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Abstract: Taken as a classical issue in applied economics, the notion of ‘convergence’ is based
on the concept of path dependence, i.e., from the previous trajectory undertaken by the system
during its recent history. Going beyond social science, a ‘convergence’ perspective has been more
recently adopted in environmental studies. Spatial convergence in non-linear processes, such as
desertification risk, is a meaningful notion since desertification represents a (possibly unsustain-
able) development trajectory of socio-ecological systems towards land degradation on a regional
or local scale. In this study, we test—in line with the classical convergence approach—long-term
equilibrium conditions in the evolution of desertification processes in Italy, a European country
with significant socioeconomic and environmental disparities. Assuming a path-dependent devel-
opment of desertification risk in Italy, we provided a diachronic analysis of the Environmental
Sensitive Area Index (ESAI), estimated at a disaggregated spatial resolution at three times (1960s,
1990s, and 2010s) in the recent history of Italy, using a spatially explicit approach based on geo-
graphically weighted regressions (GWRs). The results of local regressions show a significant path
dependence in the first time interval (1960–1990). A less significant evidence for path-dependence
was observed for the second period (1990–2010); in both cases, the models’ goodness-of-fit (global
adjusted R2) was satisfactory. A strong polarization along the latitudinal gradient characterized
the first observation period: Southern Italian land experienced worse conditions (e.g., climate
aridity, urbanization) and the level of land vulnerability in Northern Italy remained quite stable,
alimenting the traditional divergence in desertification risk characteristic of the country. The
empirical analysis delineated a more complex picture for the second period. Convergence (leading
to stability, or even improvement, of desertification risk) in some areas of Southern Italy, and a
more evident divergence (leading to worse environmental conditions because of urban sprawl
and crop intensification) in some of the land of Northern Italy, were observed, leading to an
undesired spatial homogenization toward higher vulnerability levels. Finally, this work suggests
the importance of spatially explicit approaches providing relevant information to design more
effective policy strategies. In the case of land vulnerability to degradation in Italy, local regression
models oriented toward a ‘convergence’ perspective, may be adopted to uncover the genesis of
desertification hotspots at both the regional and local scale.

Keywords: convergence; geographically weighted regression; environmentally sensitive area index;
sustainable land management; Mediterranean Europe
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1. Introduction

Derived from the economic literature, ‘convergence’ has been a paradigmatic notion
for decades. Since the 1990s, this concept was more frequently adopted to interpret
social and environmental problems, adapting the predictions of economic convergence
theory to different, possibly more complex, issues [1–3]. Convergence approaches
imply a quantitative analysis of developmental paths characteristic of complex systems
evolving toward distinctive growth stages over time and space with intrinsic regulation
of the latent system’s properties [4–6]. This long-term path depends on the system
state at the beginning of the observation period and on the evolution steps at various
investigation times. Path dependence from the previous trajectory, during its recent
history, is clearly at the base of such a process. Global convergence implies that all the
different components of the system evolve synergistically towards a target objective,
which is generally a policy objective or a non-regulatory target (i.e., an objective dictated
(or mediated) by human preferences instead of political instruments). Local convergence
implies a spatially heterogeneous process where only some units tend to converge
over time.

The notion of convergence derives from a wide economic literature initially focusing
on the long-term evolution of production systems [7–10]. These studies were mainly
oriented toward the investigation of national (or supranational) systems where the dif-
ferent units (e.g., regions or individual countries) converge to steady-state equilibrium
conditions (e.g., the same long-term growth rate). This assumption implies that the
poorest units grow more than the rich ones and, consequently, territorial disparities are
reduced [11–13]. Economic divergence instead implies a territorial polarization in rich
and poor areas, caused by a differential growth regime separating affluent countries,
more equipped with resources and infrastructures, from poor countries, experiencing a
structural gap in resources and infrastructures [14,15]. These two alternative conditions
can be analyzed in different spatiotemporal domains taking into account the impact of
local background contexts.

The ‘convergence’ issue has become popular in political analysis because it is com-
monly seen as a target for policy strategies addressing, both directly and indirectly, the
reduction of territorial gaps and the promotion of a long-term (and spatially sustainable)
economic growth, promoting resilience of local systems [16,17]. At the same time, this con-
cept has been applied in social science when addressing the intrinsic relationship between
sociodemographic phenomena and institutional mechanisms having a strict linkage with
policy regulation mechanisms, as in the case of identifying a welfare regime in advanced
economies [18–20]. Since the early 2000s, the ‘convergence’ notion has also been applied to
environmental processes under intense political regulation, and characterized by structural
territorial disparities [21–23].

What has been done so far in the ecological field requires, however, additional re-
search aimed at broadening the analysis to a wider range of environmental processes
possibly connected with the sociodemographic context. Enabling refined investigation
techniques and methodologies relying on an unprecedented amount of digital data—
provided with a more frequent temporal resolution and with a higher spatial detail—is
a pre-requisite for such studies [22]. An environmental process that was preliminarily
investigated under a convergence framework was land degradation, defined as a ‘reduc-
tion in the economic value of ecosystem services and goods derived from land as a result
of anthropogenic activities or natural biophysical evolution’ [23]. Land degradation is a
worldwide issue [24–30], which can be assumed to be representative of a long-term devel-
opment trajectory of a given socio-ecological system characterized by intrinsic impulses
towards complexity on either regional or local scales [31–34]. Internal forces shaping
long-term evolutionary paths depend on the intrinsic features of local systems, implying
human actions aimed at regulating these processes, but also at supplying or using (more
or less sustainably) natural resources connected with these phenomena. External drivers
have finally influenced land degradation both directly (as in the case of (i) unsustainable
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urbanization resulting in urban sprawl; (ii) grazing regime determining high soil erosion
rates and loss in plant productivity; (iii) extensive land transformations in semi-arid
climates causing the expansion of barrens; and (iv) wildfires causing damages to biodi-
versity) and indirectly (as in the case of climate change), being frequently associated with
anthropogenic activities [33–42].

The intrinsic complexity of developmental paths in local systems affected by land
degradation reflects non-linear trajectories of growth in advanced economies (as already
demonstrated in [43]) and, therefore, needs monitoring procedures at finer spatiotempo-
ral resolutions aimed at evaluating the driving forces that guide this path [44]. In other
words, understanding the trajectories of such systems implies the opportunity to design
multi-scalar policies that may contain the negative effects of those forces triggering (or
exacerbating) land degradation. At the same time, these policies may more effectively con-
tribute to regulating the impact of human activities, as in the case of the adoption of spe-
cific agri-environmental measures to contrast degradation in eroded vineyards and critical
areas [45,46]. Other examples of such policies include soil conservation measures slow-
ing down land abandonment, such as building/consolidation of terraced slopes able
to contain some processes (runoff, erosion, landslides) in fragile Mediterranean catch-
ments [47,48]. These policies can also mitigate the effect of exogenous shocks, such as
climate change, and maintain a resilience potential to preserve the pristine stock of re-
sources [49,50]. In this context, it is reasonable to assume a development process that is, at
least partially, dependent on the previous path. An intrinsically complex, path-dependent
process is strictly linked to the previous development state while being subjected to
external forces moving the system away from the initial conditions. Testing against
spatial imbalances, the present study verifies a long-term equilibrium in the evolution
of land degradation processes in Italy, a European country with intense socioeconomic
divides [51,52].

Generally speaking, the issue of land degradation has now become very topical
throughout Europe, because the Old Continent has experienced rising levels of land
degradation, and 13 European Union (EU) Member States have declared themselves as af-
fected parties under the United Nations Convention to Combat Desertification (UNCCD).
At both the European and global level, as reported in the latest institutional reports (e.g.,
European Environment Agency, Intergovernmental Panel On Climate Change, Intergov-
ernmental Science-Policy Platform on Biodiversity and Ecosystem Services, see [53–55]),
land is drastically degrading. A significant expansion of degraded areas aligns Italy
with global and European trends: now, over a third of the national territory should be
considered partially or completely degraded [56]. To document convergence (or diver-
gence) processes in the evolution of desertification risk, we tested a path-dependent
development of land degradation analyzing spatiotemporal variations in a composite
index, the ESAI (Environmental Sensitive Area Index [57,58]), at a relatively detailed
geographical resolution at three time points (1960s, 1990s, and 2010s) corresponding to
different stages of the socioeconomic development path in Italy.

The adopted model follows a classic convergence scheme testing path dependence
between the early 1960s and the early 1990s, and between the early 1990s and the early
2010s. Salvati et al. [59] have previously explained the importance of these two periods
in the history of Italy as representative of socioeconomic, demographic, and territorial
dynamics common to other Mediterranean countries. The first time interval (1960–
1990) was characterized by a development path not associated with specific policies
mitigating desertification impacts and, because of this context, the period can be labeled
as ‘pre-codified desertification’. Only in the mid-1990s, with the establishment of the
United Nations Convention to Combat Desertification (UNCCD) and the corresponding
National Committees, specific policies have been promoted to face the desertification
risk in Italy, as well as in the other Mediterranean countries of the UNCCD Annex IV.
Notably, the Italian Committee to Combat Drought and Desertification (CNLSD) has
been fully active since 1999 and promoted actions at the national level with the National
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Action Plan (NAP), which introduced guiding principles for designing policy strategies
at the regional scale, e.g., through the Regional Action Plans (RAPs). These were spatial
planning tools that each regional administration should have developed on the basis
of the specific degradation processes and in line with NAP guidelines. Local action
plans, aimed at containing desertification risk and maintaining an appropriate stock
of natural resources, were occasionally proposed. This implies that a comprehensive
analysis of territorial dynamics over the second observation period allows for the
estimation of the initial impact of the national strategy for land degradation mitigation
in Italy [60].

Based on these premises, we run—for the first time, to our knowledge—a quantitative
analysis of convergence processes in the evolution of the desertification risk over time based
on a pixel-based, local regression, controlling for the modifiable area unit problem (MAUP)—
characteristic in the use of administrative units. Taken as a function of (supposedly)
different evolutionary paths, we run a regression analysis between the stock of land
resources (i.e., reflecting the level of vulnerability) at two consecutive times (t = 0 and t = 1),
as derived from spatially explicit ESAI values and change over two time spans (1960–1990
and 1990–2010). We assume that the level of land degradation vulnerability converges
over space with reduced territorial gaps, determining a less asymmetric distribution of
the ESAI over time. Formal or informal actions (i.e., spontaneous or regulatory) may
regulate this path. By contrast, we expect divergence when the existing gaps widen and,
consequently, the variations over time exacerbate these spatial divides. Divergence, in
turn, creates spatial polarizations with the consequent formation (or consolidation) of
land degradation hotspots, i.e., serious conditions of land vulnerability, which may evolve
towards desertification.

2. Materials and Methods
2.1. Study Area

Italy is a Northern Mediterranean country extending more than 300,000 km2 and is
composed of balanced, mainly steep topography mixing lowlands (23%), uplands (42%),
and mountains (35%). Climate regimes in Italy were highly dependent on topography,
latitude, and distance from the sea coasts, ranging from Alpine to semi-arid [61,62]. The
distribution of natural resources and human activities across the study area reflects the
historical interplay between biophysical factors and anthropogenic pressures, revealing
economic and sociopolitical disparities (such as the land accessibility favored by different
transport infrastructure, income levels, etc.). The country’s geography is delineated consid-
ering three macro-regions (North, Centre, and South), displaying important differences, as
far as population density, urban form, availability of natural resources, topographic fea-
tures, and economic well-being, are concerned (Figure 1). Northern Italy has an economic
profile similar to the most developed European areas, while Southern Italy is still consid-
ered a region with a developmental deficit [63]. Central Italy is positioned in-between
these regions and alternates between areas with thriving activities and economically dis-
advantaged zones (basically, rural and mountain areas). These pronounced differences
generate a diverse range of ecosystems responses to natural and anthropogenic distur-
bance, sometimes exacerbated by the effects of climate change (e.g., irregular precipitation
regimes, heatwaves, late frost events, and flooding [64–66]). Thanks to such factors, Italy is
particularly suitable for testing the impact of these geographical gradients in the spatial
distribution of vulnerable areas to land degradation [67–69].
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2.2. ESA Approach 
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simple indicator-based scheme assessing four components: climate, soil, vegetation, and 
land management. Standard indices concerning each component were commonly used 
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availability and specific environmental and socioeconomic contexts [71]. They contribute 

Figure 1. Partitions of the study area into (a) 20 regions corresponding to NUTS-2 (European
nomenclature of territorial units for official statistics); (b) latitudinal belts; (c) elevation classes;
(d) 107 provinces corresponding to NUTS-3 level in Italy.

2.2. ESA Approach

In this work, we adopted one of the most used methodologies in the field of de-
sertification/land degradation: the ESA (Environmentally Sensitive Area) approach. It
was developed within the MEDALUS (Mediterranean Desertification And Land Use)
project [70] to evaluate the level of vulnerability to land degradation of the study area
by means of a simple indicator-based scheme assessing four components: climate, soil,
vegetation, and land management. Standard indices concerning each component were com-
monly used alone or in combination; in fact, they can be integrated or removed depending
on data availability and specific environmental and socioeconomic contexts [71]. They
contribute to the computation of the respective quality index: Climate Quality Index (CQI),
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Soil Quality Index (SQI), Vegetation Quality Index (VQI) and Land Management Quality
Index (MQI), as the geometric mean of the different scores associated to each input variable.
To combine them straightforwardly, each quality indicator was classified in a range from
1 (low vulnerability to land degradation) to 2 (high vulnerability to land degradation),
assigning equal weights to each layer. The model, accurately validated through extensive
field measurements (e.g., [72]), has been successfully applied to case studies in other Euro-
pean and non-European countries [73–77]. The present study evaluated land degradation
vulnerability in Italy in a time interval of 50 years (1960–2010) and, more precisely, at three
time points (1960, 1990, and 2010, see Figure 2), the only dates currently available to exploit
the full model at a national scale with the whole range of requested input variables [78].
Further details on the specific databases used to compute the quality indices were provided
in what follows.
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Climate quality was estimated taking into account three variables: the average an-
nual rainfall rate, the aridity index, and the slope aspect; all calculated from the Agro-
meteorological Database of the Italian Ministry of Agriculture, which has available about
3000 weather stations with daily records since 1951 [79]. The soil layer was regarded as a
quite static variable since changes are negligible over 50 years because of the dominance of
pedogenesis factors, usually very slow over time. We used a set of standard ESA layers
(soil depth, texture, slope, and parent material) from the European Soil Database (Joint
Research Centre, JRC) provided at 1 km2 spatial resolution and from ancillary sources:
(a) the Italian ‘Map of the water capacity in agricultural soils’ (provided by the Italian
Ministry of Agriculture); (b) the Eco-pedological and Geological maps of Italy (realized by
JRC and the Italian Geological Service); and (c) a map of Italian land systems realized by the
National Centre of Soil Cartography (Florence). The vegetation layer considered four input
variables: plant cover, fire risk, erosion protection, and drought resistance. These variables
were estimated from reclassification of land cover maps realized on behalf of the CORINE
initiative (CLC, see e.g., [80]) for the years 1990 and 2012 and a CORINE-like ‘Topographic
and Land Cover Map of Italy’ made available by the National Research Council (CNR) of
Italy and the Italian Touring Club (TCI) in 1960 with a hierarchical land system compatible
with those of the CORINE Land Cover maps [81]. The land management layer encom-
passes various indicators considering population dynamics (density and annual growth
rate of resident population by the Italian National Institute of Statistics) and agricultural
intensification [82], derived from an indicator of land-use intensity based on the sequence
of the abovementioned maps [79].

2.3. Local Regressions

To predict spatial variability in the level of land vulnerability to degradation across
Italy in light of the ‘convergence’ notion, the empirical results of descriptive statistics and
maps were refined with a spatially explicit strategy based on local econometric models,
namely geographically weighted regressions (GWRs) run on the percent annual rate of
change over time in the level of land vulnerability along the time interval t + 1/t as
dependent variable, and the stock variable (level of land vulnerability at time t) as predictor.
The implicit spatial structure of both the dependent variable and the lagged variable
was considered using a W weighting matrix that computed the linear distance between
elementary spatial units. Regressions were estimated separately for each study period (1960–
1990 and 1990–2010). A model’s goodness-of-fit was assessed using global R2 coefficients
and local slope and intercept coefficients.

The model specification assumes a part of variance not explained by the lagged
predictor. The convergence hypothesis is thus tested according with the level of the global
R2 and local slopes. High R2 means an indirect verification of the appropriateness of a
convergence model for desertification risk in Italy. GWR was adopted in this study with
the aim at identifying local-scale variability in desertification risk, using a bi-square nearest
neighbor kernel function [83] to calculate weights for the estimation of local models [84].
The methodological framework underlying GWR is similar to that of local regression
models; contrary to a spatially implicit ordinary least squares regression (with location
invariant regression coefficients), a GWR runs an econometric specification for each location
s = 1, . . . , n, as follows:

Y(s) = X(s)B(s) + e(s) (1)

where, Y(s) is the dependent variable at location s, X(s) includes the predictors (in our
case the ESAI), B(s) includes the regression coefficients, and e(s) is the random error, all at
location s. As a result, GWR gave rise to a distribution of local estimated parameters [84].

2.4. Software

GWR elaborations and spatial analysis providing simple statistics were carried out in
the free, open-source environments of QGIS 3.16.11 and GRASS GIS 7.8.5 (see http://qgis.
osgeo.org and https://grass.osgeo.org/, last access on 25 June 2022). In particular, r.gwr-the

http://qgis.osgeo.org
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specific GRASS add-on (https://grass.osgeo.org/grass78/manuals/addons/r.gwr.html
(accessed on 25 June 2022)) was adopted to run GWRs on the empirical data available in
this work.

3. Results

The empirical results have witnessed a significance dependence structure of the in-
crease (or decrease) in the level of desertification risk with time (see Table 1. As a matter
of fact, the outcomes of local regressions (specifically, the global adjusted R2) show a very
high path dependence in the first period (1960–1990) and a moderate sign of path depen-
dence in the second period (1990–2010). Regression models show a strong heterogeneity in
the local coefficients for both the endogenous processes of land vulnerability represented
by the estimated value of the regression intercept and the specific temporal dynamics of
convergence (or divergence) expressed through slope coefficients (Figures 3 and 4).

Slope coefficients took on very different values in Italy, highlighting different con-
vergence dynamics in the two periods. The first period was characterized, as already
highlighted in other works adopting alternative methodologies [66], by a strong polar-
ization along the latitudinal gradient. In other words, Southern regions worsened and
Northern regions remained mostly stable. On the contrary, the following period (1990–
2010) highlighted a more complex and alarming picture: we observed stability or even an
improvement of some areas of Southern Italy and a marked worsening of Northern regions
considered as unaffected from a regulatory point of view (NAP).

For instance, a pivotal regional action plan in Northern Italy was initially approved by
the Emilia-Romagna regional authority (https://ambiente.regione.emilia-romagna.it/it/
acque/approfondimenti/documenti/Sintesi_PAL_def.pdf, last access on 10 August 2022)
which, since the 1990s, had experienced more intense climate changes, especially in flat
and coastal areas [85]. This has resulted in significant environmental damages and income
losses, especially for the agricultural sector, representing a significant part of the regional
added value. Losses are concentrated in areas devoted to intensive, high-income agriculture
with greater consumption of technical inputs (e.g., water, agrochemicals, mechanization).
From this point of view, the most recent convergence phenomena actually underlie a
process of territorial polarization, loss of the agronomic quality of soils and, in general, of
the ecological quality of landscapes.

Table 1. Descriptive statistics of regression models (local slope and intercept coefficients) with the
ESAI level at time t as dependent variable in Italy by time interval (AICc = Akaike information
criterion; BIC = Bayesian information criterion).

1960–1990 1990–2010

No. pixels 276,335 274,467
Adjusted-R2 0.650 0.613
AICc −1.61 × 106 −1.58 × 106

BIC −1.61 × 106 −1.58 × 106

Intercept
Mean 0.714 0.790
St.dev 0.300 0.246
Min −0.545 −0.256
Max 1.672 1.610

Slope
Mean 0.481 0.417
St.dev 0.211 0.180
Min −0.192 −0.152
Max 1.396 1.150

https://grass.osgeo.org/grass78/manuals/addons/r.gwr.html
https://ambiente.regione.emilia-romagna.it/it/acque/approfondimenti/documenti/Sintesi_PAL_def.pdf
https://ambiente.regione.emilia-romagna.it/it/acque/approfondimenti/documenti/Sintesi_PAL_def.pdf
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Figure 3. Regression coefficients and residuals of a GWR model estimating the local variation of
land vulnerability to desertification at time t and the same index at time t − 1 for the time intervals
1960–1990: (a) Estimates, (b) Intercept, (c) Residuals, (d) Slope.
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This is because, as evidenced with the empirical results of this study, Northern Italy
tends towards a counterintuitive polarization, not reflecting the typical north-south gra-
dient, but, on the contrary, developing according to other meso-geographical gradients
responding to land-use, population density, or industrial specialization [86]. The results
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of this work also indicate socioeconomic disparities as having a strong impact on environ-
mental dynamics. The recent evolution, which is strongly linked to the past development
path, highlights the intrinsic features of complex local systems, as well as system properties
that should be considered when interpreting (and possibly predicting) land degradation
dynamics for a refined formulation of multi-scalar policies (Figure 5).
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Figure 5. Results of the regression results (coefficient estimate) comparing NUTS-2 (administrative
region) and NUTS-3 (province) scales for the time intervals 1960–1990 (a,c) and 1990–2010 (b,d);
NUTS-2 and NUTS-3 are representative of two spatial levels of policy, reflecting the impact of Regional
Action Plans (RAPs) and Local Action Plans (LAPs) against desertification in Italy.

A final approach was proposed illustrating a map of the intercept-to-slope ratio
derived from the regression results (Figure 6). Higher values of this ratio (deriving from a
considerably high value of the intercept and a significantly low value of slope coefficient)
indicate a substantial stability of desertification risk, in turn, delineating districts with
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urgent (and structural) interventions to contain present (and, possible, future) degradation
processes. Notably, the most vulnerable areas (ratio > 10) concentrated in the Eastern side of
the Po plain (Emilia-Romagna), along the Adriatic Sea coast (Marche and Abruzzo region),
Apulia, and Central Sicily. These areas expanded in the second time interval (1990–2010).
In other words, the intercept-to-slope ratio may provide visual evidence of the formation
(or consolidation) of desertification hotspots in Italy, as associated with high values of
the ratio.
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4. Discussion

The empirical results of our study outline methodological innovation and an original
framework that allows discriminating long-term convergence from divergence processes
of desertification risk on a local scale, thanks to the spatially explicit analysis of local
regression coefficients. In this way, we will be able to capture differentiated socioeconomic
dynamics underlying the multiple land degradation processes for Italy. More specifically,
local regressions made it possible to outline convergence dynamics in the level of land
degradation over time, contributing to the identification of desertification hotspots in a
strongly affected country such as Italy. For instance, clusters emerging as priority areas from
the intercept-to-slope ratio maps seem to be well-aligned with the dynamics of vegetation
productivity and the major sources of information concerning land-use and land-cover
changes in Italy. Areas that have the high intercept-to-slope ratio values for the time span
1990–2010 are located prevalently in Apulia, Piedmont, Emilia-Romagna, Sicily, and Liguria.
These areas largely correspond to clusters of persistent negative trends in vegetative activity
reported by Simoniello et al. [87], i.e., the areas in which the vegetative activity estimated
by the satellite time series (NDVI-GIMMS) has shown a tendency to decrease for several
consecutive years (1991–2003): see trend and persistence maps provided as Figure S1 in
the Supplementary Materials. Moreover, according with field data released by the Italian
Institute for Environmental Protection and Research (ISPRA), the Emilia-Romagna and
Piedmont regions experienced a sharp urbanization at the expense of agricultural areas
between 1990 and 2012, with natural areas remaining stable. Sicily and Liguria showed
a decline in natural vegetation because of crop expansion and intensification. Apulia
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was a peculiar case where sealed areas expanded drastically into rural areas, cropland
intensified, and forest areas decreased substantially (see [88] and the report available at
https://annuario.isprambiente.it/ada/downreport/html/7037, last accessed on 10 August
2022). Furthermore, as portrayed by the recent literature [89], some Southern Italian regions
(namely, Sicily, Sardinia, and Apulia), among the areas most populated by high intercept-to-
slope ratio values, are experiencing a considerable temperature increase and precipitation
decrease [90–92], impacting the most typical cultivations (i.e., vineyards and olive groves,
see [93,94]).

In general, areas identified by this study as needing urgent action, only partially
correspond to the geography of vulnerability to degradation, as produced by other inde-
pendent national elaborations (based also on different methodologies) and by the currently
available RAPs. This can be explained by considering that, although based on the ESA
methodology, our approach captured only zones characterized by a stability of the deserti-
fication risk over time through geographically weighted regressions, whereas most of the
mentioned elaborations relied on the mere application of the ESA procedure or made use of
remote observations.

In particular, at a national scale, a recent study estimating the mean annual land
productivity in the period 2000–2015 seems to match better with the intercept-to-slope ratio
map relative to the time frame 1960–1990, with the exception of the major islands ([95]).
This last map is in good agreement also with the map of sensitivity to desertification and
drought in the Mediterranean basin (Figure S2 in Supplementary Materials, see further
details at https://esdac.jrc.ec.europa.eu/public_path/shared_folder/projects/DIS4ME/
using_dis4me/dismed.htm, last accessed on 25 August 2022) elaborated in 2003 by the EEA
(European Environment Agency) and ENEA (Italian National Agency for new Technologies,
Energy and Sustainable Economic Development). Proceeding towards the interregional
level (Southern Italy), the paper of Imbrenda et al. [96], based on a modified version of the
ESA also including remote sensing data (time series 2000–2010), showed an appreciable
degree of similarity in the patterns of land vulnerability for Sicily and Campania with
respect to the intercept-to-slope ratio map of the time frame 1990–2010.

Lastly, when considering the regional level at which most studies have focused in
recent years, we found different levels of similarity between our maps and the regional
cartography of degradation (RAPs), even though some areas identified by our procedure
emerged as new hotspots. Starting from northern regions, the Piedmont RAP showed a
partial overlap of the critical areas with both of the intercept-to-slope ratio maps, as these
areas are mainly concentrated within the Po Plain around the major urban centers (see [97]),
whereas the Emilia-Romagna RAP showed an appreciable correspondence with the 1960–
1990 intercept-to-slope ratio map, identifying as vulnerable those areas located around the
highways connecting the major centers of the region [98]. Regions belonging to Central
Italy showed a scarce correspondence of critical areas, especially for Tuscany ([99]), whereas
coastal areas of the Abruzzo Region were indicated both by the 1960–1990 intercept-to-
slope ratio map and the relative RAP (see [100]). Studies concerning the southern regions
indicated a large variety of correspondence. The work of Ladisa et al. [101] showed a
geography of vulnerability for Apulia that does not match with our findings, neither
with the local RAP (see [102]). A similar mismatch occurred for the RAP of Calabria and
Basilicata regions (see [103,104]). The findings of the RAP of Basilicata proved to be aligned
with other ESA-based studies [105,106]. Lastly, the RAP of Sardinia (see [107]) presented
results partially overlapping with our map for the time frame 1990–2010 and with the map
derived from an independent work, based on the integration of models and remote sensing
data [67]. For Sicily, our 1990–2010 intercept-to-slope ratio map captured a large part of
areas, identified as vulnerable by Giordano et al. [108] and by the last Regional Action
Programme to fight desertification (see [109]).

At the same time, the results of this approach suggest how analyzing spatially explicit
and refined data, such as the lattice constituted of 1 km2 pixels adopted here, allows
discrimination of complex processes that should be faced using differentiated tools, policies,

https://annuario.isprambiente.it/ada/downreport/html/7037
https://esdac.jrc.ec.europa.eu/public_path/shared_folder/projects/DIS4ME/using_dis4me/dismed.htm
https://esdac.jrc.ec.europa.eu/public_path/shared_folder/projects/DIS4ME/using_dis4me/dismed.htm
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and strategies [110]. The outcomes of local regressions additionally provided suitable
indicators of convergence/divergence considering the most appropriate spatial scale for
elaborating policies, i.e., administrative regions or provinces in Italy (respectively, NUTS-2
or NUTS-3 following European nomenclature of territorial units for official statistics). We
have compared the same indicators at sub-regional scales (20 administrative regions and
107 provinces) consistent with the policy objective, i.e., reflecting homogeneous (polygon)
areas representing the impact of Regional Action Plans (RAPs) or, eventually, Local Action
Plans (LAPs), respectively. This exercise allows us to delineate the evolution of convergence
(or divergence) processes characteristic of desertification risk in Italy, in line with the desired
political instruments of the NAP.

From a methodological perspective, the novelty of this work lies in the application
of a spatially explicit, local regression model to the topic of environmental convergence.
This approach has been used for empirical analysis of some environmental variables (e.g.,
heavy metal accumulation, soil salinity, land use, ecological risk, and ground tempera-
ture [111–115]). Few studies have investigated land degradation/desertification issues by
means of geographically weighted regressions [116]. In this way, we moved from global
regression convergence models (providing homogeneous estimates on a country scale) to
local estimation models, providing a spatially explicit result for each elementary unit. In
our case, the territorial unit was represented by land pixels extending 1 km2 each. The
study area was divided into nearly 300,000 homogeneous pixels in which various factors
have been evaluated and the ESAI has been derived at three different times (early-1960s,
early-1990s, and early-2010s).

The results of this study are of interest both from a positive and normative point
of view. From the former perspective, a statistically refined methodology is applied to
an eminently local issue, which has been addressed for a long time with methodologies
focusing exclusively (or mostly) on a global scale. At the same time, this approach has also
evident regulatory implications, because policies should not be confined to outline country-
scale strategies, but they should undertake concrete actions at both regional and local levels.
The estimation of a local convergence model for desertification risk makes it possible to
provide a significant information asset at a geographical scale of interest for policy, namely,
the regional scale (reflecting the impact of regional action plans in Italy). This approach
was also valid at the local scale thanks to the availability of a large set of information on
homogeneous areas enabling a re-aggregation to the desired administrative scales most
suitable for designing policy interventions—as we did in the descriptive analysis involving
policy-relevant administrative units (Figure 5).

From this perspective, modeling results are meaningful both at the pixel scale (raster
scale covering the whole study area) and at different (polygon) scales, basically reflecting
the spatial articulation of administrative levels (NUTS-1, NUTS-2, NUTS-3, and NUTS-5, i.e.,
from regional to municipal level) representing possible policy targets for future actions to
face desertification risk [117]. From an environmental accounting point of view, this system
is also relevant because it translates stock use and the withdrawal of natural resources
into a spatially explicit information flow. In this sense, the stock of natural resources is
represented by the level of land degradation at time zero, assumed as a proxy of the level
of land quality at an onset time. Obviously, this does not imply that the Italian landscape
was pristine and healthy before the early-1960s; indeed, a massive use of agrochemicals
began in parallel with the 1950s economic boom, and urbanization took an extraordinary
turn [118–120]. In light of such evidence, the proposed model may be generalized to other
socioeconomic contexts both in developed and in developing countries [121,122], shedding
some further light on the intimate linkage between land degradation and sustainable
development [123,124]. As a possible departure from paths of sustainable development,
land degradation, especially in Mediterranean areas, reflects the complex interplay between
socioeconomic and environmental dimensions [125,126]
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5. Conclusions

The empirical results of our study highlight the effectiveness of interpretative models
computing on spatially explicit data for complex environmental and socioeconomic issues
over a relatively long time frame. They also suggest the importance of local econometric
approaches controlling for spatial heterogeneity. In this regard, geographically weighted
regressions produce outcomes that provide relevant information to design more effective
policy strategies, assuming that local convergence holds—instead of (more traditional)
global convergence mechanisms. The case of land vulnerability to degradation in Italy is
significant when looking at the genesis of desertification hotspots in the country, namely,
areas where risk levels increase rapidly compared with neighboring areas that show stable
(or even improved) environmental conditions, because of local factors that are little known
or poorly investigated. Capturing these hotspots means being able to concentrate local
efforts on environmentally unsustainable areas, adopting the most appropriate mitigation
and contrast policies, such as (i) favoring the restoration of abandoned areas, (ii) leveraging
the new social demand for farming, and (iii) promoting specific actions to contain peri-
urban expansion towards high-quality and fertile soils around metropolitan areas [78,127].
Together with remote sensing and field data, official statistics should directly contribute
to this information challenge providing detailed information at an adequately fine-grain
spatial resolution. Our approach can be easily generalized to more restricted (or larger)
areas, not only in Europe, but also in other parts of the world featuring similar socioeco-
nomic systems. Tools available for these studies are relatively simple and allow for a broad,
low-cost application of environmental monitoring techniques in different geographical
contexts where desertification risk appears to be an increasingly important issue, having
climate change and human-driven landscape transformation as powerful drivers of change.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su141710906/su141710906/s1, Figure S1. (a) Total persistence map of
NDVI (Normalized Difference Vegetation Index) trends for the period 1992-2003 obtained from 8 km
GIMMS satellite dataset. The persistence index is expressed in number of years starting from 1992 for
which the trend sign of the reference period 1982–1991 is preserved. (b) NDVI Trends of the reference
period. (Figure readjusted from Simoniello et al. [87]). Areas of negative persistent trends (magenta)
show patterns similar to the intercept-to-slope ratio derived from local regression results (1990–2010).
Figure S2. Map of susceptibility to desertification obtained from the ESA procedure (Figure readjusted
from https://esdac.jrc.ec.europa.eu/public_path/shared_folder/projects/DIS4ME/using_dis4me/
dismed.htm, last accessed on 25 August 2022). The most vulnerable areas show patterns similar to the
intercept-to-slope ratio derived from local regression results (1960–1990).
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