
HARDWARE IMPLEMENTATION OF THE SPOT PAYLOAD FOR ORBITING OBJECTS
DETECTION USING STAR SENSORS

Mohamed Salim Farissi∗, Ivan Agostinelli∗, Marco Mastrofini∗, Fabio Curti∗, Cosimo Marzo†,
Claudia Facchinetti‡, Luigi Ansalone‡

∗ School of Aerospace Engineering Sapienza University of Rome, Rome 00138, Italy.
Email: mohamedsalim.farissi@uniroma1.it

∗ School of Aerospace Engineering Sapienza University of Rome, Rome 00138, Italy.
Email: ivan.agostinelli@uniroma1.it

∗ School of Aerospace Engineering Sapienza University of Rome, Rome 00138, Italy.
Email: marco.mastrofini@uniroma1.it

∗ School of Aerospace Engineering Sapienza University of Rome, Rome 00138, Italy.
Email: fabio.curti@uniroma1.it

† Centro di Geodesia Spaziale ”Giuseppe Colombo”, Italian Space Agency, Matera, 75100, Italy.
Email: cosimo.marzo@asi.it

‡ Italian Space Agency, Via del Politecnico,00133, Rome, Italy.
Email: claudia.facchinetti@asi.it

‡ Italian Space Agency, Via del Politecnico, 00133, Rome, Italy.
Email: luigi.ansalone@asi.it

Abstract

Space debris issue has become an attractive challenge for many applications in the framework of Space
Situational Awareness (SSA) and Space Surveillance and Tracking (SST). The Star sensor image on-board Processing
for orbiting Objects deTection (SPOT) fits in this field as an innovative space based autonomous and versatile system
for Resident Space Objects’ optical detection via star sensors and for different Earth orbits scenarios. This system
is planned to be a payload for an In-Orbit Validation (IOV) activity in the next future. The purpose of this paper
is to show the architecture of the SPOT system together with its implementation on a System on Chip (SoC)/Field
Programmable Gate Array (FPGA) space representative board. The SPOT algorithms involve several layers of
filters which are relatively expensive in terms of computational latency, limiting their applicability to real-time
image processing applications. This work presents the design and implementation of SPOT algorithm on the Zynq-
7000 SoC using Xilinx FPGA and ARM CPU. Algorithms have been modelled with Simulink and implemented on
FPGA using Xilinx system generator with aiming to optimize both processing time and area usage. A Hardware-
In-the-Loop (HIL) setup was developed as well, to verify the performances and robustness of the SPOT algorithms
and simulating critical scenario by using real night sky images from acquisition campaign.

Keywords: Space Debris, Star Sensors, FPGA, SSA, SST, HIL

1. Introduction

Space debris has been a threat since the late 1990s,
when the Space Shuttle mission was a reality and the first
module of the International Space Station was put into orbit.
Since then, numerous missions for scientific, commercial,
environmental and national security purposes have been
launched. This has led to a huge amount of resident space
objects (RSOs) orbiting the Earth.

They are made up of space debris and active / inactive
platforms. Due to the need to monitor this phenomenon,
the creation, maintenance and updating of the RSO catalog

is mandatory. Nowadays, only the United States and Russia
have operational space surveillance systems with a regularly
updated catalog of space objects, while Europe is developing
its own space surveillance and tracking systems (SST) to
achieve the same capacity.

Radars are typically used for tracking objects in low-
Earth orbit (LEO), and optical systems are mainly used for
GEO surveillance [1]. These ground-based SST sensors are
mainly used nowadays but they have limitations:

• Radars are limited by power consumption constraints
but can guarantee a 24-h coverage for RSOs detec-

tion and monitoring.
• Optical Telescopes are limited by weather conditions

and can work just during the night.

Space missions for SST purposes are currently being
studied and developed [2], In the period 2017-2020, one
of the main goals of the ESA’s SSA program was the
development of space sensors. The reason for this choice is
to go beyond the limits of sensors on ground and increase
coverage to detect SARs. In particular the ability to detect
small objects due to the narrow distance between the target
in orbit and the observer in orbit.

This topic is one of the most recent challenges in the
field of SSA and a lot of research is being carried out.
Indeed, Airbus was in charge of the feasibility study, de-
sign and development of a space-based space surveillance
mission (SBSS)[3]. Here, the platform is able to periodically
scan the entire GEO belt with a low field of view (FOV)
and with an appropriate low phase angle (achieved through
an anti-sun pointing strategy). This will be achieved with
an on-board telescope with an aperture of about 20 cm
which is sufficient for SST tasks. Other SBSS missions
have been launched in the past such as the Mid-Term Space
Experiment (MSX) and the Canadian NEOSSat (Near-Earth
Object Surveillance Satellite) [4].

The main innovative idea of the SPOT project is the
use of on-board star sensors, optical devices whose main
objective is attitude determination. Their image data can also
be used for object detection by developing an appropriate
image processing and RSOs information extraction payload.
In this way, creating a constellation of space-based observers
for SST purposes will be quick and cost effective, with
all the benefits for the SSA community and future space
missions.

The objective of this article is the description of the
SPOT architecture and its implementation on representative
target hardware. The article is organized as follows: Section
2 describes the architecture of the algorithm and the logic
of each module. Section 3 is the implementation of the
algorithm on the SoC/FPGA board with all the techniques
and methods applied. Section 4 focuses on the night sky
image acquisition campaign for the collection of test input
images. Section 5 presents the SPOT unit HIL tests and
the results with a validation criterion to assess its correct
functioning. In section 6, conclusions and future goals are
provided.

2. Methodology

2.1. Architecture

The on-board SPOT unit has to detect orbiting objects
starting from optical measurements from star sensor. An
object appears as groups of pixels spreaded over the de-
tector, according to its size and velocity with respect to
the observer. In normal mode, during the image analysis
process, SPOT can recognize objects (stars or RSOs) in the
Field Of View (FOV) of the sensor and if in Active Mode

(AM), it can exclude a large part of the stars filtering them
out with a technique very similar to those used during usual
star tracking operation. The AM depends on the availability
of the attitude information from the hosting platform.

This section summarizes all the pre and post processing
operations to obtain the unit vectors of the detected objects
in the hosting platform’s reference frame, starting from the
raw images until the centroids’ coordinates computation of
the desired objects. Figure 1 shows the overall ON-BOARD
SPOT Architecture. In particular, SPOT can work with a
single image or with a continuous flux of images from the
star tracker. As can be seen in the figure, with a single
image the Cluster Fusion module is skipped and, as will be
explained in the following, the ”tracking operation” of the
Cluster Growth module is not considered.

Figure 1: ON-BOARD SPOT Architecture.

2.1.1. Pre-processing. The raw image from the star tracker
is processed by the ”Pre-processing” module. The high-
energy pixels belonging to stars’ or RSOs’ signals must be
distinguished from the low-energy pixels relative to noise.
Hence, the Pre-processing module selects the pixels whose
signal-to-noise ratio is greater than a user-defined threshold
and discards the useless information. In particular, this

pre-processing is called Segmentation and it is based on
a dynamic approach for the background noise estimation
consisting in the comparison of the signal of each pixel
with the average signal of its local neighborhood. Pixels
are considered for further processing when their values are
greater than the background noise (BKG0) plus a threshold
(τpre). Therefore, only segment information is considered
for further analysis relative to objects’ detection. In partic-
ular, the Pre-processing outputs are the pixels’ coordinates
of each detected segment p = [py, pz]T and their energy
E(p), obtained subtracting the background noise to the
signal intensity of the pixel.

2.1.2. Clustering. The Clustering module has to recognize
all the neighboring pixels belonging to individual objects.
Usually, star sensors carry out a simple clustering algorithm
(called here as Primitive Clustering) but it is not enough
when dealing with fast objects. A ”primitive cluster” is
defined as groups of pixels which share at least one corner,
as shown in Fig. 2, while single pixels are mostly related
to noise or too faint objects and they are automatically
discarded and not considered for the following analyses.

Figure 2: Example of two primitive clusters and discarded
single pixels.

The green pixels in the figure share an edge or a corner
and are associated to the same cluster (named ”Cluster1”).
The same can be said for the orange pixels (”Cluster2”),
while the red ones are discarded representing noise or too
faint objects.

Under dynamic conditions, objects in the FOV can
generate broken streaks. It means that pixels associated to
the same object can be spreaded into several small and
distinct clusters. For this reason, a suitable technique has
been developed in order to relate to the same object (star or
RSO) the different primitive clusters of the broken streak.
It is important during this operation to avoid wrong prim-
itive clusters agglomeration coming from noise or wrong
matching between different objects. This technique is called
Improved Clustering and it is based on three filters ([5]):

• Minimum distance filter: The distance between clus-
ters δmin is evaluated as minimum pixel-by-pixel
distance using the uniform norm and must be lower

than a user-defined threshold εdist (Figure 2). The
minimum distance condition is defined as:

δmin ≤ εdist (1)

• Increasing length filter: Let li = [ly,i, lz,i] be the
length vector of the ith Cluster (Ci), collecting the
horizontal and vertical projections of the cluster. To
merge the clusters Ci and Cj , the merged cluster
Cij must satisfy precise conditions related to li, lj
and lij .

• Density filter: Clusters Ci and Cj can be merged
only if some necessary conditions related to their
densities are satisfied. In particular, the density of
the ith cluster is defined as:

di =
Ni

λi
(2)

where, Ni is the number of pixels of Ci and λi
represents a virtual length of the cluster. Clusters
with low density values are likely to be broken into
different pieces.

At this point, some primitive clusters have been merged
and the cluster centroids are computed using the pixel coor-
dinates p = [py, pz]T ∈ Ci throughout an energy-weighted
average:

ci =

∑
j|pj∈Ci

E(pj) · pj∑
j|pj∈Ci

E(pj)
(3)

where E(pj) is the signal intensity of the pixel pj .

2.1.3. Cluster Fusion. To compare two successive images
and merge the objects which are supposed to be the same in
the two frames, the Cluster Fusion module was developed.
This module is designed to work only if two consecutive
images are available, otherwise it is skipped (Figure 1). It
cannot be applied if a non-negligible time interval separates
the first and second image. The required operations are very
similar to the ones described for the Improved Clustering.
The main difference is that the clusters Ci and Cj which
are compared belong to two different images. The minimum
distance filter and the density filter are applied. The output
of the Cluster Fusion does not contain not-merged clusters,
i.e. clusters that do not appear in both the successive images.
In this way, it is possible to recognize the persistence of an
object in the frames and allows the software to understand
the direction of the moving object in the FOV.

2.1.4. Antitracking. The Antitracking module is required
in order to remove stars from the set of detected objects.
This module requires as input the current attitude quater-
nion, a star catalogue (e.g., Hipparcos Catalogue) and the
sensor’s characteristics. It is an operation very similar to the
technique used during usual star tracking operation for star
tracking with the difference that all the objects recognized as
stars are filtered out. Antitracking removes stars according
to the following steps:

1) Evaluate 2D centroids in 3D camera frame. This
operation requires sensors’ characteristics.

2) Evaluate the 3D centroids in the inertial frame using
the current quaternion.

3) Compare the centroids in the inertial frame with
catalogued stars directions.

4) Remove centroids which report angular distances
from catalogued stars greater than an user de-
fined threshold. The adopted threshold depends on
quaternion accuracy.

2.1.5. Cluster Growth. The Cluster Growth algorithm is
used to identify and track objects in the star sensor’s FOV.
This module is applied to build an on-board database of
tracked objects (stars or RSOs). It has to compare and
analyse successive couples of images. The goal is to track
RSOs from their appearance in the FOV until they leave it
and save their positions and time instants of each couple of
images. The output of this module represents the final output
of on-board SPOT unit. The on-board data structure is trans-
mitted on ground for post-processing operations and orbit
determination from too short arcs. At the initialization of the
Cluster Growth, the merged clusters returned by the Cluster
Fusion are saved as independent objects. When a new couple
of images is analysed and the fusion operation is performed,
the new merged clusters are compared with the previous
objects and if a cluster is recognized as belonging to an
already detected object, it is updated with the upcoming
couples. When there is no correspondence, after a maximum
number of couples defined by the user-defined parameter
Njump, no update occurs. Contrary, merged clusters not
recognized as belonging to previous objects lead to the
creation of a new object in the on-board database.

Figure 3: Cluster Growth algorithm.

The filtering operation is based on three separate steps:

• Position filter: The core of the algorithm is based
on the estimation of the centroids’ positions in the
new couple of images for each tracked objects. The
distance-based criterion of the Cluster Fusion must
be extended to associate the merged clusters of the
first and second couples. Indeed, the merged clusters
are not as close as in the case of the Cluster Fusion
and an estimate of the cluster position in the suc-
cessive couple of images is required. Using velocity
estimations computed as a first order finite difference
during the fusion operation up to the (i−1)th couple
of images, the average velocity v̄(i−1) is computed
considering the number of available images Na.
With this information and the last saved position of
the centroid, the estimation of the centroid position
c̃
(i)
1 in the first image of the ith couple is evalu-

ated considering the centroid position of the second
image in the (i − 1)th couple of images and the
estimated displacement of the centroid. The centroid
search is performed if and only if c̃ ∈ D, where D is
a circular neighbourhood of the centroid estimation,
called Searching Area (Figure 3). If one or more
detected centroids fall inside D, they are selected as
candidates for the tracked object.

• Velocity filter: The position filter represents a first
preliminary selection of feasible candidate centroids,
but more than one centroid is likely to fall inside the
searching area. The velocity filter refines the previ-
ous results by comparing the velocity of candidate
centroids with the velocity of the tracked object. The
filter considers both the direction and the magnitude
of the velocities. Defining φ as the angle between the
two directions of motion, the objects characterized
by angles greater than a user-defined threshold φ∗

are discarded.

• Confirmation phase: If more than one centroid has
been detected by the previous filters, a criterion to
choose the best candidate must be accounted for.
To assess which is the most reliable centroid, the
estimates of the cluster density and centroid dis-
placements are included in a last filter based on
a minimization criterion. Indeed, a function F is
introduced:

F = Fdist + Fdens (4)

where, Fdist is related to the difference between the
estimated displacement of the centroid and the cal-
culated one and Fdens is based on the object density
and it is evaluated as a normalized difference. The
candidate with the lowest value of F is chosen.

At this point, the centroids are associated to the consid-
ered object and the on-board database is updated [6].

2.2. Hardware description

This work presents the design and implementation of
the SPOT algorithm on the Zynq-7000 SoC. This circuit is

based on an ”AP SoC” (All Programmable System-on-Chip)
architecture, which integrates a dual-core ARM Cortex-A9
processor associated with an FPGA from Xilinx. Hence, it
allows software and hardware development of applications.
The algorithms are developed and implemented following
the Co-Design methodology where the design flow should
be divided across the two implementation platforms, FPGA
and Microprocessor with the intention of benefiting from
each of their strengths to share the processing load. The
parallelism nature of the FPGAs enables the capability to
run several processing elements in parallel, that it would
be possible to process the data during few clock periods.
This feature makes FPGAs suitable for numerous high-
performance applications that require intensive and high-
speed computations like image processing. While Micropro-
cessors are performing well with managing and controlling
data as well as decision making. In this case, the Micro-
processor will be used as a ”master” configuration unit to
direct the flow of data to the ”slave” FPGA device.

Figure 4: Zync Hardware Architecture.

It must be mentioned first, before proceeding, the Central
Processing Unit (CPU) implementation will not be covered
here as the purpose of this paper is to only show the imple-
mentation of SPOT units that are completely implemented
on FPGA. The FPGA must contain enough programmable
logic block for processing and enough memory for data
holding to be able to support the processing of all SPOT
units.

2.2.1. FPGA. This paper describes an efficient FPGA-based
hardware design for SPOT algorithms. These algorithms
involve multiple layers of filters that are relatively expensive
in terms of computing latency, limiting their applicability
to real-time processing on serial processors such as CPUs.
In order to meet the real-time requirements needed where
high-speed parallel data processing is requested, the SPOT
filters are well suited for a hardware implementation on
FPGAs which can dramatically increase performance per
watt in comparison to the equivalent software implemen-
tation taking the advantage of their parallelism in applica-

tion execution. With parallel computing multiple processing
elements executing a sequence of instructions at the same
time allowing to run many functions at once, and therefore
get results more quickly. FPGAs contain an array of pro-
grammable logic blocks, and reconfigurable interconnects
to link the logic blocks to each other while retaining the
flexibility to be reprogrammed to implement different logic
functions at any stage during and after the design process.
Programming an FPGA is a process of customizing its re-
sources to serve different purposes. This involves modeling
the program instructions using configurable logic blocks and
others to perform complex functions, or basic logics like
”OR”, ”AND” and dedicated multiplexers.

Figure 5: FPGA architecture description.

3. Implementation approach

3.1. System Generator (software)

Generally, FPGAs are programmed with a Hardware
Description Language (HDL) like Verilog, SystemVerilog,
or VHD. With HDLs, the designer describes through logic
and instantiating modules to use to implement the algo-
rithm. To implement SPOT algorithms using HDLs requires
thousands of coding lines, which is impractical and time-
consuming. An alternate solution is using Xilinx System
Generator, coupled with a graphical interface under the
MATLAB-Simulink that enables the use of the MathWorks
model-based Simulink design environment for FPGA de-
sign makes it very easy to work with in comparison to
the other software for hardware description. The library of
Xilinx System Generator includes many building blocks,
allowing faster prototyping and design from a high-level
programming standpoint. As a result, designers can define
an abstract representation of a system-level design and easily
transform the algorithms into a gate-level representation.
Another benefit of using the Xilinx System Generator for
the hardware implementation is that it allows the FPGA
module to be co-simulated with the test vectors provided

by MATLAB Simulink Blocks. In Software co-simulation,
all Xilinx blocks are connected between ”Gateway In” and
”Gateway Out” blocks, which respectively behave as input
and output for the hardware design.

Figure 6: Xilinx blockset in simulink

3.2. Fixed point arithmetic

Normally, floating-point implementations require larger
amounts of FPGA resources. This increased use of resources
results in higher energy consumption and, ultimately, an
increase in the overall cost of implementing a design. There-
fore, reducing the use of FPGA resources inherently leads to
lower power consumption and enables massively increased
computing capabilities within the FPGA. Again, converting
from a floating-point design to a fixed-point design can sig-
nificantly save power and area efficiency while maintaining
the same level of precision and comparable performance. In
some cases, the results can even be improved. To meet these
challenges, it is necessary to thoroughly evaluate the lower
precision (fixed point) implementations of MATLAB codes
before targeting the FPGA implementation.

Figure 7: Fixed point arithmetic description.

3.3. Pipelining

One important objective to be taken into account during
the design is to increase the clock rate and throughput of an
FPGA. This is achieved by pipelining design mechanism.
Pipelined designs take advantage of the parallel process-
ing capabilities of the FPGA to increase the efficiency of
sequential code. For this, the code is divided into several
small parts and then separate them using registers. With the

pipelining, the processor can start executing a new input
without waiting for the previous one to complete.

Figure 8: Design with Pipelining approach.

The different processors are separated by buffer regis-
ters, which are all linked to the clock signal. At each clock
cycle, the registers become accessible for writing, which
causes the data to pass to the next step.

Figure 9: Non-Pipelining process (left) and Pipelining pro-
cess (right)

In the non-pipelined design (figure on the left), as each
input occupies all four processors till the output is produced,
since each processor takes one clock cycle, all four inputs
will take twenty clock cycles to be fully processed. In the
pipeline design (figure on the right), the input accesses the
processor row as soon as it is free. Therefore, the output is
produced for each clock pulse starting from the fourth clock
cycle. Indeed, each input must pass through four registers
during its processing before reaching the output. All four
entries will take six clock cycles to process. This example
indicates that the pipelined design significantly increases the
frequency and throughput compared to the non-pipelined
design.

3.4. Shared memory and resources

Since the SPOT design contains units that have a similar
architecture, it will be useful to share the same architecture,
possibly adding a few adjustments, rather than duplicating

Figure 10: Shared memory strategy.

them for each unit. These adjustments will greatly opti-
mize the use of area resources on the FPGA. In addition,
shared resources can reduce complexity, increase produc-
tivity, reduce maintenance costs, and use the additional
resources available for additional functionality. Provided that
the shared architecture is free from defects or problems
affecting the reliability, safety or security of the design. An
additional step used to reduce area usage is memory sharing.
In FPGA, shared memory refers to block and distributed
RAMs accessible, in a clock cycle, by several different
processing units within a parallel computation, which allows
a very fast and efficient implementation.

3.5. Reliability

SRAM-based FPGAs are highly susceptible to the ion-
izing radiation environment in space, typically in the event
of a nuclear explosion, and generate photocurrents through
all of the semiconductor material, causing memory cells to
switch and transistors to change the logical state randomly.

Figure 11: Radiation effect over SRAM.

A Single Event Upset (SEU) typically occurs by the
change of logical state of a memory cell under the effect
of a charged particle. It is a transient effect that will be
erased by rewriting the affected memory cell. Any electronic
circuit which has memory cells is likely to experience SEUs.
This erroneous signal may remain in the digital system and
can even propagate to other digital modules resulting in
a failure. To mitigate space radiation effects in both their
configuration and user memory, Triple modular redundancy
and algorithms for error detection and correction are applied
to reduce the susceptibility of the implemented SPOT algo-
rithms to space radiations, increasing the system’s reliability.

For best results, must manually design Triple-Modular
Redundancy (TMR), for its part, involves implementing
three instantiations of the Processor Element (PE) with

Figure 12: Triple Modular Redundancy with error detection
and correction.

the majority voting upon the outputs. Typically, a TMR
implementation will require spatial separation of the logic
within the FPGA to ensure that a SEU does not corrupt more
than one of the three instantiations. Another way to mitigate
the effect of SEU is to exploit the Soft Error Mitigation
(SEM) Intellectual Property (IP) cores provided by Xilinx
to perform SEU detection, correction and classification for
configuration memory. The cores utilize device primitives
such as Internal Configuration Access Port (ICAP) and
FRAME ECC (Error Correction Code) to the clock and
observe the Readback CRC (Cyclic Redundancy Check)
feature to continuously scan the configuration cells. For SEU
correction, the IP cores perform the necessary operations to
locate and correct errors.

Figure 13: Software error mitigation IP.

The SEM IP cores also perform emulation of SEUs
by injecting errors into configuration memory. The error
injection feature provides a means to evaluate and test the
SEU mitigation capabilities of the IP cores without the need
for expensive test time at a radiation effects facility.

4. Input Images Acquisition Campaign

Images of the testing activities come from a acquisi-
tion campaign our team carried out using a Nikon D-3100
camera paired with an 18-105mm Nikkor optical system
in Campo Imperatore, Gran Sasso, Italy. The acquisition
system was mounted on a tripod and mounted with the Earth
rotating and pointing toward any part of the sky interested in
one or more satellites. Hundreds of 960 x 640 monochrome
images were collected with 17 known and 15 unknown
objects still to be identified. Exposure times are set to 5
seconds with a 2-second pause. The target of this expedition
was the LEO satellites, the only satellites our acquisition
systems could detect. More details in terms of field of view
and focal length can be found in Table 1.

TABLE 1: Experimental Set-up info

Features Values
Location Campo Imperatore, Gran Sasso, Italy

GPS Latitude 42° 26’ 11.088” N
GPS Longitude 13° 36’ 30.018” E
GPS Elevation 1710 m

Camera Nikon D3100
Optical System Nikkor 18-105 mm

Platform Tripod
focal length 24 mm

Size 960 x 640 px (Resized)
Exposure Time 5 sec

Pause 2 sec
Vertical FOV 35.57°

Horizontal FOV 51.40°

A sample from this campaign is shown in Figure 14. As
can be seen, the two brightest groups of streaks in the se-
quence are LEO satellites (brightest one is the International
Space Station while the other one is a Starlink).

Figure 14: Sample images superposition from acquisition
campaign. The brightest object is the International Space
Station.

5. Test and Results

Figure 15: HIL set up.

In this section: unit test campaign, HIL set-up and results
are shown and discussed.

Test campaign is organized in a stack of tests where on
board modules are implemented and tested:

1) Pre-Processing Unit Test
2) Clustering Unit Test
3) Cluster Fusion Unit Test
4) Antitracking Unit Test
5) Cluster Growth Unit Test

5.1. HIL setup description & Validation methodol-
ogy

A Hardware in the loop setup is developed as well (Fig.
15), using System Generator, to verify the performance and
robustness of the control algorithms and simulating critical
scenarios. System Generator includes a HIL-simulation tool
that can be used for simulating together with FPGAs. The
FPGA is connected to a computer by JTAG cable and inputs-
vectors are simulated on the computer(Simulink) and sent
to the FPGA. The FPGA performes the calculation then
it produces the outputs to be sent back to the computer
(Simulink).

Then, the outputs will be compared with the ones from
a MATLAB copy of the target code. The comparison of
the implemented codes with the reference MATLAB ones
will be used to validate the successful implementation of
the tested item. The workflow used for every target code is
the following steps:

• Inputs are taken from their specific folder
• Run the MATLAB copy of the code
• Collect and store the outputs
• Run the Implemented code using the same Inputs
• Collect and store the outputs
• Board and MATLAB outputs are compared and dis-

cussed

A test campaign is also considered in order to generate
input for the next executing unit at each step.

5.2. Results

5.2.1. Pre-Processing Unit Test. In this test, six acquisi-
tion campaign images were considered and Pre-Processing

module was applied for each of them. This was carried out
both with FPGA and MATLAB codes and then results were
compared. Results of Pre-Processing unit are segments and
energies related to the over thresholds pixels of the image.
This is more convenient in order to store less information
rather than having a mask with all the active pixels’ energy
values. An example of input and related reconstructed output
is shown in Fig. 16 just for the most relevant part of the
image.

Figure 16: Detail of Pre-Processing module input (top) and
output (bottom).

To compare results of both MATLAB and FPGA module
we used performance indices described in [7]. These indices
are defined to assess the similarity between two masks
produced by different segmentation algorithms. These masks
are matrices of binary numbers. When they are summed
element by element, they give a two dimensional array of
0,1 and 2 values. By recording the number of 0 elements
(cntr0), 1 elements (cntr1) and 2 ones (cntr2) it is possible
to compute two indices: G and G0. The third index is
defined as the ratio between the number of active pixel in
mask 1 (cntrm1) and mask 2 (cntrm2). Evaluating each
index for each image, the following value are obtained:

• G = cntr0+cntr2
cntr0+cntr1+cntr2

× 100 = 100 %

• G0 = cntr2
cntr1+cntr2

× 100 = 100 %

• M = cntrm1

cntrm2
= 1

Their values mean that there is a perfect superposition
between MATLAB and FPGA codes’ output masks for
what concerns the localization of over threshold and under
threshold pixels (cntr1 = 0). Moreover, another comparison
has been done also with segments’ energies and it shows a
complete success of the FPGA Pre-Processing Unit imple-
mentation.

5.2.2. Clustering Unit Test. In the implementation of the
clustering unit, the same pre-processing test image was
considered and its outputs were injected to the clustering
unit.

Segments’ positions, energies, weighted energies, and
lengths for the the clustering unit are provided to both
MATLAB and FPGA. The output data are the coordinates,
energies, and dimensions of the Clustering. To compare the
output data, the difference (ε) between the output data from
different sources (yFPGA and yMATLAB) was evaluated:

ε = yFPGA − yMATLAB (5)

In Figures 17-20 these differences are related to the Prim-
itive Clustering Part. Here the blue color is related to the
difference distribution while the red color is the mean value,
and the black color is used for the ±σ curves. ”Col” and
”Row” represent the y and z centroids’ coordinates in the
image plane reference frame, respectively.

Figure 17: Cluster centroids’ columns estimate differences
over the whole samples set.

Figure 18: Cluster centroids’ rows estimate differences over
the whole samples set.

The centroids column and row plots show a predicted
trend with an average value of zero, considering the interval
± 3σ the differences are still very far from the maximum
tolerance of 10−1. When comparing clusters’ dimension
and energies, the output data from FPGA and MATLAB
are matched due to not applying truncation and rounding,
as result of their integer type values unlike the centroids
estimate.

To see the effects of the Improved clustering module,
Fig. 21 is considered.

Here in the first two columns from left are the coordi-
nates of the segments that compose primitive clusters. As

Figure 19: Cluster centroids’ energies estimate differences
over the whole samples set.

Figure 20: Cluster centroids’ dimensions estimate differ-
ences over the whole samples set.

can be seen on the last two columns on the right, a change
in their corresponding clusters identifier (ID) appears.

Before improved clustering, each segment has an asso-
ciated cluster identifier.

As a result of applying several filters, and identifier
re-assigning, the primitive clusters ID=17 and ID=18 are
grouped with clusters ID=15. Hence, a large cluster of
ID=15 was formed (red boxes). The other clusters which
are not merged still preserve their original index as can be
seen for cluster ID=19 (brown box). The three primitive
clusters 15,17,18 which are merged in the end are the streak
fragments associated with the ISS cluster Fig. 22.

5.2.3. Cluster Fusion Unit Test. In the cluster fusion
module test, two consecutive images input were provided
to the target unit. Clusters of the first and second images
are compared using the previously described filters in the
architecture section and here the considered images are
merged and displayed (Fig. 23). The results provided by

Figure 21: Improved clustering effects on cluster identifier
evolution.

Figure 22: ISS’ streak primitive clusters.

FPGA have been compared with MATLAB and they both
show the same results: five clusters had been correctly
merged. Four of them are related to stars while the remaining
one is the ISS. In particular, Fig. 24 shows centroids relative
to the ISS’ RSO in the first and second images of the
considered couple, along with the final structure resulting
from the fusion operation.

Figure 23: ISS’ fused streaks by Cluster fusion module.

5.2.4. Antitracking Unit Test. For the anti-tracking test, a
single image with its associated sensor position was con-

Figure 24: ISS’ fused centroids by Cluster fusion module.

sidered. The fixed position of the camera with the ground
and the short interval of shots do not result in a significant
variation of the camera attitude. The considered image is
shown in 25.

Figure 25: ISS (Red circle) and stars(Yellow circle)

In particular, as can be seen, five Cluster was detected,
of which four stars and one object (ISS). After applying
the antitracking, all the objects recognized as stars (yellow
circles in the figure) are filtered out using the Hipparcos
catalog, while the ISS is not deleted (red circle in the figure)
and is included in the Antitracking outputs to be processed
by the Cluster Growth unit.

To perform Antitracking, the following attitude quater-
nion was estimated and used:

q = [−0.526829; 0.222090;−0.342451;−0.745556] (6)

Starting from the following objects’ centroids, of which the
first four rows are relative to the four detected stars and the
last row is relative to the ISS’ centroid:

centroids =


178.2 116.4
445.5 215.3
637.4 315.5
837.5 494.6
345.5 399.0

 (7)

where, the first column represents the detected centroids’
y-coordinate in the image plane and the second column
represents the detected centroids’ z-coordinate in the image
plane, after the Antitracking module, clusters relative to stars

are recognized as stars and deleted and only the cluster
relative to the ISS remains:

centroids =
[
345.5 399.0

]
(8)

Here again, MATLAB and FPGA results are perfectly
matched.

5.2.5. Cluster Growth Unit Test. For the last test, all
the six consecutive images processed in three couples are
used. The entire sequence is shown in Fig. 14. By Cluster
Growth results, the unique object in the FOV was tracked
(the ISS). Its centroid coordinates evolution is shown in
Table 2. MATLAB and FPGA outputs are numerically the
same, considering the first digit of the decimal part. This is
because, by project analysis, the Cluster Growth centroids
are rounded to the first digit.

TABLE 2: ISS centroids in the image sequence

Image Column (px) Row (px)
1 291.9 194.2
2 303.0 235.9
3 315.1 281.9
4 326.3 324.9
5 336.4 363.6
6 345.5 399.0

6. Conclusions

In this work, an overview of the SPOT mission, the
proposed software architecture together with its implemen-
tation was presented. The implementation approach using
System Generator made it more practical and faster in
comparison to the other software. The techniques applied
for the implementation show a significant effect in terms of
area usage and the data throughput of the FPGA, resulting
in a suitable solution for the use in real-time missions.

Hardware-in-the-loop simulations are performed to val-
idate the SPOT algorithm and its implementation. A night
sky image acquisition campaign has been performed for test
input data collection. Preliminary results show that all the
implemented algorithms were validated and the provided
outputs are compliant with project requirements.

The aim of this work is to verify and validate the cor-
rectness of the implemented algorithm against the theoretical
results. In the future more tests will be applied to evaluate
the proposed implementation approach in terms of cost-
performance ratio. In addition, several integrations will be
carried out, such as the implementation of State Machine on
the Microprocessor part of the SoC for controlling data flow
and decision making. These will include the implementation
of a CAN interface to connect it to the on-board camera
as well as other communication protocols between the on-
board computer and the host platform to prepare the SPOT
software/hardware payload for its IOV mission.

References

[1] H. Klinkrad, T. Donath, and T. Schildknecht, “Investigations of the
feasibility of a european space surveillance system,” in Proceedings of
the 7th US/Russian Space Surveillance Workshop, Monterey, Califor-
nia, vol. 29, 2007.

[2] T. Flohrer and H. Krag, “Space surveillance and tracking in esa’s
ssa programme,” in Proceedings 7th European Conference on Space
Debris, Darmstadt, Germany, https://conference. sdo. esoc. esa. int,
vol. 1, 2017.

[3] J. Utzmann and A. Wagner, “Sbss demonstrator: A space-based tele-
scope for space surveillance and tracking.”

[4] V. Abbasi, S. Thorsteinson, D. Balam, J. Rowe, D. Laurin, L. Scott,
and M. Doyon, “The neossat experience: 5 years in the life of canada’s
space surveillance telescope,” in 1st NEO and Debris Detection Con-
ference, vol. 22, 2019.

[5] D. Spiller and F. Curti, “A geometrical approach for the angular
velocity determination using a star sensor,” Acta Astronautica, 2020.

[6] D. Spiller, E. Magionami, V. Schiattarella, F. Curti, C. Facchinetti,
L. Ansalone, and A. Tuozzi, “On-orbit recognition of resident space
objects by using star trackers,” Acta Astronautica, vol. 177, pp. 478–
496, 2020.

[7] M. Mastrofini, F. Latorre, I. Agostinelli, and F. Curti, “A convolutional
neural network approach to star sensors image processing algorithms.”

