
Two-part model with measurement error
Modello a due parti con errore di misura

Maria Felice Arezzo, Serena Arima, and Giuseppina Guagnano

Abstract In many applications, there are positive-valued phenomena which show a
very high frequency at zero. One major difculty with this type of data is that the ex-
istence of a point-mass at zero makes common distributions unsuited for modeling
the data. To cope with these difculties, some models have been developed. A pop-
ular example is the two-part model in which two stochastic models are assumed:
the rst governs whether the response variable is zero or positive an the second,
conditional on its being positive, models the level. We extend the two-part model
to cope with measurement error on the dependent variables of both stochastic parts.
This situation is common in many applied works.
Abstract In molte applicazioni la variabile di interesse assume valori positivi con
una frequenza molto alta di valori nulli. Una delle principali difcoltà con questo
tipo di dati è che l’esistenza di una massa a zero rende le distribuzioni comuni
inadatte per la modellazione dei dati. Per far fronte a queste difcoltà, sono stati
sviluppati alcuni modelli. Un esempio è il modello in due parti in cui vengono as-
sunti due modelli stocastici: il primo determina se la variabile di risposta è zero o
positiva e il secondo, condizionatamente al primo, ne modella il livello. Estendiamo
il modello a due parti tenendo conto dell’errore di misura sulle variabili dipen-
denti di entrambi i modelli stocastici. Questa situazione è comune in molti lavori
applicati.
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1 Introduction

In many elds, real phenomena with positive values often show a very high fre-
quency at zero. This kind of data can be represented by semi-continuous variables,
which are combination of a point-mass at zero and a positive skewed distribution.

One major difculty with this type of data is that the existence of a point-mass
at zero makes common distributions, such as the gamma, unsuited for modeling
the data. To cope with these difculties, the two-part model has been proposed. In
it, two stochastic models are assumed: the rst, by means of an additional binary
variable, governs whether the response variable is zero or positive and the second,
conditional on its being positive, models the level.

Also in many applied works, variables are awed with measurement error. This
could easily happen, for example, during an interview if the respondent misunder-
stands the question.

We extended the two part model to consider two types of measurement errors:
the rst affects the binary variable that governs whether the response variable is zero
or positive, and the second is on the positive part of the response variable.

In the literature, a mismeasurement on a continuous variable is called measure-
ment error while it is called misclassication when it affects a categorical variable.
When the fallible variable is continuous, the two dominant error models are the
Berkson’s [1] and the classical [3]. In the rst one, the error-prone observed value
is xed while the true unobservable variable is random and its random structure is
specied conditionally on the former. In the classical approach the error-prone vari-
able is specied as a function of the true one with the error component inserted in a
multiplicative or additive form and independent from the true variable.

Let us introduce some notation on the measurement error models used in our
work. Let Y O be the fallible/error-prone binary variable and yO be the observed
value. The misclassication model, which species the behaviour of Y O given the
true unobserved value Y T = yT , is characterized by the misclassication probability:

P(Y O = yO|Y T = yT ). (1)

Following [4], we set the misclassication probabilities α1 =P(Y O = 0|Y T = 1) (the
probability of false negative) and α0 = P(Y O = 1|Y T = 0). (the probability of false
positive). Since Y T is random, if we specify the distribution of Y O|Y T , it follows
that:

P(Y O
i = 1) = (1−α1)πi +α0(1−πi) = πi(1−α0 −α1)+α0 (2)

where πi = P(Y T
i = 1). Such a probability can be estimated as a function of covari-

ates through a generalized linear model.
When we deal with a continuous variables W , the classical error model in the mul-
tiplicative and additive form respectively is:

W O
i =


W T

i ·ξi, ξi ∼ logN(µ,σ2
ξ )

W T
i +ξi, ξi ∼ N(µ,σ2

ξ )
with µ = 0 (3)
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where µ is usually null and W T (or its logarithm) can be specied as a linear func-
tion of some predictors. In the proposed model, see section (2), we generalize the
distribution of ξi, admitting µ ̸= 0 and specic for each unit.

2 The proposed model

Let us consider a semi-continuous random variable W , whose observability depends
on a binary variable Y : when Yi = 1, we observe a positive value for Wi; otherwise,
when Yi = 0, we have Wi = 0. Referring to the two-part model: in the rst part, we
have to specify a binary choice model for the probability of observing a positive-
versus-zero outcome and then, in the second part, a regression model is t for the
positive outcome conditional on a positive outcome. Under this framework, let us
initially assume that there is no measurement error in any of the response variables
(the true W and Y coincide with the observable ones). Let us denote themwith W T

and Y T , the probability of a positive response as P(W T
i > 0|ZZZi) = P(Y T

i = 1|ZZZi) =
πi, and the conditional distribution of the positive responses as g(W T

i |W T
i > 0,XXXi),

where Z and X are two sets of possibly overlapping explanatory variables.
The two-part model has the following mixture p.d.f. [2] and likelihood:

f

W T

i

= (1−πi)I(Y T

i = 0)+πig(W T
i |Y T

i = 1,XXXi) (4)

L(β ,θ) =


∏

Y T=0

(1−πi) · ∏
Y T=1

πi



  
L1(βββ )

·


∏
Y T=1

g(W T
i |Y T

i = 1,XXXi)



  
L2(θθθ)

(5)

where β and θ are vectors of parameters that govern the binary and the continuous
part respectively, and I(Y T

i = 0) is an indicator function such that it equals 1 if
Y T

i = 0 and 0 otherwise; it is motivated by the fact that when Y T
i = 0, the density of

W T collapses to a unit probability mass.
More precisely, L1(β ) is the likelihood of a standard binary regression model and

the corresponding link function is usually specied as probit or logit. L2(θ) refers
to the regression model for the continuous variable W T , usually involving gamma
or log-Normal distributions. We model L1 with a probit link and L2 as a log-Normal
regression dealing with the following two-part model:

Part one: P(W T
i > 0|ZZZi) = P(Y T

i = 1|ZZZi) = πi = Φ(ZZZiβββ ) (6)

Part two: log(W T
i ) = XXXiθθθ +ui, ui∼N(0;σ2

u ) (7)

where Φ(·) is the standard normal c.d.f.
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Suppose, now, that both variables W and Y may be affected by measurement
errors, so we have the observable Y O

i and W O
i and the true Y T

i and W T
i . We assume

that the measurement error that affects the observable W O acts in a multiplicative
way as in the rst line of equation (3), so that log(W O) = log(W T )+ ε , with ε =
log(ξ ). When we admit the possibility of measurement error for W and Y , we can
no longer refer only to the p.d.f. of the true W as in (4), but we need to consider the
observability of W O and dene its p.d.f.:

f

log(W O

i )

=

4

∑
j=1

ψ ji ·g j

log(W O

i )


(8)

where the weights are dened as:

ψ1i = P(Y O
i = 0,Y T

i = 0) = (1−α0) · (1−πi)

ψ2i = P(Y O
i = 1,Y T

i = 1) = (1−α1) ·πi

ψ3i = P(Y O
i = 1,Y T

i = 0) = α0 · (1−πi) (9)

ψ4i = P(Y O
i = 0,Y T

i = 1) = α1 ·πi

and the conditional densities in equation (8) are:

g1

log(W O

i )

= f


log(W O

i )|Y O
i = 0,Y T

i = 0

= 1

g2

log(W O

i )

= f


log(W O

i )|Y O
i = 1,Y T

i = 1,XXXi


g3

log(W O

i )

= f


log(W O

i )|Y O
i = 1,Y T

i = 0


(10)

g4

log(W O

i )

= f


log(W O

i )|Y O
i = 0,Y T

i = 1

= 1

The density g2 represents the main contribution in explaining log(W O), but its
weight ψ2 tends to zero as α1 goes to 1.

The density g3 does not depend on the covariates XXX because W T
i = 0 when Y T

i =
0; hence it only refers to the erratic component ε . Its weight ψ3 increases as α0 gets
higher. As a last step, we model Y O

i and log(W O
i ) as:

P

Y O

i = 1|Zi

= α0 +(1−α0 −α1)P


Y T

i |Zi


(11)

log(W O
i ) = XXXiθθθ +(ui + εi) (12)

where XXXi is the row vector containing all information for the i-th individual. The rst
part of the model (i.e. equation 11) is consistent with equation (2). For the second
part, coherently with (7), we assume a normal distribution for ε , εi ∼ N(µi,σ2

ε ), and
consequently for the global error component ui + εi = vi ∼ N(µi,σ2

v ). Furthermore,
we assume that ui and εi are uncorrelated. It’s important to stress that the above
specication extends the classical measurement error model, allowing each unit to
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have a different expected value µi. In other words, the measurement error may act
with a different intensity for each population unit. We model the expected value as
a function of individual characteristics: µi = h(XXX∗

i γγγ), with XXX∗
i row vector. For the

sake of simplicity, we just consider a linear function µi = XXX∗
i γγγ . Admitting a varying

µi implies that the conditional densities g2 and g3 must be conditioned to XXX∗
i . Since

log(W O
i ) and µi are both specied as linear functions of the predictors, to avoid

any problem of identiability of the parameters θθθ and γγγ , we assume that the sets of
covariates X and X∗ do not overlap.

The contribution of the i− th unit to the likelihood is:

Li(βββ ,θθθ ,γγγ,α0,α1) = {(1−α0) · (1−πi)+α1 ·πi}(1−yO
i ) (13)

·

(1−α1) ·πi ·N(XXXiθθθ +XXX∗

i γγγ;σ2
v )+α0 · (1−πi) ·N(XXX∗

i γγγ;σ2
ε )
yO

i

where N(XXXiθθθ +XXX∗
i γγγ;σ2

v ) and N(XXX∗
i γγγ;σ2

ε ) are the densities g2 and g3 in equation
(10) respectively. In the following, for the sake of brevity and to highlight the de-
pendency on the parameters, we denote them as g2(θθθ ,γγγ) and g3(γγγ).

3 Simulation study

We present the nite sample performances of the proposed model and compare them
to the classical probit/ols two part model via Monte Carlo simulations. We assumed
the following generating model for the error-free dependent variables:

Pr

Y T |Z1,Z2,Z3


= Φ (β0 +β1Z1 +β2Z2 +β3Z3) (14)

logW T = θ0 +θ1X1 +θ2X2 +u (15)

where Φ(·) is the c.d.f of a standard normal. The covariates are generated as fol-
lows: Z1 is log-normal with zero mean and unit variance, X2 and Z2 are binomial
with p = 1/3, X1 and Z3 are uniformly distributed over the unit interval. To gen-
erate the observed (i.e. error-prone) binary variable, Y O, we dene the misclassi-
cation matrix based on equation (1) and we sample accordingly. Finally, the mis-
measured continuous part is generated as in equation 12 allowing µi = γX4, with
X4 ∼ Mult4(p1 = 0.01; p2 = 0.06; p3 = 0.33, p4 = 0.60).

Across simulations we xed: θ T = (10,0.8,−0.5), β T = (−1,0.2,1.5,−0.6),
σ2

u = 2 and set the remaining parameters according three scenarios: 1) α0 = α1 =
0.05;σ2

ε = 3;γ =−0.2, 2) α0 = 0.05;α1 = 0.20;σ2
ε = 3;γ =−0.2 and 3) α0 =α1 =

0.20;σ2
ε = 3;γ =−0.2. We repeat each simulation scenario 100 times with samples

of size n = 5,000. In table 1 we report the results.
For the binary part of the model, even in the case of a small amount of mis-

classication (α0 = α1 = 0.05), ordinary probit produces estimates that are biased
by 14-22%. As expected, the problem worsens as the amount of misclassication
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Table 1 Empirical mean and standard errors, over 100 simulated data sets, of the parameter esti-
mates based on the proposed model and the two-part model.

Scenario 1 Scenario 2 Scenario 3
True Proposed Two-part True Proposed Two-part True Proposed Two-part
value model model value model model value model model

θ0 10 9.837 0.881 10 9.854 0.738 10 9.937 0.643
0.020 0.004 0.021 0.004 0.014 0.004

θ1 0.8 0.805 11.138 0.8 0.795 9.394 0.8 0.781 9.521
0.019 0.028 0.021 0.030 0.021 0.031

θ2 -0.5 -0.493 0.155 -0.5 -0.494 0.128 -0.5 -0.486 0.136
0.003 0.011 0.003 0.010 0.003 0.010

γ -0.2 -0.151 -0.2 -0.153 -0.2 -0.172
0.005 0.005 0.002

σ2
v 5 4.731 8.371 5 4.708 9.707 5 4.468 10.138

0.017 0.032 0.019 0.030 0.018 0.030
β0 -1 -1.023 -0.843 -1 -1.028 -0.914 -1 -1.003 -0.515

0.014 0.005 0.018 0.005 0.035 0.004
β1 0.2 0.201 0.157 0.2 0.201 0.119 0.2 0.196 0.086

0.003 0.002 0.004 0.001 0.006 0.001
β2 1.5 1.529 1.293 1.5 1.516 1.093 1.5 1.464 0.795

0.016 0.004 0.023 0.004 0.035 0.004
β3 -0.6 -0.626 -0.495 -0.6 -0.619 -0.411 -0.6 -0.578 -0.272

0.012 0.007 0.015 0.007 0.019 0.006
α0 0.05 0.054 0.05 0.050 0.2 0.178

0.003 0.004 0.007
α1 0.05 0.046 0.2 0.185 0.2 0.173

0.003 0.006 0.006

Note: The standard error of the simulation results are reported in italic.

grows. Conversely, the proposed model provides more accurate estimates, in terms
of mean squared errors, for all levels of misclassication.

For the continuous part, the results of the proposed model are very encouraging
since the estimates of all parameters are trustworthy. These results hold for all sim-
ulations scenarios (all tables are available upon request). Although satisfactory, the
estimates of γ and σ2

v showed some variability in the accuracy when σ2
ε = 3.
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