using	a	species-	specific	threshold	maxi-
mizing	the	true	skill	statistics	(TSS;	Liu	et	al.,	2016),	a	threshold	that	
maximizes	the	ability	of	 the	model	 to	discriminate	presences	from	
background	 points.	We	projected	 the	 binary	models	 over	 all	 eco-
logical	zones	(as	defined	by	FAO,	2012;	Appendix	S2 Figure S2.8)	by	
where	the	species	occurs	(Marsh	et	al.,	2022;	Monadjem	et	al.,	2020; 
Wilson	 &	 Mittermeier,	 2019),	 accounting	 therefore	 for	 historical	

biogeographical	 factors	 that	 were	 not	 possible	 to	 include	 in	 the	
modeling	(e.g.,	dispersal	limitations).

For	each	predictor	variable,	we	also	calculated	the	average	re-
sponse	curves	of	frugivore	and	insectivore	bats	to	evaluate	the	eco-
logical	reliability	of	our	results	compared	with	the	available	literature	
on	African	bats	(Monadjem	et	al.,	2020;	Wilson	&	Mittermeier,	2019).

We	 mapped	 the	 spatial	 discrepancy	 among	 BIO-	SDMs	 and	
noBIO-	SDMs	by	measuring	the	percentage	of	species	showing	a	dif-
ference	between	the	two	models	in	each	pixel	of	the	study	area.	We	
explored	the	influence	of	different	traits	on	this	discrepancy	using	a	
linear	 regression	with	a	phylogenetic	 correction	 (Brownian	model;	
Ho	&	Ané,	2014).	We	focused	our	analysis	on	four	traits	(number	of	
occurrences,	mean	body	mass,	mean	colony	size,	and	the	number	of	
diet	items)	representing	the	detectability	and	trophic	ecology	of	the	
species.	Body	mass	and	colony	size	were	obtained	from	Wilson	and	
Mittermeier	(2019)	and	Monadjem	et	al.	(2020),	while	phylogenetic	
data	were	downloaded	from	VertLife	database	(Upham	et	al.,	2019).	
Since	phylogenetic	data	were	not	available	for	all	bats,	we	performed	
only	this	analysis	on	162	species	(out	of	177).

3  |  RESULTS

All	 evaluation	 metrics	 gave	 comparable	 results	 with	 a	 slight	 yet	
significant	 (p < .0001)	 improvement	 of	 the	 predictive	 power	 for	
BIO-	SDMs	 compared	 to	 noBIO-	SDMs	 (Appendix	 S3 Table S3.9,	
Figure S3.10).	 Focusing	 on	 the	 AUC,	 BIO-	SDMs	 gave	 on	 average	
higher	 values	 (average	= 0.94; st. dev. =	 0.04;	 range:	 0.77–	0.99)	
compared	 to	 those	 of	 the	 noBIO-	SDMs	 (average	 AUC	 = 0.93; 
st.dev. =	0.04;	range:	0.82–	0.99).

Trophic	resource	availability	was	the	most	important	variable	in	
62	species	out	of	177	with	an	average	variable	importance	of	almost	
48%	(Table 1;	Appendix	S3 Table S3.11).	For	34	species,	it	was	the	
second	most	important	variable,	while	for	24	species,	it	was	the	third	
(Table 1;	Appendix	S3 Table S3.12,	S3.13).

Climatic	variables	were	important	in	shaping	species	distribution	
even	when	biotic	variables	are	 included,	with	“precipitation	of	 the	
driest	month”	and	“mean	temperature	of	 the	driest	quarter”	being	
the	 first	 variable	 for	 33	 and	18	 species,	 respectively	 (average	 im-
portance	of	 roughly	40%	 for	 both;	Appendix	S3 Table S3.14).	 For	
noBIO-	SDMs,	 the	precipitation	of	 the	driest	month	was	 the	most	
important	variable	in	60	species	out	of	177,	with	an	average	impor-
tance	value	of	almost	50%	(Appendix	S3 Table S3.15).

Distance	to	inland	permanent	water	was	always	a	strong	predic-
tor	(irrespective	of	the	presence	of	the	trophic	resource	availability),	
being	the	most	important	variable	for	35	species	in	BIO-	SDMs	(av-
erage	importance	= 36%; Table S3.14)	and	for	70	species	in	noBIO-	
SDMs	(average	importance	= 40%; Table S3.15).	Distance	to	inland	
temporary	waters,	TRI,	the	other	climatic	variables,	and	human	pop-
ulation	density	were	often	marginal	 in	shaping	species	distribution	
for	African	bats.

For	both	frugivore	and	insectivore	bats,	the	response	curves	for	
the	 biotic	 variables	 showed	 an	 increasing	 probability	 of	 presence	
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    |  5 of 10COSENTINO et al.

with	increasing	availability	of	trophic	resources	(Figure 1).	Frugivore	
bats	 showed	 a	 constantly	 increasing	 probability	 of	 presence	 for	
higher	plant	richness,	while	insectivorous	bats	showed	an	increasing	
probability	of	presence	up	to	medium	arthropod	richness,	getting	up	
to	a	plateau	after	which	the	probability	of	presence	remained	con-
stant	(Figure 1a,	b).

The	 response	 curves	 for	 all	 other	 variables	 remained	 substan-
tially	unchanged	for	models	with	and	without	the	trophic	resources.	
All	 species	 showed	 a	 strong	 relationship	 with	 distance	 to	 inland	
permanent	waters,	decreasing	their	probability	of	presence	for	 in-
creasing	distances	to	permanent	waters	(Figure 1c,	d).	The	response	
curves	of	the	climatic	variables	showed	for	all	species	an	increasing	
probability	of	presence	for	increasing	levels	of	precipitation,	quickly	
reaching	a	peak	in	probability	of	presence	at	roughly	200–	500 mm	
of	precipitation	in	the	driest	month	that	gradually	declines	with	in-
creasing	values	 (Figure 1e,	 f).	The	response	curve	for	temperature	
was	similar,	reaching	a	peak	at	intermediate	temperatures,	and	then	
decreasing	 (Figure 1g,	h;	 see	Appendix	S3 Figure S3.16,	 S3.17	 for	
response	curves	of	other	variables).

Among	 the	 species	 modeled,	 70	 were	 trophic	 generalists	
(Table S1.4);	for	43%	of	these	species,	trophic	resource	availability	
was	by	far	the	most	important	variable	(average	importance	=	47%;	
Appendix	S3 Table S3.18,	S3.19).

On	 average,	BIO-	SDMs	and	noBIO-	SDMs	differed	 for	7.8%	of	
their	spatial	predictions	(st.dev.	=	5.1%;	range:	0.3%–	32.7%).	For	al-
most	22%	of	the	species,	the	changes	in	potential	distribution	cov-
ered	more	than	10%	of	the	study	area	 (Appendix	S3 Table S3.20).	
Species	with	a	higher	percentage	of	change	showed	a	 lower	num-
ber	 of	 occurrences	 (p < .001),	 a	 high	 number	 of	 items	 in	 the	 diet	

(p < .001),	and	a	small	colony	size	(p < .05),	while	the	body	mass	gave	
no	significant	result	(Appendix	S3 Table S3.21).

Tropical	forests	and	shrublands	host	the	areas	with	the	highest	
percentage	of	species	showing	a	change	in	their	potential	distribu-
tion	 between	 BIO-	SDMs	 and	 noBIO-	SDMs	 (Figure 2).	 More	 than	
50%	of	the	species	showed	a	change	in	their	potential	distribution	
between	the	two	models	 in	the	tropical	moist	forests	surrounding	
the	Congo	basin,	with	peaks	greater	than	80%	of	the	species	along	
the	Sahel	belt	 (from	Senegal	up	to	Eritrea),	and	 in	Botswana.	Also,	
the	 tropical	 rainforests	 in	 the	south	of	 the	Congo	basin	 showed	a	
particularly	high	percentage	of	 species	with	changes	between	 the	
two	models	(>80%).	Subtropical	dry	forests	(Mediterranean	coasts;	
South	Africa),	 the	Horn	 of	 Africa,	 the	Namib	 desert,	 and	most	 of	
Madagascar	 showed	 changes	 for	<50%	 of	 the	 species	 in	most	 of	
their	 area.	 In	 the	 Sahara	 desert,	 the	BIO-	SDMs	 and	noBIO-	SDMs	
were	extremely	similar,	except	in	proximity	of	wadi	(dry	creeks	and	
riverbeds)	which	showed	changes	in	potential	distribution	for	>80% 
of	the	species.

4  |  DISCUSSION

Traditionally,	biogeographical	analyses	and	species	distribution	mod-
els	consider	biotic	factors	at	local	scales	only,	while	climatic	variables	
dominate	at	regional	to	continental	scales	(Guisan	&	Thuiller,	2005; 
Pearson	&	Dawson,	2003;	Wisz	et	al.,	2013).	However,	the	specific	
role	of	the	different	types	of	variables	is	still	poorly	covered	in	the	
existing	 literature,	 especially	 considering	 species	 with	 large	 niche	
breadth.

TA B L E  1 Percentages	of	species	for	which	each	variable	is	ranked	as	the	first,	second,	or	third	most	important	variable	when	trophic	
resource	availability	is	included	or	excluded	in	SDM	calibration.

Variable name % species

Permutation importance rank with trophic resources
Permutation importance rank without trophic 
resources

1st 2nd 3rd 1st 2nd 3rd

Trophic	resource	availability 35.0% 19.2% 13.6% / / /

Distance	to	Permanent	Water 19.8% 20.9% 13.0% 39.6% 21.5% 10.2%

Distance	to	Temporary	Water 0.6% 0% 0.6% 1.7% 2.8% 5.1%

Mean	Temperature	of	Wettest	
Quarter	(bio8)

2.8% 7.9% 4.0% 2.3% 7.3% 14.1%

Mean	Temperature	of	Driest	
Quarter	(bio9)

10.2% 9.6% 17.0% 8.5% 21.0% 16.4%

Precipitation	of	Driest	Month	
(bio14)

18.6% 18.6% 11.9% 34.0% 16.4% 12.4%

Precipitation	Seasonality	(bio15) 5.7% 9.6% 11.3% 6.8% 11.9% 13.6%

Precipitation	of	Coldest	Quarter	
(bio19)

2.8% 6.2% 12.4% 4.0% 11.9% 14.7%

Human	Population	Density 4.0% 7.9% 13.6% 2.8% 6.2% 11.3%

Terrain	Ruggedness	Index	(TRI) 0.6% 0% 2.8% 0.6% 1.1% 2.3%
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6 of 10  |     COSENTINO et al.

F I G U R E  1 Response	curves	(average	over	all	species/replicates)	for	models	calibrated	including	the	biotic	variable.	Shaded	areas	
represent	1	standard	deviation.
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Previous	 studies	 considered	 only	 a	 limited	 number	 of	 species	
characterized	 by	 well-	known	 and	 direct	 biotic	 interactions,	 often	
focusing	on	the	trophic	niche,	and	on	species	with	a	high	degree	of	
diet	specialization.	The	most	common	examples	are	related	to	host–	
plant	 or	 predator–	prey	 interactions	 (Alaniz	 et	 al.,	2020;	 Aragón	&	
Sánchez-	Fernández,	2013;	Araújo	&	Luoto,	2007).	Few	studies	fo-
cused	on	trophic	interactions	considered	prey	richness	to	model	the	
distribution	of	predators	with	a	wider	niche	breadth,	but	still	with	
well-	known	 trophic	 interactions	 (e.g.,	 arctic	 fox-	Norway	 lemming,	
Hof	et	al.,	2012;	Gherghel	et	al.,	2018).	Here,	modeling	multiple	spe-
cies	 at	 the	 scale	of	 the	 entire	African	 continent,	 and	using	 a	 very	
general	proxy	for	biotic	interactions	in	model	calibration,	we	found	
that	 biotic	 factors	 do	 play	 an	 important	 role	when	modeling	 spe-
cies	distribution	at	macro	scales	 irrespective	of	the	ecology	of	the	
species	considered.	In	fact,	trophic	resources	were	in	the	top	three	
ranks	of	importance	for	most	species	(roughly	68%),	including	gen-
eralist	species	with	a	wider	niche	breadth,	for	which	the	availability	
of	 trophic	 resources	 should	 not	 be	 a	 limiting	 factor.	Although	 the	
importance	of	considering	other	factors	besides	climate	in	SDMs	is	
now	confirmed	by	several	studies,	this	idea	has	been	tested	so	far	at	
macro	scales	only	focusing	on	species	highly	dependent	on	the	biotic	
factor	considered.	Our	findings	highlight	the	importance	of	consid-
ering	species	interactions	in	SDMs	at	macro	scales	regardless	of	the	
species	dependence	for	the	biotic	factor	considered.

Moreover,	the	inclusion	of	biotic	interactions	in	predicting	spe-
cies	distribution	affected	the	species'	spatial	predictions.	In	fact,	the	
areas	with	the	highest	richness	of	bats	(Herkt	et	al.,	2016)	showed	
a	change	 in	potential	distribution	between	BIO-	SDMs	and	noBIO-	
SDMs	for	more	than	80%	of	the	species.	 In	particular,	 the	highest	

percentages	are	in	areas	highly	variable	both	from	an	environmental	
and	climatic	point	of	view	(e.g.,	Sahel	belt,	wadi	in	the	Sahara	desert).	
These	 results	 highlight	 the	 importance	 of	 including	 biotic	 interac-
tions	in	modeling	species	distributions	in	specific	areas	and	hotspots	
of	biodiversity	with	potential	conservation	and	management	impli-
cations.	Along	the	same	line,	we	found	the	highest	percentages	of	
change	in	rare	species,	with	limited	colony	size,	and	a	high	number	
of	 food	 items	 in	 the	diet,	highlighting	 the	 significant	 role	of	biotic	
factors	 in	 the	explicative	part	of	 the	model,	 especially	 for	 species	
hard	to	detect	 for	which	the	climatic	niche	may	be	undersampled,	
and	more	mechanistic	factors	are	needed.

The	interpretation	of	our	results	should	clearly	consider	the	lim-
itations	and	assumptions	of	our	analyses.	First	of	all,	we	considered	
only	 one	 type	 of	 biotic	 interaction	 among	 all	 those	 possible	 (e.g.,	
competition,	 mutualism,	 parasitism;	Morales-	Castilla	 et	 al.,	 2015).	
Although	trophic	interaction	represents	a	fundamental	component	
of	 the	 realized	niche	of	 a	 species	 (Hutchinson,	 1957),	 competitive	
interactions,	parasitism	and	diseases,	facilitations	and	others	could	
be	important	as	well	(Araújo	&	Guisan,	2006;	Mpakairi	et	al.,	2017).

Second,	we	used	a	generic	proxy	of	the	trophic	interaction	(tro-
phic	 resource	 richness)	based	on	high	 taxonomic	 level	of	 food	 re-
sources	which	is	not	necessarily	representative	of	the	trophic	niche	
of	a	species.	Valuable	alternatives	are	represented	by	abundance	or	
biomass	of	prey	species,	and	species-	specific	trophic	links	or	food-	
web	data	with	approaches	such	as	joint	species	distribution	models	
(Pollock	et	al.,	2014)	and	food-	web	analysis	(e.g.,	Braga	et	al.,	2019; 
Gaüzère	et	al.,	2022).	However,	these	approaches	are	almost	impos-
sible	at	the	continental	scale	and	for	organisms	for	which	species-	
specific	data	on	food	preferences	are	often	not	available,	especially	

F I G U R E  2 Percentage	of	species	that	
showed	a	change	in	potential	distribution	
when	comparing	models	calibrated	with	
and	without	trophic	resources.
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in	remote	areas	such	as	the	African	continent.	On	the	other	hand,	
given	 the	 paucity	 of	 data	 on	 species-	specific	 trophic	 interactions,	
relying	on	high	 taxonomic	 levels	 (e.g.,	 arthropods	order)	 is	 a	 com-
mon	 approach	 at	 macro	 scales	 (e.g.,	 insect	 orders/families	 in	
Boyles	&	Storm,	2007,	Dodd	et	al.,	2012;	plants	genera	in	Sánchez	
&	 Giannini,	 2018),	 as	 well	 as	 using	 proxies	 for	 biotic	 interactions	
(Alaniz	et	al.,	2020;	Aragón	&	Sánchez-	Fernández,	2013;	de	Araújo	
et	al.,	2014;	Gherghel	et	al.,	2018).	Moreover,	experimental	evidence	
showed	that	the	relationship	between	species	richness	and	produc-
tivity/biomass	 is	 almost	 always	 positive	 or	 hump-	shaped	 in	 both	
plants	and	animals	at	several	geographic	scales	 (Liang	et	al.,	2016; 
Mittelbach	et	al.,	2001;	Ouyang	et	al.,	2019).	Therefore,	we	expect	
that	 areas	 supporting	 a	 high	diversity	 of	 species	 are	 likely	 also	 to	
harbor	a	high	density	of	individuals,	providing	a	good	representation	
of	trophic	resource	availability.

Finally,	 even	 if	 a	 few	 variables	 were	 in	 common	 between	 the	
trophic	 resource	 model	 and	 the	 bat	 SDMs	 (precipitation	 season-
ality,	precipitation	of	coldest	quarter,	TRI	 index),	we	found	no	sign	
of	collinearity	among	our	predictors.	We	performed	a	classical	VIF	
analysis	which,	however,	 is	able	 to	detect	only	 linear	 relationships	
(Table S2.6).	We	 also	 checked	 the	 stability	 in	 variable	 importance	
and	in	the	shape	of	their	response	curves.	Both	would	be	influenced	
by	collinearity,	but	they	remained	unchanged	when	the	biotic	vari-
able	 is	excluded	from	the	model	 (Table S3.14,	S3.15,	Figure S3.16,	
S3.17),	clearly	indicating	the	absence	of	problems.

Despite	the	potential	uncertainties	of	our	study,	we	provide	ev-
idence	of	 the	 importance	of	 including	biotic	 interactions	 in	 SDMs	
at	macro	scales.	Trophic	resource	richness	was	particularly	import-
ant	for	generalist	species	confirming	also	our	second	hypothesis.	In	
this	framework,	proxies	for	trophic	interactions	like	species	richness	
have	been	proven	to	be	useful	in	SDMs	when	species-	specific	data	
are	not	available.	Nevertheless,	despite	the	improvements	that	have	
been	made	in	the	modeling	frameworks	to	investigate	this	question,	
bridging	 the	state	of	knowledge	on	species	 interactions	 remains	a	
fundamental	and	urgent	challenge,	particularly	 in	 the	 regions	with	
the	highest	level	of	biodiversity	(Hortal	et	al.,	2015).

Future	 directions	 should	 explore	multi-	scale	 analysis	 consider-
ing	that	both	abiotic	and	biotic	factors	change	over	time	and	space.	
Studies	that	 investigate	biotic	 interactions	through	time	and	space	
combined	with	a	deeper	knowledge	of	the	species	are	crucial,	espe-
cially	in	a	global	change	context.
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