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Abstract

We study a general class of bilevel problems, con-
sisting in the minimization of an upper-level ob-
jective which depends on the solution to a para-
metric fixed-point equation. Important instances
arising in machine learning include hyperparame-
ter optimization, meta-learning, and certain graph
and recurrent neural networks. Typically the gra-
dient of the upper-level objective (hypergradi-
ent) is hard or even impossible to compute ex-
actly, which has raised the interest in approxi-
mation methods. We investigate some popular
approaches to compute the hypergradient, based
on reverse mode iterative differentiation and ap-
proximate implicit differentiation. Under the hy-
pothesis that the fixed point equation is defined
by a contraction mapping, we present a unified
analysis which allows for the first time to quantita-
tively compare these methods, providing explicit
bounds for their iteration complexity. This analy-
sis suggests a hierarchy in terms of computational
efficiency among the above methods, with approx-
imate implicit differentiation based on conjugate
gradient performing best. We present an exten-
sive experimental comparison among the methods
which confirm the theoretical findings.

1. Introduction

Several problems arising in machine learning and related
disciplines can be formulated as bilevel problems, where
the lower-level problem is a fixed point equation whose so-
lution is part of an upper-level objective. Instances of this
framework include hyperparameter optimization (Maclau-
rin et al., 2015; Franceschi et al., 2017; Liu et al., 2018;
Lorraine et al., 2019; Elsken et al., 2019), meta-learning
(Andrychowicz et al., 2016; Finn et al., 2017; Franceschi
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et al., 2018), as well as recurrent and graph neural networks
(Almeida, 1987; Pineda, 1987; Scarselli et al., 2008).

In large scale scenarios, there are thousands or even millions
of parameters to find in the upper-level problem, making
black-box approaches like grid and random search (Bergstra
& Bengio, 2012) or Bayesian optimization (Snoek et al.,
2012) impractical. This has made gradient-based methods
(Domke, 2012; Maclaurin et al., 2015; Pedregosa, 2016)
popular in such settings, but also it has raised the issue of
designing efficient procedures to approximate the gradient
of the upper-level objective (hypergradient) when finding a
solution to the lower-level problem is costly.

The principal goal of this paper is to study the degree of ap-
proximation to the hypergradient of certain iterative schemes
based on iterative or implicit differentiation'. In the rest of
the introduction we present the bilevel framework, along-
side some relevant examples in machine learning. We then
outline the gradient approximation methods that we analyse
in the paper and highlight our main contributions. Finally,
we discuss and compare our results with previous work in
the field.

The bilevel framework. In this work, we consider the
following bilevel problem.

min f(A) := B(w(}), A) 0
subject to w(A) = ®(w(A), \),

where A is a closed convex subset of R” and F: R? x A —
R and ®: R x A — R? are continuously differentiable
functions. We assume that the lower-level problem in (1)
(which is a fixed point-equation) admits a unique solution.
However, in general, explicitly computing such solution is
either impossible or expensive. When f is differentiable,
this issue affects the evaluation of the hypergradient V f (),
which at best can only be approximately computed.

A prototypical example of the bilevel problem (1) is

min f(A) := E(w(}), 1)

2
subject to w(A) = arg min £(u, \), @

u€eRd

!The reader interested in the convergence analysis of gradient-
based algorithms for bilevel optimization is referred to (Pedregosa,
2016; Rajeswaran et al., 2019) and references therein.
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where /: R* x A — R is a loss function, twice con-
tinuously differentiable and strictly convex w.r.t. the first
variable. Indeed if we let ® be such that ®(w,\) =
w — a(A)V€(w, \), where a: A — R is differentiable,
then problem (2) and problem (1) are equivalent. Specific
examples of problem (2), which include hyperparameter op-
timization and meta-learning, are discussed in Section 3.1.

Other instances of the bilevel problem (1), which are not
of the special form of problem (2), arise in the context of
so-called equilibrium models (EQM). Notably, these com-
prise some types of connectionist models employed in do-
mains with structured data. Stable recurrent neural networks
(Miller & Hardt, 2019), graph neural networks (Scarselli
et al., 2008) and the formulations by Bai et al. (2019) be-
long to this class. EQM differ from standard (deep) neural
networks in that the internal representations are given by
fixed points of learnable dynamics rather than compositions
of a finite number of layers. The learning problem for such
type of models can be written as

A=(v,0)eA

min A) = E;(w;(v),0),
) Z; (wi(7),0) 3

subject to w;(7) = ¢i(wi(7),7), for1 <i <m,

where the operators ¢; : R x A — RY (here ® = (¢;)™ ;)
are associated to the training points x;’s, and the error func-
tions FE; are the losses incurred by a standard supervised
algorithm on the transformed dataset {w;(7y),y;}7—,. A
specific example is discussed in Section 3.2

In this paper, we present a unified analysis which allows for
the first time to quantitatively compare popular methods to
approximate V f(\) in the general setting of problem (1).
The strategies we consider can be divided in two categories:

1. Iterative Differentiation (ITD) (Maclaurin et al., 2015;
Franceschi et al., 2017; 2018; Finn et al., 2017).
One defines the sequence of functions fi(A\) =
E(wi(X), A), where wy () are the fixed-point iterates
generated by the map ®(-, A). Then V f(\) is approx-
imated by V f;(), which in turn is computed using
forward (FMAD) or reverse (RMAD) mode automatic
differentiation (Griewank & Walther, 2008).

2. Approximate Implicit Differentiation (AID) (Pedregosa,
2016; Rajeswaran et al., 2019; Lorraine et al., 2019).
First, an (implicit) equation for V f()) is obtained
through the implicit function theorem. Then, this
equation is approximately solved by using a two stage
scheme. We analyse two specific methods in this class:
the fixed-point method (Lorraine et al., 2019), also re-
ferred to as recurrent backpropagation in the context
of recurrent neural networks (Almeida, 1987; Pineda,
1987), and the conjugate gradient method (Pedregosa,
2016).

Both schemes can be efficiently implemented using auto-
matic differentiation (Griewank & Walther, 2008; Baydin
et al., 2018) achieving similar cost in time, while ITD has
usually a larger memory cost than AID?,

Contributions. Although there is a vast amount of liter-
ature on the two hypergradient approximation strategies
previously described, it remains unclear whether it is better
to use one or the other. In this work, we shed some light over
this issue both theoretically and experimentally. Specifically
our contributions are the following:

e We provide iteration complexity results for ITD and
AID when the mapping defining the fixed point equa-
tion is a contraction. In particular, we prove non-
asymptotic linear rates for the approximation errors
of both approaches.

e We make a theoretical and numerical comparison
among different ITD and AID strategies considering
several experimental scenarios.

We note that, to the best of our knowledge, non-asymptoptic
rates of convergence for AID were only recently given in
the case of meta-learning (Rajeswaran et al., 2019). Fur-
thermore, we are not aware of any previous results about
non-asymptotic rates of convergence for ITD.

Related Work. Iterative differentiation for functions de-
fined implicitly has been extensively studied in the auto-
matic differentiation literature. In particular (Griewank &
Walther, 2008, Chap. 15) derives asymptotic linear rates
for ITD under the assumption that ®(-, \) is a contraction.
Another attempt to theoretically analyse ITD is made by
Franceschi et al. (2018) in the context of the bilevel prob-
lem (2). There, the authors provide sufficient conditions for
the asymptotic convergence of the set of minimizers of the
approximate problem to the set of minimizers of the bilevel
problem. In contrast, in this work, we give rates for the
convergence of the approximate hypergradient V f; () to
the true one (i.e. V f(\)). ITD is also considered in (Shaban
et al., 2019) where V f;(\) is approximated via a procedure
which is reminiscent of truncated backpropagation. The au-
thors bound the norm of the difference between V f; () and
its truncated version as a function of the truncation steps.
This is different from our analysis which directly considers
the problem of estimating the gradient of f.

In the case of AID, an asymptotic analysis is presented
in (Pedregosa, 2016), where the author proves the conver-
gence of an inexact gradient projection algorithm for the
minimization of the function f defined in problem (2), us-
ing increasingly accurate estimates of V f(\). Whereas

2This is true when ITD is implemented using RMAD, which is
the standard approach when A is high dimensional.
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Rajeswaran et al. (2019) present complexity results in the
setting of meta-learning with biased regularization. Here,
we extend this line of work by providing complexity results
for AID in the more general setting of problem (1).

We also mention the papers by Amos & Kolter (2017) and
Amos (2019), which present techniques to differentiate
through the solutions of quadratic and cone programs re-
spectively. Using such techniques allows one to treat these
optimization problems as layers of a neural network and
to use backpropagation for the end-to-end training of the
resulting learning model. In the former work, the gradient
is obtained by implicitly differentiating through the KKT
conditions of the lower-level problem, while the latter per-
forms implicit differentiation on the residual map of Minty’s
parametrization.

A different approach to solve bilevel problems of the form
(2) is presented by Mehra & Hamm (2019), who consider a
sequence of “single level” objectives involving a quadratic
regularization term penalizing violations of the lower-level
first-order stationary conditions. The authors provide asymp-
totic convergence guarantees for the method, as the regu-
larization parameter tends to infinity, and show that it out-
performs both ITD and AID on different settings where the
lower-level problem is non-convex.

All previously mentioned works except (Griewank &
Walther, 2008) consider bilevel problems of the form (2).
Another exception is (Liao et al., 2018), which proposes
two improvements to recurrent backpropagation, one based
on conjugate gradient on the normal equations, and another
based on Neumann series approximation of the inverse.

2. Theoretical Analysis

In this section we establish non-asymptotic bounds on the
hypergradient (i.e. V f(\)) approximation errors for both
ITD and AID schemes (proofs can be found in Appendix A).
In particular, in Section 2.1 we address the iteration com-
plexity of ITD, while in Section 2.2, after giving a general
bound for AID, we focus on two popular implementations
of the AID scheme: one based on the conjugate gradient
method and the other on the fixed-point method.

Notations. We denote by ||-|| applied to a vector (matrix)
the Euclidean (spectral) norm. For a differentiable function
f: R™ — R™ we denote by f'(z) € R™*™ the derivative
of f at z. When m = 1, we denote by V f: R" — R" the
gradient of f. For a real-valued function g: R™ x R™ — R
we denote by Vig(z,y) € R™ and Vag(z,y) € R™ the
partial derivatives w.r.t. the first and second variable re-
spectively. We also denote by VZg(z,y) € R™ ™ and
V2,9(x,y) € R™ ™ the second derivative of g w.r.t. the
first variable and the mixed second derivative of g w.r.t. the
first and second variable. For a vector-valued function

h: R® x R™ — R* we denote, by d1h(z,y) € RF*"
and O2h(,y) € RF*™ the partial Jacobians w.r.t. the first
and second variable respectively at (x,y) € R™ x R™.

In the rest of the section, referring to problem (1), we will
group the assumptions as follows. Assumption A is general
while Assumption B and C are specific enrichments for ITD
and AID respectively.

Assumption A. Forevery A € A,
(1) w(A) is the unique fixed point of ®(-, \).
(i) T — 01D(w(N), ) is invertible.
(iii) 01 (-, A) and 02D (-, \) are Lipschitz continuous with
constants V1 x and vy ) respectively.
(iv) V1E(-,A) and V2E(-,\) are Lipschitz continuous
with constants 11 x and 12, x respectively.

A direct consequence of Assumption A(i)-(ii) and of the
implicit function theorem is that w(-) and f(-) are differen-
tiable on A. Specifically, for every A € A, it holds that

w'(N) = (I =1 2(w(N), \)) "1 922(w(N), A) “4)
V) = VoE(w\),\) +w' (AT ViE(w(\),\). (5)

See Theorem A.1 for details. In the special case of prob-
lem (2), equation (4) reduces (see Corollary A.1) to

W () = —V20(w(\), \)"IV2 0(w(N), N).

Before starting with the study of the two methods ITD and
AID, we give a lemma which introduces three additional
constants that will occur in the complexity bounds.

Lemma 2.1. Let A\ € A and let Dy > 0 be such that
[lw(A)|| < Da. Then there exist Ly x, Lo x € Ry s.t.

sup |[V1iE(w,N)|| < Lg.a,
lwl|<2Dx

sup [[9;®(w, A)[| < La,
lwl|<2Da

The proof exploits the fact that the image of a continuous
function applied to a compact set remains compact.

2.1. Iterative Differentiation

In this section we replace w(A) in (1) by the ¢-th iterate of
®(-, \), for which we additionally require the following.

Assumption B. For every A € A, ®(-, \) is a contraction
with constant gy € (0,1).

The approximation of the hypergradient V f(\) is then ob-
tained as in Algorithm 1. Assumption B looks quite re-
strictive, however it is satisfied in a number of interesting
cases:

(a) In the setting of the bilevel optimization problem (2),
suppose that for every A € A, £(-, \) is po(X)-strongly
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Algorithm 1 Iterative Differentiation (ITD)

1. Lett € N, set wo(A\) = 0, and compute,

fori=1,2,...t

2. Set fi(\) = E(wi(N), \).

3. Compute V f; () using automatic differentiation.

convex and L;(\)-Lipschitz smooth for some contin-
uously differentiable functions py: A — Ry, and
Lo: A =Ry, Set k(N) = Le(N)/pe(N),

2 k(A -1
7O M =P VES ¥

Then, ®(w, A) = w — a(A)V14(w, A) is a contraction
w.r.t. w with constant g (see Appendix B).

a(N) = (6)

(b) For strongly convex quadratic functions, accelerated
methods like Nesterov’s (Nesterov, 1983) or heavy-
ball (Polyak, 1987) can be formulated as fixed-point
iterations of a contraction in the norm defined by a
suitable positive definite matrix.

(c) In certain graph and recurrent neural networks of the
form (3), where the transition function is assumed to
be a contraction (Scarselli et al., 2008; Almeida, 1987;
Pineda, 1987).

The following lemma is a simple consequence of the theory
on Neumann series and shows that Assumption B is stronger
than Assumption A(i)-(ii). For reader’s convenience the
proof is given in Appendix A.

Lemma 2.2. Let Assumption B be satisfied. Then, for every
A € A ®(-,\) has a unique fixed point and, for every
w € RY, T —0,®(w, \) is invertible and

1
L—qxn

(T = 01®(w, N) || <

In particular, (i) and (i) in Assumption A hold.

With Assumption B in force and if w;(\) is defined as at
point 1 in Algorithm 1, we have the following proposition
that is essential for the final bound.

Proposition 2.1. Suppose that Assumptions A(iii) and B
hold and let t € N, with t > 1. Moreover, for every A € A,
let wi () be computed by Algorithm I and let Dy and Lg
be as in Lemma 2.1. Then, w(+) is differentiable and, for
every A € A,

[w;(A) —w' (V]

La
< (Vz,,\ + v

L
: )Dqugl + 2@
I —an -

Leveraging Proposition 2.1, we give the main result of this
section.

Theorem 2.1. (ITD bound) Suppose that Assumptions
A(iii)-(iv) and B hold and let t € N with t > 1. Moreover,
forevery A € A, let wi(\) and f; be defined according to
Algorithm I and let Dy, Lg , and Lo » be as in Lemma 2.1.
Then, f; is differentiable and, for every A € A,

IVAQ) = VIO < (e 0+eal) = +a)) .
®)

where

L L
c3(N) = 7?1 q‘j’)‘.

In this generality this is a new result that provides a non-
asymptotic linear rate of convergence for the gradient of f;
towards that of f.

2.2. Approximate Implicit Differentiation

In this section we study another approach to approximate
the gradient of f. We derive from (4) and (5) that

V) = V2B(w(N),A) + 0:2(w(X), 2) v () (9)
where v(\) is the solution of the linear system

(I — 01®(w(N\), ) v = Vi E(w(\), \). (10)

However, in the above formulas w(A) is usually not known
explicitly or is expensive to compute exactly. To solve this
issue V f(A) is estimated as in Algorithm 2. Note that, un-
like ITD, this procedure is agnostic about the algorithms
used to compute the sequences w(A) and vy (). Interest-
ingly, in the context of problem (2), choosing ®(w, ) =
w — V1£(w, \) in Algorithm 2 yields the same procedure
studied by Pedregosa (2016).

The number of iterations ¢ and k in Algorithm 2 give a direct
way of trading off accuracy and speed. To quantify this trade
off we consider the following assumptions.

Assumption C. Forevery A € A,

() Vw € RY, I — 9,®(w, \) is invertible.
(i) flwe(A) —wMI < pa@®llwNl, pa(t) < 1, and
pr(t) = 0ast — 4o0.
(i) [Jvek(X) — vV < ox(k)||ve(N)|| and ox(k) — 0
as k — +oo.
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Algorithm 2 Approximate Implicit Differentiation (AID)

1. Let ¢t € N and compute w;(\) by ¢ steps of an algo-
rithm converging to w(\), starting from wq(A) = 0.

2. Compute vy () after k steps of a solver for the system

(I —01®(we(N),\) o =ViE(w(\),\). (11)

3. Compute the approximate gradient as

V) :=VaE(w(A), ) 4+ 82®(w(N), A) o 1 (N).

If Assumption C(i) holds, then, for every A € A, since the
map w — ||(I — 01 ®(w, \))~!|| is continuous, we have

sup |[(T = 01®(w, A))

1
_1|| < — < oo, (12)
|lw||<2Dx KX

for some w1y > 0. We note that, in view of Lemma 2.2, As-
sumption B implies Assumption C(i) (which in turn implies
Assumption A(ii)) and in (12) one can take py = 1 — gj.
We stress that, Assumption C(ii)-(iii) are general and do
not specify the type of algorithms solving the fixed-point
equation w = ®(w, A) and the liner system (11). It is only
required that such algorithms have explicit rates of con-
vergence p)(t) and o) (k) respectively. Finally, we note
that Assumption C(ii) is less restrictive than Assumption B
and encompasses the procedure at point 1 in Algorithm 1:
indeed in such case C(ii) holds with p(t) = ¢}.

It is also worth noting that the AID procedure requires
only to store the last lower-level iterate, i.e. w;(\). This
is a considerable advantage over ITD, which instead re-
quires to store the entire lower-level optimization trajectory
(wi(N))o<i<t, if implemented using RMAD.

The iteration complexity bound for AID is given below.
This is a general bound which depends on the rate of con-
vergence p) (t) of the sequence (w;(\)):en and the rate of
convergence o (k) of the sequence (v, (A))ken.
Theorem 2.2. (AID bound) Suppose that Assump-
tions A(1)(ii1)(iv) and C(1)—(iii) hold. Let A € A, t € N,
k € N. Let Dy, Lg. ), and Lg x be as in Lemma 2.1 and let
uy be defined according to (12). Let @f()\) be defined as
in Algorithm 2 and let A = ||V f(\) — V f(\)||. Then,

vo L viaLe aL
i 2 ALE A n 1\ c1>,2,\ E,A)
2D 23

Lo 2L
x Dapa(t) + “222E2 6 (k). (13)

MmaLae,

A< <772,>\ +

Furthermore, if Assumption B holds, then ) = 1 — q) and
" co(A
A< (a+ 2000+ aWm). a4
—4x

where c1 (), ca(N\) and c3(X\) are defined in Theorem 2.1.

Theorem 2.2 provides a non-asymptotic rate of convergence
for V f which contrasts with the asymptotic result given in
Pedregosa (2016). In this respect, making Assumption C(i)
instead of the weaker Assumption A(ii) is critical.

Depending on the choice of the solver for the linear system
(11) different AID methods are obtained. In the following
we consider two cases.

AID with the Conjugate Gradient Method (AID-CG).
For the sake of brevity we set Ay ; = I — 01 ®(w;(\),\) T
and by ; = V1 E(wy(A), A). Then, the linear system (11) is
equivalent to the following minimization problem

1
in =||Ax v — byt 15
mg}l 2” AtV A,t” ) (15)

ve

which, if 91 ®(w;(A), A) is symmetric (so that A ; is also
symmetric) is in turn equivalent to

1
min —v A)\tva bt (16)
veRd 2

Several first order methods solving problems (15) or (16)
satisfy assumption C(iii) with linear rates and require only
Jacobian-vector products. In particular, for the symmet-
ric case (16), the conjugate gradient method features the
following linear rate

o) = (Y]
R(Axt)
< 2R (Y a0l (17

where k(Ay,) is the condition number of Ay,;. In
the setting of case (a) outlined in Section 2.1, Ay; =
a(N)V2(wi (M), \) and

eI < 20wy (3), ) < LoV

Therefore the condition number of A ; satisfies x(Ay ;) <

Lo(N)/pe(X) = k(\) and hence
VK (A)\t)—l li(/\)—1<li(>\)—1:q (18)
VAl 1 VR 41 S AL

AID with the Fixed-Point Method (AID-FP). In this
paragraph we make a specific choice for the sequence
(vt (N))ken in Assumption C(iii). We let Assumption B be
satisfied and consider the following algorithm. For every
A € Aand t € N, we choose v, o(A) = 0 € R? and,
fork=1,2,...
{ vk (A) = 1 (w(N), A) o e—1(V) (19)

+V1E(wi(N), N).
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In such case the rate of convergence o (k) is linear. More
precisely, since |01 ®(w:(A), A)|| < ga < 1 (from Assump-
tion B), then the mapping

T: v s 10w (M), N + Vi E(wy(\), \)

is a contraction with constant g,. Moreover, the fixed-point
of T'is the solution of (11). Therefore, ||vs 1 (A) — v (A)]| <
@5 |lve.0(X) — ve(A)]|. In the end the following result holds.

Theorem 2.3. If Assumption B holds and (vy (X)) ken is
defined according to (19), then Assumption C(iii) is satisfied
with oy (k) = ¢5.

Now, plugging the rate oy (k) = ¢5 into the general bound
(14) yields

c2(N)
1—aqx

A< (cl()\) n )p,\(t) TNk 0

However, an analysis similar to the one in Section 2.1 shows
that the above result can be slightly improved as follows.

Theorem 2.4. (AID-FP bound) Suppose that Assump-
tions A(1)(iii)(iv) and Assumption B hold. Suppose also that
(19) holds. Let V f(\) be defined according to Algorithm 2
and A = ||V f(A) = Vf(\)|. Then, for every t, k € N,

_ .k

A< (@M +eti=o)nd +eaRd e

where c1(\), ca(\) and c3(\) are given in Theorem 2.1.

We end this section with a discussion about the conse-
quences of the presented results.

2.3. Discussion

Theorem 2.2 shows that Algorithm 2 computes an approxi-
mate gradient of f with a linear convergence rate (in ¢ and
k), provided that the solvers for the lower-level problem
and the linear system converge linearly. Furthermore, un-
der Assumption B, both AID-FP and ITD converge linearly.
However, if in Algorithm 2 we define w;(\) as at point 1 in
Algorithm 1 (so that py (t) = qf\), and take k = t, then the
bound for AID-FP (21) is lower than that of ITD (8), since
(1 —¢4)/(1 —qn) =X\, ¢4 < tforeveryt > 1. This
analysis suggests that AID-FP converge faster than ITD.

We now discuss the choice of the algorithm to solve the
linear system (11) in Algorithm 2. Theorem 2.4 provides a
bound for AID-FP, which considers procedure (19). How-
ever, we see from (14) in Theorem 2.2 that a solver for the
linear system with rate of convergence o (k) faster than g5
may give a better bound. The above discussion, together
with (17) and (18), proves that AID-CG has a better asymp-
totic rate than AID-FP for instances of problem (2) where

the lower-level objective ¢(-,\) is Lipschitz smooth and
strongly convex (case (a) outlined in Section 2.1).

Finally, we note that both ITD and AID consider the initial-
ization wo(A\) = 0. However, in a gradient-based bilevel
optimization algorithm, it might be more convenient to use
a warm start strategy where wy () is set based on previous
upper-level iterations. Our analysis can be applied also in
this case, but the related upper bounds will depend on the
upper-level dynamics. This aspect makes it difficult to theo-
retically analyse the benefit of a warm start strategy, which
remains an open question.

3. Experiments

In the first part of this section we focus on the hypergradient
approximation error and show that the upper bounds pre-
sented in the previous section give a good estimate of the
actual convergence behaviour of ITD and AID strategies
on a variety of settings. In the second part we present a
series of experiments pertaining optimization on both the
settings of hyperparameter optimization, as in problem (2),
and learning equilibrium models, as in problem (3). The al-
gorithms have been implemented? in PyTorch (Paszke et al.,
2019). In the following, we shorthand AID-FP and AID-CG
with FP and CG, respectively.

3.1. Hypergradient Approximation

In this section, we consider several problems of type (2) with
synthetic generated data (see Appendix C.1 for more details)
where D = (X,y) and D’ = (X', y’) are the training
and validation sets respectively, with X € R"*P X' ¢
R™e %P, being n.,n. the number of examples in each set
and p the number of features. Specifically we consider the
following settings, which are representative instances of
relevant bilevel problems in machine learning.

Logistic Regression with /> Regularization (LR). This
setting is similar to the one in Pedregosa (2016), but we
introduce multiple regularization parameters:

FN =Y dyelw),
(ze,ye)ED’
1
w(\) = argmin Z Y(yer, w) + indiag()\)w,
weERP
(ze,ye)ED

where A € R, ¢)(x) = log(1 + e~*) and diag(\) is the
diagonal matrix formed by the elements of \.

Kernel Ridge Regression (KRR). We extend the setting
presented by Pedregosa (2016) considering a p-dimensional
Gaussian kernel parameter -y in place of the usual one:

3The code is freely available at the following link.
https://github.com/prolearner/hypertorch
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Figure 1. Convergence of different hypergradient approximations, where g(\) is equal to V f;(\) for ITD and to V f () for CG and FP.

Mean and standard deviation (shaded areas) are computed over 20 values of A sampled uniformly from [Amin, Amax]"”-

1
F(8,7) = 3y = K (7)w(B I,
(22)
w(5,7) = argmin 2w (K(2) + 81w =Ty,
wER™e

where § € (0,00), v € RY | and K'(v), K() are re-
spectively the validation and training kernel matrices (see
Appendix C.1).

Biased Regularization (BR). Inspired by Denevi et al.
(2019); Rajeswaran et al. (2019), we consider the following.

1
f) = §||X/w(/\) —-'%
_ 1 2 B 2
w(A) = argmin - || Xw — y||* + =|Jw = A||%,
wERP 2 2

where § € Ry and A € RP.

Hyper-representation (HR). The last setting, reminiscent
of (Franceschi et al., 2018; Bertinetto et al., 2019), concerns
learning a (common) linear transformation of the data and
is formulated as

FH) = SIX Huo(H) — o

1
w(H) = argmin 2| X Hw — |2 + 2 [lw]?
wERE 2 2

where H € RP*?and B € R ;.

LR and KRR are high dimensional extensions of classical
hyperperparameter optimization problems, while BR and
HR, are typically encountered in multi-task/meta-learning as
single task objectives*. Note that Assumption B (i.e. ®(-, \)
is a contraction) can be satisfied for each of the aforesaid
scenarios, since they all belong to case (a) of Section 2.1
(KRR, BR and HR also to case (b)).

We solve the lower-level problem in the same way for both
ITD and AID methods. In particular, in LR we use the

“In multi-task/meta-learning the upper-level objectives are av-
eraged over multiple tasks and the hypergradient is simply the
average of the single task one.

n

gradient descent method with optimal step size as in case (a)
of Section 2.1, while for the other cases we use the heavy-
ball method with optimal step size and momentum constants.
Note that this last method is not a contraction in the original
norm, but only in a suitable norm depending on the lower-
level problem itself. To compute the exact hypergradient, we
differentiate f(\) directly using RMAD for KRR, BR and
HR, where the closed form expression for w(\) is available,
while for LR we use CG with t = k& = 2000 in place of the
(unavailable) analytic gradient.

Figure 1 shows how the approximation error is affected by
the number of lower-level iterations ¢t. As suggested by the
iteration complexity bounds in Section 2, all the approxima-
tions, after a certain number of iterations, converge linearly
to the true hypergradient®. Furthermore, in line with our
analysis (see Section 2.3), CG gives the best gradient es-
timate (on average), followed by FP, while ITD performs
the worst. For HR, the error of all the methods increases
significantly at the beginning, which can be explained by
the fact that the heavy ball method is not a contraction in
the original norm and may diverge at first. CG k£ = 10 out-
performs FP k£ = 10 on 3 out of 4 settings but both remain
far from convergence.

3.2. Bilevel Optimization

In this section, we aim to solve instances of the bilevel
problem (1) in which X has a high dimensionality.

Kernel Ridge Regression on Parkinson. We take f(3, )
as defined in problem (22) where the data is taken from the
UCI Parkinson dataset (Little et al., 2008), containing 195
biomedical voice measurements (22 features) from people
with Parkinson’s disease. To avoid projections, we replace
[ and - respectively with exp (/) and exp(~y) in the RHS of
the two equations in (22). We split the data randomly into
three equal parts to make the train, validation and test sets.

>The asymptotic error can be quite large probably due to nu-
merical errors (more details in Appendix C).
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Table 1. Objective (test accuracy) values after s gradient descent steps where s is 1000, 500 and 4000 for Parkinson, 20 newsgroup and
Fashion MNIST respectively. Test accuracy values are in %. k, = 10 for Parkinson and 20 newsgroup while for Fashion MNIST k, = 5.

Parkinson 20 newsgroup Fashion MNIST
t =100 t =150 t=10 t =25 t =50 t=>5 t=10
ITD 2.39(75.8) 2.11(69.7) 1.08 (61.3) 0.97 (62.8) 0.89 (64.2) 0.41(84.1) 0.43(83.8)
FPk =1 237 (81.8) 2.20(77.3) 1.03 (62.1) 1.02(62.3) 0.84 (64.4) 0.41(84.1) 0.43(83.8)
CGk=t 2.37(78.8) 2.20(77.3) 0.93(63.7) 0.78(63.3) 0.64 (63.1) 0.42(83.9) 0.42(84.0)
FPk=Fk. 2.71(80.3) 2.60(78.8) - 0.94 (63.6) 0.97 (63.0) - 0.42 (83.9)
CGk=k- 233(77.3) 2.02(77.3) — 0.82(64.3) 0.75(64.2) — 0.42 (84.0)

Logistic Regression on 20 Newsgroup®. This dataset con-
tains 18000 news divided in 20 topics and the features con-
sist in 101631 tf-idf sparse vectors. We split the data ran-
domly into three equal parts for training, validation and
testing. We aim to solve the bilevel problem

. / /
min CE(X"w(A),y')

C b

. 1 2
w(A) = argmin CE(Xw, y) + 3 Z Z exp(Aj)w;;

weRP< i=1 j=1
where CE is the average cross-entropy loss, ¢ = 20 and p =
101631. To improve the performance, we use warm-starts
on the lower-level problem, i.e. we take wg(\;) = wy(Ai—1)
for all methods, where ();)7_; are the upper-level iterates.

Training Data Optimization on Fashion MNIST. Simi-
larly to (Maclaurin et al., 2015), we optimize the features of
a set of 10 training points, each with a different class label
on the Fashion MNIST dataset (Xiao et al., 2017). More
specifically we define the bilevel problem as

min CE(X'w(X),y)

X €Rexp 5
X) = in CE(X —jw|?
w(X) =arg min CE(Xw,y) + 2Cpllwll
where 3 = 1,¢c = 10,p = 784,y = (0,...,¢)" and

(X', y’) contains the usual training set.

We solve each problem using (hyper)gradient descent with
fixed step size selected via grid search (additional details
are provided in Appendix C.2). The results in Table 1 show
the upper-level objective and test accuracy both computed
on the approximate lower-level solution w;(\) after bilevel
optimization’. For Parkinson and Fashion MNIST, there is
little difference among the methods for a fixed ¢. For 20
newsgroup, CG k = t reaches the lowest objective value,
followed by CG k£ = 10. We recall that for ITD we have
cost in memory which is linear in ¢ and that, in the case
of 20 newsgroup for some ¢ between 50 and 100, this cost

Shttp://qwone.com/ jason/20Newsgroups/

"For completeness, we also report in the Appendix (Table 2)
the upper-level objective and test accuracy both computed on the
exact lower-level solution w(\).

exceeded the 11GB on the GPU. AID methods instead,
require little memory and, by setting k£ < ¢, yield similar
or even better performance at a lower computation time.
Finally, we stress that since the upper-level objective is
nonconvex, possibly with several minima, gradient descent
with a more precise estimate of the hypergradient may get
more easily trapped in a bad local minima.

Equilibrium Models. Our last set of experiments inves-
tigates the behaviour of the hypergradient approximation
methods on a simple instance of EQM (see problem (3)) on
non-structured data. EQM are an attractive class of models
due to their mathematical simplicity, enhanced interpretabil-
ity and memory efficiency. A number of works (Miller
& Hardt, 2019; Bai et al., 2019) have recently shown that
EQMs can perform on par with standard deep nets on a
variety of complex tasks, renewing the interest in these kind
of models.

We use a subset of n, = 5000 instances randomly sampled
from the MNIST dataset as training data and employ a multi-
class logistic classifier paired with a cross-entropy loss. We
picked a small training set and purposefully avoided stochas-
tic optimization methods to better focus on issues related to
the computation of the hypergradients itself, avoiding the
introduction of other sources of noise. We parametrize ¢; as
oi(w;,v) = tanh(Aw; + Bx;+c¢) forl <i<ne (23)
where z; € RP is the i-th example, w; € R" and v =
(A,B,C) € R x R"™™P x R". Such a model may be
viewed as a (infinite layers) feed-forward neural network
with tied weights or as a recurrent neural network with static
inputs. Additional experiments with convolutional equilib-
rium models may be found in Appendix C.3. Imposing
||A]l < 1 ensures that the transition functions (23), and
hence @, are contractions. This can be achieved during op-
timization by projecting the singular values of A onto the
interval [0, 1 — €] for e > 0. We note that regularizing the
norm of 0y ¢; or adding L or L., penalty terms on A may
encourage, but does not strictly enforce, ||A|| < 1.

We conducted a series of experiments to ascertain the im-
portance of the contractiveness of the map ®, as well as
to understand which of the analysed methods is to be pre-
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Objective Test accuracy

Hypergradient norm ||g(A)|| Test accuracy vs learning rate
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Figure 2. Experiments on EQM problems. Mean (solid or dashed lines) and point-wise minimum-maximum range (shaded regions) across
5 random seeds that only control the initialization of A. The estimated hypergradient g()) is equal to V f;()) for ITD and V f()) for
AID. We used ¢t = k& = 20 for all methods and Nesterov momentum for optimizing A, applying a projection operator at each iteration
except for the methods marked with . When performing projection, the curves produced by the three approximation schemes mostly
overlap, indicating essentially the same performance (although at a different computational cost).

ferred in this setting. Since here 0; @ is not symmetric, the
conjugate gradient method must be applied on the normal
equations of problem (15). We set h = 200 and use ¢ = 20
fixed-point iterations to solve the lower-level problem in
all the experiments. The first three plots of Figure 2 report
training objectives, test accuracies and norms of the esti-
mated hypergradient for each of the three methods, either
applying or not the constraint on A, while the last explores
the sensitivity of the methods to the choice of the learning
rate. Unconstrained runs are marked with {. Referring to
the rightmost plot, it is clear (large shaded regions) that not
constraining the spectral norm results in unstable behaviour
of the “memory-less” AID methods (green and blue lines)
for all but a few learning rates, while ITD (violet), as ex-
pected, suffers comparatively less. On the contrary, when
||A]| < 1 is enforced, all the approximation methods are
successful and stable, with FP to be preferred being faster
then CG on the normal equations and requiring substantially
less memory than ITD. As a side note, referring to Figure
2 left and center-left, we observe that projecting onto the
spectral ball acts as powerful regularizer, in line with the
findings of Sedghi et al. (2019).

4. Conclusions

We studied a general class of bilevel problems where at
the lower-level we seek for a solution to a parametric fixed
point equation. This formulation encompasses several learn-
ing algorithms recently considered in the literature. We
established results on the iteration complexity of two strate-
gies to compute the hypergradient (ITD and AID) under
the assumption that the fixed point equation is defined by a
contraction mapping. Our practical experience with these
methods on a number of bilevel problems indicates that
there is a trade-off between the methods, with AID based
on the conjugate gradient method being preferable due to a
potentiality better approximation of the hypergradient and
lower space complexity. When the contraction assumption

is not satisfied, however, our experiments on equilibrium
models suggest that ITD is more reliable than AID meth-
ods. In the future, it would be valuable to extend the ideas
presented here to other challenging machine learning scenar-
ios not covered by our theoretical analysis. These include
bilevel problems in which the lower-level is only locally
contactive, nonsmooth, possibly nonexpansive or can only
be solved via a stochastic procedure. At the same time, there
is a need to clarify the tightness of the iteration complexity
bounds presented here.
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Appendix

The Appendix is organized as follows.

e Appendix A presents the proofs of the results stated in
Section 2.

e Appendix B specializes the bounds in Section 2 in the
case where the lower-level solution can be written as
the fixed point of a one step gradient descent map.

e Appendix C presents the details of the experiments in
Section 3 and additional results.

A. Proofs of the Results in Section 2

In this section we provide complete proofs of the results
presented in the main body, which are restated here for the
convenience of the reader. We also report few necessary
additional results.

Theorem A.l. (Differentiability of f). Consider problem
(1) and suppose that Assumption A(i)-(ii) holds. Then w(-)
and f(-) are differentiable on A and, for every A € A

(I =01 @(w(A), )1 @(w(N),\)  (24)
= Vo E(w(A\),\) +w' (\) T ViE(w(N),\). (25)

w'(N\) =
Vi)

Proof. The function G(w, \) := w — ®(w, ) is continu-
ously differentiable on R? x A. Then, we have

G (w(N), ) = I - 018 (w(N), N),

which is invertible due to Assumption A(ii). Thus, since
G(w(A), A) = 0, the implicit function theorem yields that
w(A) is continuously differentiable with derivative

w'(A) = 0G(w(N),\) "G (w(N), \)
= (I = 01®(w(N), 1)) 0 (w(N), A).

Finally, (25) follows from the chain rule for differentiation.
O

Corollary A.1. Suppose that in problem (2), the function
0: RY x A — R is twice continuously differentiable and
strongly convex w.r.t. the first variable. Let oc: A — Ry |
be a differentiable function. Then the conclusions of Theo-
rem A.1 hold and
(VAEA) w(N) =—Vil(w,\)"'V3Lw(N),N).

Proof. Define ®(w, \) = w — a(A\)V1£(w, A). Then, Fer-
mat’s rule for the lower-problem in (2) yields that w(\) is a
fixed point for ®(-, A), while I — 0 ®(w(A), A) is invertible
since

I —01®(w(N\), \) = a(M\)Vil(w, \)

and a(\) # 0. Therefore, Theorem A.1 applies and,
since 2@ (w(A),\) = —a(A)V34(w(N), ), (24) yields
w'(A) = = 253V (w, )1V L(w(N), A). O

Lemma 2.2. Let Assumption B be satisfied. Then, for every

A € A ®(-,A) has a unique fixed point and, for every
w € RY T — 0,®(w, \) is invertible and
I = 21w, 1) <
1—q\

In particular, (i) and (i) in Assumption A hold.

Proof. Let A € A and w € R?. Since ®(-, \) is Lipschitz
continuous with constant g, it follows that

181 (w, \)|| < gx < 1. (26)
Therefore,
o0
01D (w, \) k<
Zn LIRSS vy

Thus, I — 01 ®(w
(I — 61<I>(w

) is invertible and Y72 ) 01 @(w, \)F =
A))~! and the bound follows.

O

In the following technical lemma we give two results which
are fundamental for the proofs of the ITD bound (Theo-
rem 2.1) and the AID-FP bound (Theorem 2.4). The first re-
sult is standard (see (Polyak, 1987), Lemma 1, Section 2.2).

Lemma A.1. Let (ug)gen and (7x)ken be two sequences
of real non-negative numbers and let q € [0, 00). Suppose
that, for every k € N, with k > 1,

U < qUE—1 + Th—1- 27

Then, the following hold.

(i) If (Ti)ren = 7, then uy, < qFug +7(1—¢%) /(1 — q).

(ii) If, for every integer k > 1, 7, < qTr_1, then up <

¢ uo + kg 1.

Proof. Letk € N, with k > 1. Then, we have
uk < qUg—1 + Tk—1

< q(qui—2 + Tr—2) + Th—1
= q2uk_2 + (Th—1 + qTr—2)

k—1

<quo+ Y g1 (28)
=0

(i): Suppose that (7 )reny = 7. Then it follows from (28)
that u < gFuo +7 30— ¢' = ¢"uo + (1 — ¢*) /(1 — q).
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(ii): Suppose that, for every integer k > 1, 7, < q7i—1.
Then, for every integers k,i with ¢ < k — 1, we have
Th—1-i < ¢" 177, which substituted into (28) yields

k-1
ur < q UoJrz:q2 A
=0
and (ii) follows. O]

Proposition 2.1. Suppose that Assumptions A(iii) and B
hold and let t € N, with t > 1. Moreover, for every A € A,
let w¢ () be computed by Algorithm 1 and let Dy and Lg
be as in Lemma 2.1. Then, w(-) is differentiable and, for
every A € A,

lwt(A)

La
< (Vz,,\ + V1A I 7’%

—w' (V|

. Lo x
) Datg™ + 7 -da (D)

Proof. We assume that (w¢(\)):en is defined through the
iteration
wi(A) = @(wr—1(A), N) (29)

starting from wo(A) = 0 € R%. Lett € N with t > 1.
Then, the mapping A — w; () is differentiable since, in
view of (1), it is a composition of differentiable functions,
whereas w’(\) exists due to Theorem A.1. Differentiating
the lower-level equation in (1) and the recursive equation in
(29), we get

wi(A) = 01 (wi—1(N), Nwy_1(N) + D2 ®(wi—1(N), \)
W () = 91w, V' (V) + Bdw(A), A).  (30)

Therefore, we get

[w;(A) —w' (V)]
< 012 (wi—1(A), A) = 912w (), A[[[w' (V]|
+ 012 (w1 (N), )Illlwt 1(A) —w' (V|

+ 102®@(wi—1(A), A) =

and hence, we derive from Assumption A(iii), Assump-
tion B, equation (4) and Lemmas 2.1 and 2.2, that

Jwi(A) = w' (V]|
< (vax +v1aLox/(1—ax)|lwim1(N)
+axllwi_1 (A) = w' (M)

Then, setting p = vax + Vi La/(1 — qn), Ay =
[we(A) —w(A)]| and Af := [[wi(A) — w' (N[, we get

At S (J)\At,1 and AQ S Q)\A;71 +pAt,1.

02 @(w(X), M|

—wA)

Therefore, it follows from Lemma A.1(ii) (with u; = A}
and 7y = pA\;) that

A} < ¢l A "‘tfb\ 'pAg <

Ly _
- gh + pDatgy ",
—gx

where in the last inequality we used the bounds (see (30)
and Lemmas 2.1 and 2.2)

Ao = [lw(A) = woM)| = [w(A)] < D

/ / / / L 5
A = ' (V) = wpWl| = ' V] < 72 G
ax

Recalling the definitions of p and A}, (7) follows. O

Theorem 2.1. (ITD bound) Suppose that Assumptions
A(iii)-(iv) and B hold and let t € N with t > 1. Moreover,
Jor every A € A, let wi(\) and f; be defined according to
Algorithm I and let Dy, Lg », and L be as in Lemma 2.1.
Then, f; is differentiable and, for every A € A,

IVAQ) =TI < () a0+ (3 )i,
®)

where

L
()= (772 A+ M) Dy,
1T—aqn

v 2L
c2(N) = (Vz,,\ + 711 ;/\’/\> Lg Dy,
L L
o = LB2 L0
— gx

Proof. 1t follows from the definitions of f; and f in Algo-
rithm 1 and (1) respectively and the chain rule for differenti-
ation that
Vfi(A) = VaE(wi(N), A) + w,(A) T V1E(we(\), A)
V) = VaE(w(\),\) +w' (\) T ViE(w(\), ).

Therefore,
[V f(A) = VA
< [V2E(wi(A),A) = VaE(w(A), A
+ [l M IVLE(we(X), A) = ViE(w(X), V|

+ [[w;(A) = w N IVLE(we(A), M-

Now, we note that [|wi(A)]] < JJwe(A) —wN)| +
lwN)] < (¢4 + 1)[Jw(N)|| < 2Dy. Therefore, it follows
from Assumption A(iv) and Lemmas 2.1 and 2.2 that

IV fe(A) = V) < (m2x +maLan/(1—aqx)) ¢xDa

+ Lo alw'(A) —wi(V]l;

where we used ||w;(A) — w(\)|| < ¢ lwo(A) —w(N)|| =
¢4 Jlw(N)|| < ¢4 Dx. Then, (8) follows from Proposition 2.1.
O

Now we address the proofs related to the AID method de-
scribed in Section 2.2.
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Theorem 2.2. (AID bound) Suppose that Assump-
tions A(1)(ii1)(iv) and C(1)—(iii) hold. Let A € A, t € N,
k € N. Let Dy, Lg. ), and Lg » be as in Lemma 2.1 and let
1 be defined according to (12). Let V f(\) be defined as
in Algorithm 2 and let A = ||V f(\) — Vf(\)|. Then,

~ L vo L viaLe AL
A< <n27)\+771,>\ <1>,,\Jr 2 ALE X n 1,2 <1>,2>\ E,A)
20 2D X
Lo 2L
x Dapa(t) + “222E2 6 (k). (13)
Hx
Furthermore, if Assumption B holds, then uy = 1 — gy and
. ca( A
A< <01(>\) + %)m(t) +es(Noa(k).  (14)

where c1(\), ca(\) and c3(\) are defined in Theorem 2.1.

Proof. For the sake of brevity we set

Axe =1 —10(w,(N\),\)] Ay =T—0:®(w(\),\) !
Zxi = 02@(wi(N), N), Zy = 02®(w(N), N),

bat = ViE(wi(X), N), by = ViE(w(A), A),
C)\’t = VQE(wt()\)7 )\), C) = VgE(U)()\), )\)
It follows form Assumption C(ii) that ||w:(A\) — w(N)|| <
pA@)[wN)] < pa(t)Dx < Dy and hence [lw;(A)| <
[lwe(A) = w(N)]| + [|lw(N)]] < 2Dy. Then the following
upper bounds related to the above quantities follow from
Assumptions A(iii)-(iv), equation (12) and Lemma 2.1.
[Axe=Ax S viapa(t) D, 12— 2ZAll < v2xpa(t)Da,
65,6 = ball < mapa(t) Dy, llear — exll < m2apa(t) Dy,

_ _ 1
TAGL AR < —, [1224]
X

Now, setting v (A) = A;éb;wt andv(\) = A} 'by, V()3
and (9) can be written as
VI = eae + Z0 k(M) V) =cex + Z1v(N).
Then, we have
V) = VI
= llexs + 23 s0e(A) — ex = Z{ vV
< leas — eall
123 061(N) = Z3 0(N) + Z3 o (N) = Z o (V)|
<leae — el
+ [1Zxtllllvek(A) = o) [ + 1250 = Zall[lo(A)]]
<lleas — eall

H1Zxelllvee ) = v+ 125, = ZallI AR 0l

vo L
< <712,>\ 4 2AZEA E’)\)
Hx

8see point 3 in Algorithm 2.

< Lo x, [|bacll; oall < Le -

PA(#)Dx + Lo x|lve,x(A) — v(N)][-

Moreover, it follows from C(iii) that

ok (3) = o) < ors() — vl + e (A) — o)
< oa(B) 222 1 0, (0) — w(V).
2O

Finally, we have

[v:(A) = v(N)]

< ||A;éb>\,t - A;éb)\ + A;éb)\ ATy
1A lbae — ball + [loall1ARE — AR
mAPA() Dy

X
mapa(t)D
A

IN

+ LAy — ALY

IN

A — _
+ Ll AL Ax = A llIAS ]

N1,aPA () D n Lg aviapa(t)Da
[ 13

IN

Combining all together we get (13). As regards the second
part of the statement, if Assumption B is satisfied, then, in
view of Lemma 2.2, we can take uy = 1 — ¢, in (12) and
obtain (14). ]

The following two propositions allow us to derive the refined
iteration complexity bound for AID-FP.

Proposition A.1. Suppose that (19) holds. Let A € At €
N. Let ugo(\) = 0 € R¥™ and for every integer k > 1,

up (A) = AP (wr(N), Nug g—1(A) + 2P (wi(N), N).
Then, for every k € N,

Uk (N) ViE(w(N), \) = 02®@(wi(N), A) Tog (V). (32)
Proof. We set Y = 01®(wi()\),\) € R¥*4 C =
Do ®(wi(N), ) € RX" and b = Vi E(wi(\),\) € RY.
Letk € N, &k > 1. Then,

up k(A) = Yugp—1(N) +C
=Y?u;p_o(\)+(1+Y)C

k—1
=Yhu o(N) + ) _YC
1=0
k—1 )
=Y vic.
=0

In the same way, it follows from (19) that v i (A) =
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Y v —1(N) +b= Zf:_ol (Y T)ib. Therefore, we have

and the statement follows. O

Using Proposition A.1, for AID-FP we can write
Vi) = A). (33)

Then a result similar to Proposition 2.1 can be derived.

VaE(wi(N), A) +up k(A) Vi E(wi(N),

Proposition A.2. Suppose that Assumption A(i)(iii) and
Assumption B hold. Let A € A and (uy (X)) ken be defined
as in Proposition A.1. Then, for every t,k € N, witht > 1,

[ue k(X)) = w' (V]
Lo >DA(1—q’;) Loy i
< [|vo+v : t : .
<2’A Mi-q)) 1-a () L™

Proof. Lett, k € N, with ¢, k > 1. Recalling that

ek (A) = 01B(we(N), Neo—1(\) + 92B(w(N), \)
W (N) = 8@ (w(N), Nw' (A) + Ba®(w(N), \)

we can bound the norm of the difference as follows

[[uek(A) = w' (M)
<[01@(wi(A), A) = 012 (w(A), )[[w' (N
+1101®@(we(A), M [[we k-1 (A) = w' V)
F 1022 (wi(A); A) — 922(w(A), )|

<2 +viaLe /(1= agx)llwi(A) —wN]|

+ o lluee—1(A) = w' V),
which gives a recursive inequality. Then, setting p := v ) +

iaLox/(1 —qn), Ay == [Jwe(X) —w(A)|| and A% =
llue i (N) — w'(N)]], we have

AZ < q)\A;f,—l + pA;.

Therefore, it follows from Lemma A.1(i) with 7 = pA,,
that

k
Al < g§A +pAt1
—gx
Ly 1—gk
< D A
ST qA+p AP)\()I ~

where in the last mequahty we used Assumption C(ii)
and (see (31)) Ay = [[ur,o(A) —w' N[ = [[w' (V)] <
Ly »/(1 — gy). The statement follows. O

Theorem 2.4. (AID-FP bound) Suppose that Assump-
tions A(1)(iii)(iv) and Assumption B hold. Suppose also that
(19) holds. Let V f ( ) be defined according to Algorithm 2

and A = [V f(A) = Vf(\)|. Then, for every t, k € N,
.« _ qk
A< () +aMi—2 ) +eald, @D
—ax

where ¢1 (), ca(N\) and c3(X\) are given in Theorem 2.1.

Proof. Lett € N with ¢t > 1 and let (u¢ (X)) ren be de-
fined as in Proposition A.1. Then, the difference between
exact and approximate gradients can be bound as follows

IV = VI
SIV2E(wi(A), A) = VaE(w(A), A
+ ' WIVLE(w: (), A) = ViE(w(A), Al
+ [w'(A) = u kM VLE (we(A), M-

Now note that [|w; (A)[| < [lwi(A) —w(N)| + w(M)] <
(pa(t) + D|lw(N)|| < 2Dy. Then it follows from the as-
sumptions and Lemmas 2.2 and 2.1 that

L
=IO < (e + 2502 0D,

k(X)) = w' (N,

and the last term can be bounded using Proposition A.2. [

IVFN)

B. Gradient Descent as a Contraction Map
Consider problem (2) and take

O(w, ) = w — a(\)V1l(w, \),
where £: R? x A — R is twice continuously differentiable

and, for every \ € A,

(1) £(-, A) is pe(N)-strongly convex and L;()-Lipschitz
smooth, with z1¢(A) > 0 and L,(\) > 0.
(i) a: A C R™ — R4 is differentiable.
Then, if a()\) € (0,2/L¢(N)), ®(-,A) is a contraction
with constant gy = max{1l — a(A)pe(N), a(X)Le(X) — 1}

The optimal choice of the step-size leads to set a(\) =
2/(Le(A) + pe(A)) giving

where x(\) = Lg(\)/pe(N) is the condition number of the
lower level problem in (2). Note that, for every ¢ € N and
AEA,

oW < V3(wi(N), A) < Le(\)T (34)
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hence the condition number of V#¢(w;(\), \) is smaller
than x(\).

‘We can write the derivatives of ® as:

Do®(w,\) = =V iL(w, )Va\) T — a(A\)V3,£(w, \)
(35)

01®(w, \) = I — a(\)Vi(w,\) (36)

Remark B.1. When evaluated in (w(\), \), one does not
need Vo) for (35), because the first term on the r.h.s of
eq. (35) is 0

Da®(w(N),\) = —a(N) Vi L(w(N), ).

From the remark it follows that |[O2®(w(\), ]|
a(N)[[V3,Lw(A), M|

Furthermore, if we assume V34(-,\) is  pia-
Lipschitz and V3,4(-,\) is p2-Lipschitz then,
calling A81¢> = ||81<I>(w1, )\) — 81<I>(w2, /\)” and
ANp,g = [|02®P (w1, \) — 02D (w2, A)|| we have:

Ap,o = [[a(A) (V3e(wr, A) = Vie(wa, N)) ||
< a(A)prallwr —wz.

and

Ap,a=|(V1l(wi, \) — V1l(wz, \)) Va(N) "
+ a()‘) (v%lg(wh /\) - V%lﬁ(wg, )‘)) H
S(LeN[VaA)] + a(X)p2)[wr — wa|.

Thus, Assumption A(iii) holds with 14y = «(A)p1,, and
vax = LiN)|[VaA)|| + a(N)p2,x. Moreover, if we
pick Ly such that [|[V3,£(w(X),\)|| < Lg,», then The-
orems 2.1,2.2 and 2.4 hold with

g = max{1l — a(AN)pe(N), a(N)Le(X) — 1}
c1(A) = (772,,\ + 771,>\10¢£/\3AL4,>\> D
c2(A) i= (Le(MN)[Va(N)[| + a(A)p2,5) Lex Dx
p1aa(N)2LeaLg x Dy

’ L—qx
« 2 w
es(n) o= ZE <A>(QV_2£<) RV}

Given Remark B.1 and to avoid additional complexity of
the algorithm, we can consider replacing 92 ®(w, A) with
Hy®(w, ) = —a(A)V2,£(w, \) in the expression for both
V f,(\) and V f()). We apply this change in all the experi-
ments of case (2).

C. Experiments
C.1. Hypergradient Approximation

In this section we provide details for the experiments in
Section 3.1.

We define the train and validation kernel matrices in (22) as
follows:

T ..
K'(3)i = exp | (X[ = X;) " diag(y) (X] - X;)]
T ..
K(3)iy = exp [~ (X; = X;)" diag(y) (X = X;)]
We generate synthetic data by sampling each element of X
and X' from a normal distribution. y (and in the same way

') is subsequently obtained in the following ways for the
different settings outlined in Section 3.1.

y = sign(Xw, + me) (LR)
y = Xw, + me (KRR)
y = X(wx + bs) +me (BR)
y=XH,w, +me (HR)

where sitgn is the elementwise sign function, each ele-
ment of €, w, and H, is sampled from a normal distri-
bution, b, = 1°, and m = 0.1. X,X’ have dimension
50 x 100 while H is a 100 x 200 matrix. The results in
Figure 1 report mean and std over 20 values of A such
that A; ~ U(Amin, Amax) for 1 < ¢ < n where U is the
uniform distribution on the interval [Apin, Amax] Which is
[0.01,10], [0.0005, 0.005], [—5, 5] and [—1, 1] respectively
for LR, KRR, BR, HR. Furthemrmore we set 5 = 1 for BR
and 8 = 10 for HR. Apin, Amax and (§ are selected as to
make the expected lower-level problem difficult (g close
to 1).

We note that in Figure 1 the asymptotic error for KRR,
BR and HR is considerably large. We suspect that this
is due to the numerical error made by the hypergradient
approximation procedures being larger than the one made
when computing the exact hypergradient using the closed
form expression of w(\). Indeed, we have observed that
using double precision halves the asymptotic error, but we
did not investigate further. Our theoretical analysis does
not take this source of error into account since it assumes
infinite precision arithmetic.

C.2. Bilevel Optimization

This section contains the details and some additional results
on the experiments in Section 3.2 on problems of type (2)'°.

The average cross-entropy in 20 newsgroup and Fashion

‘where 1 € R? is a vector with all its components set to one.
'0This includes all the settings except equilibrium models.
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MNIST is defined as

lyl ¢

eZki
| | ZZ& e 108 (Zc eZkJ>

k=11i=1

CE(Z,y) =

where Z, € R¢ yi, € {0, ..., c} are respectively the predic-
tion scores and the class label for the k-th example, 9;
equals 1 when ¢ = yy, and 0 otherwise and |y| is the number
of examples.

To solve the upper-level problem we use gradient descent
with fixed step-size where the gradient is estimated using
ITD or AID methods. In particular, we generate the se-
quence (A;)$ as follows:

Ai = X1 — Cg(Xhiq)

where g(\) = Vf;()\) for ITD and g(\) = Vf(\) for
AID are computed respectively using Algorithm 1 and Al-
gorithm 2 with ¢ and & fixed throughout the optimization.

All methods compute w;(\) using ¢-steps of the same algo-
rithm solving the lower-level problem in (2). In particular
we use heavy ball with optimal constants for Parkinson and
gradient descent with step-size manually chosen for the
other two settings where it is harder to compute the opti-
mal one. Specifically, we set the step-size to 10 for 20
newsgroup and 10* for Fashion MNSIT!'!.

The initial parameter Ao is set to (Bo,v) =
(0, —log(p)1)!? for Parkinson, 0 € RP for 20 news-
group and Xy = 0 € R*P for Fashion MNIST.
Furthermore, the regularization parameter [ is set to 1 for
Fashion MNIST.

We choose the step-size ¢ with a grid search over 30 val-
ues in a suitable interval for each problem, choosing the
one bringing the lowest value of the approximate objective
fi(As) = E(wi(Xs), As) where s is equal to 1000, 500,
4000 for Parkinson, 20 newsgroup and Fashion MNIST
respectively. The grid search values are spaced evenly in
log scale inside the intervals [1076,10], [10~%,10%] and
[10719,10~2] respectively for Parkinson, 20 newsgroup and
Fashion MNIST.

We note that the results In Table 1 report the value of the
approximate objectve f;(\s) = E(w;(As), As) and the test
accuracy (computed on w;(A)). For completeness, in Ta-
ble 2 we report f(\s) = E(w(\s), As)) and the test accu-
racy (computed on w(Ag)) where w(\s) is computed using
RMAD (exploiting the closed form of w()\)) for Parkin-
son and using 2000 steps of gradient descent starting from
wp(A) = 0 for 20 newsgroup and Fashion MNIST.

"'Note that in this case the step-size is constant w.r.t. A whereas
the optimal one would vary with \.
Zwhere 1 € R is a vector with all its components set to one.

C.3. Equilibrium Models with Convolutions

In this section we report a series of experiments on equi-
librium models quite similar to those of the last paragraph
of Section 3.2, but with convolutional and max-pooling
operators in place of the affinities of Equation (23). In par-
ticular we model the learnable dynamics with parameters
v=(K,K' c)as

oi(w;,v) = tanh (K % w; + poxa (K xx;) +¢)  (37)

where w; € RP<14x14 are the state feature maps, x denotes
multi-channel bidimensional cross-correlation, X and K’
contain h 3 x 3 convolutional kernels each and 15«2 denotes
the max-pooling operator with a 2 x 2 field and stride of 2.
The state feature maps are passed through a max-pooling
operator before being flattened and fed to a multiclass logis-
tic classifier. We set h = 10 for all the experiments. We use
the results and the code of Sedghi et al. (2019) to efficiently
perform the projection of the linear operator associated to K
into the unit spectral ball'®. Data and optimization method
for the upper objective are the same of Section 3.2.

The results, reported in Figure 3, show similar behaviours
of those in Section 3.2, albeit with more marked differences
among the methods, especially for the experiments with-
out projection (denoted by t in the figure). The statistical
performances of the contractive convolutional EQM exceed
abundantly those given by simpler dynamics of (23), with
the fixed-point method (red line) being slightly better then
the others. We show some visual examples of the learned
dynamics in Figure 4, where we plot the 10 bidimensional
state filter maps as the iterations of (37) proceed.

Interestingly, when the projection is not performed, opti-
mization with the fixed-point scheme to compute the hy-
pergradient (akin to recurrent backpropagation, see green
shaded region in the rightmost plot of Figure 3) does not
reliably converge for all the probed values of the step-size,
indicating once more the importance of the contractiveness
assumption for AID methods. We finally note that regular-
izing the norm of 0, ¢; or adding L, or L., penalty terms
on the matrix of the state-wise linear transformation may
encourage, but does not strictly enforce, such condition.
This may in part explain some difficulties previously en-
countered in training EQM-like models, e.g. in the context
of relational learning (graph neural networks).

3 Specifically, we project onto ||c(K)|| < 0.999, where c(K)
is an h X h matrix of doubly block circulant matrices; see Sedghi
et al. (2019) for details.
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Table 2. The values of f(\s) and test accuracy (in percentage) are displayed after s gradient descent steps, where s is 1000, 500 and
4000 for Parkinson, 20 news and Fashion MNIST respectively. &k, = 10 for Parkinson and 20 news while for Fashion MNIST k, = 5.

Parkinson 20 newsgroup Fashion MNIST
t =100 t =150 t=10 t=125 t =50 t=>5 t=10
ITD 2.39 (75.8) 2.11(69.7) 1.155(59.4) 1.082 (61.1) 1.058 (61.6) 0.497 (84.1) 0.431 (83.8)
FPk=t 2.36 (81.8) 2.19(77.3) 1.155(59.5) 1.083 (61.1) 1.058 (61.6) 0.497 (84.1) 0.431 (83.8)
CGk=t 2.20 (78.8) 2.19(77.3) 0.983 (62.9) 0.955(62.9) 0.946 (63.5) 0.522 (83.8) 0.424 (84.0)
FPk=k. 2.71(80.3) 2.60(78.8) 1.155(59.5) 1.078 (61.7) 1.160 (59.1) 0.497 (84.1) 0.426 (83.9)
CGk=k- 217(78.8) 1.99(77.3) 0.983 (62.9) 0.989 (62.6) 1.001 (62.3) 0.522 (83.8) 0.424 (84.0)
Objective 0.98 Test accuracy Hypergradient norm ||g(A)]| s Test accuracy vs learning rate
0.97
0.97
0.96
0.96 0.95
0.94
0.95
/A/‘/\"' 0.93
- - - : 0.94 4 - r - : - - - 0.92 - r
0 1000 2000 3000 0 20 40 60 0 20 40 60 1073 102 1071

Time (s)

Iterations x20

Iterations x20

Learning rate

Figure 3. Experiments with convolutional EQMs. Mean (solid line) and point-wise minimum-maximum range (shaded region) across 5
random seeds. The seed only controls the initialization of A. The estimated hypergradient g()) is equal to V f;(\) for ITD and V f(\)
for AID. We used ¢t = k£ = 20 for all methods and Nesterov momentum (1500 iterations) for optimizing A, applying a projector operator
at each iteration except for the methods marked with }. Note that in the first three plots the step-size for the unconstrained experiments is

smaller, to prevent divergence.
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fixed-point method and with projection. Each of the ten rows represents a filter and the x-axis proceeds with the iterations of the EQM
dynamics (for a total of ¢ = 20 iterations). The states are initialized to O (black images on the left) and then the mapping (37) is iterated

Figure 4. Images of two samples of the states filter maps w; € R'°***14 for a three and a six from the MNIST dataset, learnt with the
20 times to approximately reach the fixed point representation (rightmost images).



