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Mathematics is, and has been for a very long time, one of the most successful autono-
mous fields of research. However, the last five centuries have seen it become so 
deeply interwoven in virtually every area of scientific inquiry to convince Kant that 
“in any special doctrine of nature there can be only as much proper science as there 
is mathematics therein” (Kant 1786/2004, 6; emphases in original).

While the distinction between pure and applied mathematics remains somewhat 
elusive, philosophers have been interested in understanding the nature of each. More-
over, the idea that there are actually two uses of mathematics, an explanatory and a 
heuristic one, has begun to feature more and more prominently in recent philosophi-
cal debates. This topical collection showcases papers discussing both these uses, with 
some of the contributions also tackling the way they are related to each other.

When it comes to explanation, these debates have touched upon a variety of ques-
tions. For example, philosophers have wondered how mathematical theorems, and 
mathematical formalisms more generally, can be used in explanations in other sci-
entific fields such as physics, life sciences, or the social sciences. Another question 
is how certain parts of mathematics can be used to provide explanations of results 
belonging to other parts of mathematics. Relatedly, some interesting debates concern 
the way in which a given philosophical-metaphysical attitude towards mathemati-
cal entities (for instance, a nominalist conception) affects the explanatory power of 
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a scientific theory. One can also ask whether it is the mathematical elements, rather 
than non-mathematical ones, that carry most of the explanatory burden in certain 
scientific explanations. And finally, one might wonder how we ought to assess such 
comparative claims.

The main questions regarding heuristics focus on how mathematics can act as an 
inter-field heuristic engine; that is, how certain mathematical results are employed 
to generate hypotheses and solve problems in other scientific domains. Additionally, 
since mathematics can act also as an intra-field heuristic engine, one may wonder 
how it is possible that certain pieces of mathematics are employed to make discover-
ies in other parts of mathematics. Another important line of inquiry taken up in the 
papers below is the ramifications that a heuristic view of mathematics has, both for 
different accounts of the nature of mathematical objects, and for the method of math-
ematical research (among other things).

The idea for this collection was inspired by a conference organized by Emiliano 
Ippoliti in June 2019 at the Sapienza University in Rome. Since not all the speak-
ers present at the event could contribute a paper, the collection includes other phi-
losophers as well. Meanwhile, one of the most prominent authors in these two areas, 
Mark Steiner, sadly passed away from Covid in April 2020. We dedicate this collec-
tion to his memory.

1  The explanatory role of mathematics

As noted above, modern science, especially physics, is permeated with mathematics. 
This relationship between the two disciplines has constituted a subject of sustained 
reflection since at least the days of Kepler and Galileo. A substantial amount of phil-
osophical work has been devoted to discussing it, and controversial philosophical 
theses have been advanced by scientists and philosophers alike. For example, the 
effectiveness of mathematics in science has been called ‘unreasonable’, even a ‘mys-
tery’, by major physicists like Eugene Wigner (1967). This sentiment was further 
echoed by philosophers, most notably by Mark Steiner (1998). Although much has 
been said on this topic, it is generally acknowledged that it is still far from clear how 
such claims (if true) should be understood.1

We recalled Kant’s remark at the outset and, in the same spirit, it is worth mention-
ing what Paolo Mancosu (2018) characterizes as “a change of criteria of explanation 
and intelligibility” that occurred roughly during the time when the mathematized 
Newtonian physics became the dominant paradigm in natural science. Historians of 
science such as Yves Gingras have drawn attention to this development and pointed 
out that mathematization “transform[ed] the very meaning of the term ‘explanation’ 
as it was used by philosophers in the seventeenth century” (2001, 385; cited in Man-
cosu 2018). As Gingras also remarks, the idea to provide an explanation of a physical 
phenomenon in mathematical terms “was something new.” (ibid.) Without presenting 
any “physical mechanism involved in [the] production” of a phenomenon, “Newton’s 

1  Works by Morrison (2000; 2014), Batterman (2002; 2022), and Wilson (2008; 2017) seek to further 
illuminate these issues.
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Principia marks the beginning of this shift where mathematical explanations came to 
be preferred to mechanical explanations when the latter did not conform to calcula-
tions.” (Gingras, 2001, 398. See also Dorato 2017).

This historical context is worth sketching, since it is in many respects a good start-
ing point for a reflection on the contemporary debates in the philosophy of science 
and mathematics.

From the 1950s onwards, several philosophers, among whom Quine and Putnam 
stand out, have argued that fundamental questions about the nature of mathematical 
truth and the ontological status of mathematical objects can be answered by drawing 
on the indispensable role of mathematics in science. They are generally credited with 
proposing what is now called the Indispensability Argument for mathematical real-
ism. Heavily (and, many believe, convincingly) criticized initially by Field (1980) 
and Maddy (1992; 1997), among others, the renewed interest in an enhanced version 
of the argument is due in large part to the work of Colyvan (1998, 2001, 2010) and 
Baker (2005; 2009). These two authors defended it by recasting it in terms of the 
indispensability of mathematics in formulating explanations of physical phenomena. 
A large body of literature ensued, mostly critical of the argument (Leng, 2010, 2012; 
Saatsi, 2011; Bueno, 2012; Yablo, 2012), but also supportive of it (Bangu, 2012, 2013; 
Baron, 2014, 2016). In addition to the fascinating case-studies introduced by Colyvan 
and Baker, Pincock (2007; 2012) proposed an analysis of the famous Konigsberg 
bridges case-study. (An updated review of these debates is Paseau and Baker (forth-
coming)). In this context, Marc Lange’s 2017 book Because without Cause deserves 
a special mention. Although he abandons the pursuit of drawing metaphysical-onto-
logical consequences from such explanations, he articulates a detailed and insightful 
counterfactual approach to such ‘distinctively mathematical explanations’, character-
ized as explanations ‘by constraint’. For critical assessments of Lange’s position, see 
Craver and Povich 2017, Bangu 2021, and Leng (this volume).

Mathematical explanations of mathematical results, and explanatory mathemat-
ical proofs in particular, have also been the object of philosophical investigation. 
Although intuitively clear, the distinction between explanatory and non-explanatory 
proofs is surprisingly difficult to pin down. As both mathematicians and philosophers 
have remarked, there seem to be proofs which show that a result holds, and others 
which do more: they also show why it holds. As Mancosu (1996; 2000) documented 
in detail, this distinction has been acknowledged since antiquity. Yet, it wasn’t until 
the late 1970s when the first systematic analyses of it were proposed. The first one of 
these was Steiner’s (1978), and central to this account is the notion of a “characteriz-
ing property”, i.e., “a property unique to a given entity or structure within a family or 
domain of such entities or structures” (1978, 143). Thus, in Steiner’s view, explana-
tory proofs differ from non-explanatory ones because they are given in terms of this 
kind of property “such that from the proof it is evident that the result depends on the 
property” (ibidem).

This theory has been criticized, e.g., by Resnik and Kushner (1987), and more 
recently by Hafner and Mancosu (2005), as well as Baker (2009). An alternative 
systematic analysis of the notion of explanatory proof has been articulated by Kitcher 
(1989), drawing on his unificationism about explanation in natural science. (For more 
discussion, see Tappenden (2005)). Further recent developments in this area are due 
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to Pincock (2015), Lange (2017, Ch. 7 and 8), Colyvan et al. (2018) and d’Alessandro 
(2020).

2  The double connection of heuristics and mathematics

​​The heuristic role of mathematics has drawn increasing attention in the past few 
decades, with a starting point in the works of Lakatos (1976, 1978), Laudan (1977, 
1981), followed by the contributions of Nickles (1980a, 1980b, 1981, 2014) and Cel-
lucci (2013, 2022). The “heuristic side” of mathematics – where “heuristics” is the 
study of the methods and rules of discovery and invention (see Pólya 1954), and not 
the process by which humans use mental shortcuts for decision-making2 – should be 
understood in this context in the following two senses, although these clarifications 
should not be taken as an exhaustive definition: (i) how mathematical knowledge 
advances by solving mathematical problems, and (ii) how mathematics acts as a tool 
for other disciplines.

Moving from a problem-based perspective (Russell, 1912; Popper, 1999), whose 
roots can be found notably in Aristotle (Quarantotto, 2017), this debate has shifted 
towards the search for an account of rational hypotheses-generation. In this context, 
mathematical discovery consists in generating hypotheses that are sufficient condi-
tions to solve problems; it is thus a process that can be investigated and used to guide 
us. This tenet is the cornerstone of the “heuristic view” (e.g., Cellucci 2022, Ippoliti 
2018a, Jaccard-Jacoby 2010, Polya 1954, Shelley 2003), which has significantly 
evolved in the last two decades, providing us with improved theoretical frameworks 
to account for the process of generation of mathematical hypotheses.

In particular, three different problem-based views have been formulated and 
refined in the last few decades (see Ippoliti 2018b):

(1) The Popper-Laudan position.
(2) The Poincaré-Simon position.
(3) The Lakatos-Cellucci position.
Crucially, these three approaches tried, but some have not fully succeeded, to dis-

pense with the romantic idea of the ‘mathematical genius’, idea according to which 
the production of new hypotheses is entirely subjective and inscrutable – and thus 
only an individual with mathematically exceptional abilities can generate new such 
hypotheses to be rationally tested. This romantic idea was appealed to by many logi-
cians, philosophers, and scientists who pursued an account of hypothesis-generation 
based on notions like ‘intuition’ or ‘insight’ (see e.g., Frege 1960; Einstein 2010). 
However, this is an appeal to a conceptual black-box and does not offer actionable 
explanations. As such, this approach constituted one of the main obstacles to the 
development of a rational account of hypothesis-generation. While historically and 
conceptually interwoven, it has been argued (Ippoliti, 2018b) that the above-men-
tioned three approaches differ substantially.

Popper’s (1999) and Laudan’s (1981) positions are still very close to the romantic 
idea; they hold that hypothesis-generation is a subjective and idiosyncratic process, 

2  For this, see Gigerenzer and Todd 1999, Kahneman, Slovic and Tversky 1982, Chow 2015.
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and cannot be rationally or logically investigated, reconstructed, and transmit-
ted. For them, problem-solving proceeds by random trial and error. In this respect, 
this approach falls within the romantic tradition: we can’t have a rational account, 
much less a method, for hypothesis-generation and scientific discovery. This thesis 
is challenged by other approaches, such as that advocated by Poincaré and Simon, 
which maintain that, on the contrary, hypothesis-generation is within the purview of 
rationality.

Poincaré (1908) argues that it is possible to investigate and systematize the sub-
conscious processes that underlie the search for a solution to a problem. When con-
scious attempts to solve a problem fail, unconscious processes come into play by 
generating all possible combinations of given ideas and select a small subset (or a 
single one) of them as candidate solution to the problem at hand, if any. Nevertheless, 
Poincaré’s account lacks a cogent methodology for analysing how these combina-
tions are formed and selected in a rational way.

To bridge this gap, Simon’s account (Simon, 1977; Simon et al., 1987) sharpened 
Poincaré’s approach by conceptualizing it in terms of the ‘problem space’, and by 
providing a formalization of the process of hypothesis-generation. Simon developed 
his influential theory of problems in five main steps:

1)	 Human brains and computers are alike: both are information-processing systems 
(see Simon et al. 1987, 8).

2)	 Thinking and problem-solving are a form of computation: “copying and reor-
ganizing symbols in memory, receiving and outputting symbols, and comparing 
symbol structures for identity or difference” (ibid.).

3)	 Problem-solving is a rational process performed by creating a symbolic repre-
sentation of the problem (the ‘problem space’) as well as of its operators and 
constraints.

4)	 Several rational heuristic procedures guide conscious thinking throughout the 
problem-space to generate a hypothesis to solve the problem. Furthermore, 
Simon identifies two classes of heuristics, weak and strong.

5)	 Such heuristics can be implemented in algorithms, so the process can be ‘mecha-
nized’ into software (called BACON, versions 1 through 6). A famous case study 
of these heuristics involves the discovery of Kepler’s law.

Unfortunately, this view has important shortcomings (see e.g., Nickles 1980a; Kan-
torovich 1993; Gillies 1995; Weisberg 2006). Firstly, it has been argued that algo-
rithms do not perform the crucial part of hypothesis-generation, i.e., the choice of 
the relevant variables and data. This choice must be made prior to the launching of 
the BACON software: the relevant data and variables are selected and supplied by 
the programmers, and the BACON heuristic procedures only iterate through them. 
As Donald Gillies (1996, 24) has stressed, the software package BACON.1 already 
knows both (i) which two variables to relate, and (ii) the general form of the law that 
it should look for. Moreover, it has also been objected that BACON only does what a 
computer does better than humans, namely computation. In fact, BACON finds pat-
terns in datasets when given the right data. Thus, this algorithm simply does better 
the last, and in a sense most trivial, stage of hypothesis-generation: it identifies sta-
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tistical regularities, correlations, and does parameter-estimation. Of course, carrying 
out these tasks is much harder for humans alone, yet this advantage does not amount 
to an explanation of hypothesis-generation.

Another criticism maintains that BACON is, at best, an ex-post reconstruction of 
a historical finding. The charge is that it exploits the knowledge of the result, i.e., it 
uses the benefit of knowing what the problem is, knowing that the data can be dealt 
with by certain heuristics, and also knowing that the problem has been solved. As 
Nickels rightly points out, BACON does “not need to ask itself conceptually pro-
found questions or consider deep reformulations of the problem, because the primary 
constraints (and therefore the problem itself) are programmed in from the beginning. 
Only certain empirical constraints remain to be fed in” (Nickles 1980b, 38).

The third position, advocated by Lakatos and Cellucci, construes “heuristics” as 
the methods and rules of discovery and invention à la Polya, and aims at overcoming 
the weaknesses of the other approaches. On this view, there is a method for generat-
ing hypotheses, but it is not fully algorithmic. This view also provides an account 
of hypothesis-generation that reunites problem-finding and problem-solving, as well 
as discovery and justification, within a single coherent framework. Their concep-
tion accomplishes this by showing that they are not separated as the standard view 
maintains.

The most recent version of this standard view argues that the method for hypoth-
esis-generation is an appropriately revised version of the ‘analytic method’ proposed 
by Plato (see e.g. Cellucci 2013), a method which must be supplemented with a 
set of heuristic rules, namely types of inferences like induction, analogy, metaphor, 
and combinations thereof (e.g. Cellucci 2013, Jaccard-Jacoby 2010, Ippoliti 2018b). 
These rules build and shape the problem space which, contrary to Simon’s approach, 
does not exist until heuristic procedures are applied. On this view, a hypothesis, once 
introduced, must satisfy the requirement of ‘plausibility’, and not ‘truth’. Or, as Cel-
luci (2013, 56) put it, “the arguments for the hypothesis must be stronger than the 
arguments against it, on the basis of experience”.3 This, on the other hand, implies 
that the solutions to problems are revisable.

This position is characterized by a specific set of ontological, epistemological, 
and methodological tenets. For example, mathematical objects are conceived of as 
hypotheses introduced to solve given mathematical problems (to illustrate how this 
works, recall that imaginary numbers were introduced by Bombelli to solve cubic 
equations; see Cellucci 2022). Moreover, these objects have the potential to acquire 
new properties over time, and can be considered from different points of view (e.g., 
a circle can be regarded as a geometrical, algebraic, topological, etc. object). Then, 
when certain mathematical objects turn out to be useful to solve further problems, 
“they consolidate and acquire a stability that makes them independent of the problem 
for which they were originally introduced, and become subjects of study themselves” 
(Cellucci, 2022, 15).

3  One hypothesis is subjected to the following plausibility test (see Cellucci 2013, 56):(1) deduce conclu-
sions from the hypothesis → (2) compare these conclusions with each other, in order to check that they do 
not produce a contradiction → (3) compare the conclusions with known results of observations or experi-
ments, and with other hypotheses already known to be plausible.
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This approach has clearly boosted the in-depth, systematic study of the rational 
means used to generate mathematical hypotheses, and paved the way for a fine-
grained theory of hypothesis-generation through means such as multiple representa-
tions, ampliative inferences, or models.

3  The papers in this collection

Recent work on the topic of heuristic has greatly improved our understanding of how 
mathematical knowledge advances by solving problems (see e.g., Paseau 2015; Ula-
zia 2016; Ippoliti 2018a, 2020; Clement 2020; Cellucci 2022; also Grosholz 2007). 
This work show how mathematics, and mathematical objects in particular, play a 
major role in generating hypotheses, and serve as a heuristic tool at the intra-mathe-
matical and extra-mathematical levels (e.g., the use of algebra to solve problems in 
geometry, and the use of topology to solve problems in biology). However, due to 
the richness of mathematical and scientific practice, many open questions concerning 
mathematical heuristics remain. Moreover, the rapid development of the literature 
on mathematical explanation has vastly enriched our understanding of the difficul-
ties involved in formulating an account of both intra- and extra-mathematical expla-
nation, as well as the role of the explanatory virtues such as simplicity, generality, 
depth, etc. We believe that the papers in this topical issue contribute to these investi-
gations in substantial and original ways.

In her paper Diagrams and “Free Rides” in Mathematics, Jessica Carter inves-
tigates the heuristic role of visual representations. Focusing on diagrams, Carter 
applies Atsushi Shimojima’s (1996) notion of “free rides” to mathematics in order to 
better understand the fruitfulness of mathematical representations that exploit spatial 
properties as opposed to symbolic or sentential representations. The notion of a “free 
ride” characterises those phenomena in which novel information about the properties 
of a mathematical object –– information which was not contained in its construction 
–– can be “read off” an external representation of that object in a way that would not 
be possible from a merely sentential representation. Through examples of fruitful rep-
resentations employed to solve problems in mathematical practice, Carter illustrates 
a variety of uses of “free rides” in mathematics, and demonstrates how mathematical 
“free rides” have additional properties that differentiate them from those character-
ised by Shimojima. On the basis of this analysis, Carter maintains that free rides 
in mathematics come in different forms, and sometimes require reasoning from the 
syntactic and semantic properties of diagrams to convey the additional information.

Emiliano Ippoliti’s paper, On the Heuristic Power of Mathematical Representa-
tions, argues that mathematical representations can have heuristic power since their 
construction can be ampliative. He examines how the representation of a constructed 
object introduces elements and properties into an object which are not contained at 
the beginning of the object’s construction. Moreover, he discusses how representa-
tion guides the manipulation of the represented object in ways that restructure its 
components by gradually adding new pieces of information. These pieces, in turn, 
then produce a hypothesis to solve a problem. Finally, he shows that these repre-
sentations draw on ampliative inferences that form the basis for gradually building 
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hypotheses to solve a problem both inside mathematics (the construction of an alge-
braic representation of 3-manifolds), and outside mathematics (the construction of a 
topological representation of DNA supercoiling).

In Arithmetic Enumerative Induction and Order Bias, Alexander Paseau aims at 
vindicating the use of non-deductive methods in mathematics. The paper proposes 
an analysis of the general mistrust mathematicians have towards enumerative induc-
tive evidence. This phenomenon is particularly evident in the case of arithmetical 
generalizations, where enumerative inductive evidence is deemed heuristically use-
ful but is thought to lack justificatory force. According to Paseau’s analysis (which is 
supported by several novel case studies) the principled reason for scepticism about 
the value of enumerative inductive evidence in arithmetic is that known instances of 
an arithmetical conjecture are usually ‘small’: they appear in the initial segment of 
the natural number sequence (e.g., Goldbach’s Conjecture was checked up to value 
4 × 1018). Such evidence consequently suffers from size bias. Paseau distinguishes 
between different varieties of size-scepticism as advocated by both mathematicians 
and philosophers of mathematics, analyses their motivation, and poses a series of 
challenges to each kind of scepticism. He concludes that in many cases of arith-
metical generalizations size-scepticism is in fact not warranted. The paper closes by 
providing some remarks about enumerative inductive evidence for the consistency 
of set theory in the light of the consideration drawn from the previous discussion of 
size scepticism.

In his The Derivation of Poiseuille’s Law: Heuristic and Explanatory Consider-
ations, Chris Pincock examines the historical development and the debate surround-
ing Poiseuille’s law. Pincock focuses on this case study because it helps us better 
understand the character and value of mathematical explanation in science, espe-
cially in those cases where the search for a theoretical explanation of an experimental 
result has heuristic value in facilitating further experimental discoveries. Poiseuille’s 
law, which relates the rate of flow for some fluid through a cylinder to the change 
in pressure, was conclusively supported by Poiseuille’s own measurements in 1846. 
However, a lack of clarity as to why the law would hold in controlled laboratory 
conditions (while failing in a broader range of circumstances), together with the 
highly mathematical character of the law, led the scientific community to search for a 
theoretical explanation. Further mathematical investigations eventually pointed to a 
widely accepted explanation: Poiseuille’s law is derivable from an idealized model of 
steady, laminar flow. This derivation contributed (together with strong ​​experimental 
evidence) to the establishment of the so-called “no slip” boundary condition: as a 
fluid flows through such a cylinder, its velocity becomes nil at the walls. Pincock’s 
paper addresses two important questions concerning this explanation: (1) How can 
a derivation supported by an idealized model explain – when the idealizing assump-
tions fail to apply to the real-world systems used by Poiseuille to derive his law? (2) 
In such cases, what is the heuristic value of an assumption like the no slip condition, 
which plays a key role in the measurement of a fluid’s viscosity? Pincock argues 
that it was explanatory considerations which both led to the discovery of the deriva-
tion, and drove further discoveries concerning turbulent flows where Poiseuille’s law 
ceases to apply.
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In The Mathematical Stance, Alan Baker defends the Enhanced Indispensability 
Argument (EIA), considered by many the strongest argument currently available for 
mathematical platonism. He tackles two important objections against this argument. 
First, according to the EIA, we should commit to the existence of any entity that is 
explanatorily indispensable to science. Since mathematical objects are indispensable 
to our best scientific explanations, we should therefore commit to their existence. 
However, a critic may complain here that the argument assumes that there is a unique 
structure that underpins a given physical phenomenon. Another criticism is that the 
argument over-generates, by committing us to idealized entities—such as perfectly 
continuous fluids and frictionless surfaces—which play an indispensable explanatory 
role in our scientific theories. This would imply that explanatory indispensability is 
not after all a sufficient condition for ontological commitment.4 According to Baker, 
these two objections can be overcome by appealing to the notion of “the mathemati-
cal stance”, modelled after Dennett’s notion of “the intentional stance”. Namely, we 
should regard a given physical phenomenon as an abstract mathematical structure in 
a way that facilitates prediction and explanation of the puzzling aspects of its behav-
ior. Baker argues that such a stance-based account of the application of mathematics 
can lay the grounds for achieving a satisfactory general philosophical account of 
mathematical explanation in science.

In On the Plains and Prairies of Minnesota: The Role of Mathematical Statistics 
in Biological Explanation, Emily Grosholz considers the explanatory and heuristic 
aspects of the use of mathematical statistics in the research on plant population. She 
considers as a case study the work of population geneticist Ruth Geyer Shaw and 
her group on prairie restoration in Minnesota. In order to adequately capture the 
complexity of this biological phenomenon, this type of field work involves a combi-
nation of intensive collection of empirical data and development of appropriate math-
ematical modelling. This, in turn, requires measuring both macroscopic and genetic 
features of the population involved in their interactions over time. Thus, it involves 
selecting the significant variables to record, the study of the interaction of different 
causal mechanisms in the different stages of development, as well as the analysis of 
the genetic variance, with special attention to avoiding sampling bias. According to 
Grosholz, the complex issues at the interplay between statistics and biology have 
been neglected by many philosophers: often, physics and deductive explanations are 
presented as a regulative ideal for biology (here, a typical example is Newtonian 
mechanics). On the other hand, explanations in biology are usually partial and pro-
visional: living beings have heterogeneous and unpredictable behaviors, and there 
is an unbridgeable gap between the phenomenon of interest and the limitations of 
the compiled dataset (it is simply impossible to study every aspect of every member 
of a population). Grosholz focuses on the use of Aster Models (a class of statistical 
models that jointly analyse the measurements of separate, sequential, non-normally 
distributed components of fitness), and examines three case studies. These show why 
the use of mathematical statistics in biology, if expanded to employ a variety of non-
normal distributions, offers insightful explanations and reveals itself to be highly 

4  This critique is due to Maddy (1997) and has been also addressed in Bangu (2012).
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valuable in generating predictions. These, in turn, can be the grounds for the develop-
ment of local and national environmental policies.

Finally, Mary Leng’s paper Models, Structures, and the Explanatory Role of Math-
ematics in Empirical Science argues that we should think of explanations by con-
straint as structural explanations. “Explanations by constraints” are characterised by 
Lange (2017) as being, roughly speaking, explanations which show how a physical 
phenomenon follows from mathematics together with physical background condi-
tions. “Structural explanations”, on the other hand, show how a physical phenom-
enon necessarily follows from the features of the mathematical structure instantiated 
in the physical system under consideration. As such, they are presented in the form of 
necessitated conditionals. According to Leng, these types of explanations genuinely 
enhance our understanding of the physical world by providing modal information 
about their explananda, and by showing how apparently disparate phenomena are 
instances of a common structure. She then considers the notion of a structural expla-
nation in the context of the debate on the enhanced indispensability argument, and 
contends that since structural explanations can be understood in modal structural 
terms, they do not engender a commitment to mathematical platonism. Subsequently, 
Leng discusses case studies where a mathematical structure is only instantiated in an 
idealised model of a physical description, arguing that even in these cases, structural 
explanations do not lend support to mathematical platonism. Toward the end, Leng 
also maintains that viewing mathematical explanations as structural explanations 
provides a novel perspective on the explanatory role played by mathematics in our 
understanding of the world. This role reveals how mathematical-structural dependen-
cies in mathematical models of physical phenomena reflect mathematical-structural 
dependencies in the physical world.
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