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Abstract: Wavelet expansions are a powerful tool for constructing adaptive approximations. For this
reason, they find applications in a variety of fields, from signal processing to approximation theory.
Wavelets are usually derived from refinable functions, which are the solution of a recursive functional
equation called the refinement equation. The analytical expression of refinable functions is known in
only a few cases, so if we need to evaluate refinable functions we can make use only of the refinement
equation. This is also true for the evaluation of their derivatives and integrals. In this paper, we
detail a procedure for computing integrals of wavelet products exactly, up to machine precision. The
efficient and accurate evaluation of these integrals is particularly required for the computation of the
connection coefficients in the wavelet Galerkin method. We show the effectiveness of the procedure
by evaluating the integrals of pseudo-splines.

Keywords: wavelet; refinable function; refinement mask; pseudo-spline; wavelet Galerkin method;
connection coefficients

MSC: 65T60; 65N30

1. Introduction

A refinable function is defined recursively through a functional equation usually called
refinement or scaling equation. In its general form, the refinement equation can be written
as [1,2]

Φ(x) = ∑
α∈Z

aα Φ(Mx− α), x ∈ Rs, (1)

where the compactly supported real sequence a = {aα, α ∈ Z}, Z ⊂ Zs, is the refinement
mask associated with Φ and M ∈ Ns×s with limk→∞ M−k = 0 being the dilation matrix. It
is known that if

∑
α∈Z

aα = |det(M)|, (2)

then there exists a unique distribution solution to the refinement equation such that
Φ̂(0) = 1, where Φ̂ denotes the Fourier transform of the function Φ [1,3].

Refinable functions are the building blocks for the construction of wavelets. In fact,
a wavelet W(x) can be derived by a refinable function as

W(x) = ∑
α∈Zs

dα Φ(Mx− α), x ∈ Rs, (3)

where d = {dα, α ∈ Zs} is the wavelet mask, which can be designed in order to obtain W
satisfying prescribed properties [2,4–7].

Refinable functions and wavelets find applications in several fields. In signal and
image processing, they are a well-established tool for constructing filter banks for denoising,
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compression, feature extractions, to name a few applications [5,6]. In geometric modeling,
refinable functions give rise to efficient algorithms for constructing surfaces of arbitrary
topology, with applications in industrial design, computer graphics, 3D animation [8,9].
In approximation theory, the refinement functions are used to create nested sequences of
approximation spaces that can be used to construct adaptive approximations of operators
for the solution of differential problems [10–14].

The analytic expression of refinable functions and associated wavelets is available in
only a very few cases. However, they can be evaluated exactly, up to machine precision,
at the M-adic points M−kZs, k ∈ Z+, using recursively Equations (1) and (3), provided
that the values on the integers Φ(α), α ∈ Z , are given. It is well known that the values
on the integers of a refinable function and its derivatives can be obtained by solving an
eigenvalue/eigenvector problem for a matrix whose entries depend only on the mask [5,15].
The aim of this paper is to describe in detail how to construct this matrix and how to obtain
the values of the refinable function and its derivatives from the eigenvectors. Interestingly,
the integrals of the product of refinable functions can also be evaluated exactly, up to
machine precision, by solving an eigenvalue/eigenvector problem that depends only on
the mask [15]. We will show how to construct the eigenvalue problem for these integrals
and give some examples. Since a wavelet is a linear combination of the translates of a
refinable function (see (3)), integrals of product of wavelets can be easily derived from
integrals of refinable functions. We want to emphasize that the exact evaluation of integrals
of refinable functions and wavelets is especially important when using adaptive wavelet
methods for the solution of differential problems, for instance, for the evaluation of the
connection coefficients in the wavelet Galerkin method.

The paper is organized as follows. In Section 2, we recall some basic facts about refin-
able functions and subdivision schemes. A subdivision scheme is a recursive algorithm
constructed from the refinement mask, whose properties are closely related to the prop-
erties of the associated refinable function. In this section, we also show how to construct
the eigenvalue/eigenvector problem for the exact evaluation of the values of a refinable
function and of its derivatives on the integers. The core of the paper is Section 3 where
we detail the procedure for the exact evaluation of integrals of products of refinable func-
tions and of their derivatives. As an illustrative example, in Section 4, this procedure is
applied to evaluate integrals of pseudo-splines. Finally, in Section 5, we discuss results
and conclusions.

2. Materials and Methods
2.1. Refinable Functions and Subdivision Schemes

For the sake of simplicity, we consider the case of dyadic and isotropic dilation factor,
i.e., M = 2E, where E is the identity matrix. Let us denote by Φa the refinable function
associated with the mask a. Φa satisfies the refinement equation

Φa(x) = ∑
α∈Z

aα Φa(2x− α), x ∈ Rs, (4)

where the refinement mask a = {aα, α ∈ Z} is a compactly supported real sequence.
For details, we refer the reader to the monographs [4–6].

The existence of a unique Φa solution to (4), as well as its properties, depend on the
properties of the mask a. We recall that a necessary condition for the existence of a unique
solution to the refinement Equation (4) with Φ̂a(0) = 1 is that the mask a fulfills the basic
sum rules [3]

∑
β∈Zs

aα−2β = 1 , α ∈ Zs. (5)

Moreover, if a is compactly supported, Φa is compactly supported, too, with
supp (Φa) ⊆ 〈Z〉, where 〈·〉 denotes the convex hull of its argument. In the following, we
will assume that Φa is a compactly supported and continuous refinable function.
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The existence of a unique Φa with Φ̂a(0) = 1 can be related to the convergence of
the associated subdivision scheme, which is defined through the refinement mask a as
follows [3,9].

Let Sa be the subdivision operator acting on a sequence Λ = {λα}α∈Zs ∈ `∞(Zs) as

(Sa Λ)α = ∑
β∈Zs

aα−2β λβ , α ∈ Zs . (6)

The subdivision scheme Sa is the recursive application of the subdivision operator
starting from an initial sequence Λ0 ∈ `∞(Zs), i.e.,

Sa :


Λ0 = Λ ∈ `∞(Zs) ,

Λk+1 := Sa Λk , k ≥ 0 .
(7)

The subdivision scheme is convergent if for any bounded sequence Λ ∈ `∞(Zs) there
exists a uniformly continuous limit function fΛ satisfying

lim
k→∞

sup
α∈Zs

|λk
α − fΛ(2−kα)| = 0 , (8)

with fΛ 6= 0 for at least a starting sequence. If the subdivision scheme is convergent, there
exists a unique refinable function solution to (4) that coincides with the limit function
obtained when using the δ sequence as starting sequence, i.e.,

Φa = lim
k→∞

δk, (9)

where δk := Sa δk−1, k ≥ 1, with δ0 = δ.
On the other hand, if Φa is `∞-stable, i.e., the stability estimate

C sup
α∈Zs
|λα| ≤ sup

x∈Rs

∣∣∣∣∣ ∑
α∈Zs

λα Φa(x− α)

∣∣∣∣∣ (10)

holds for some positive constant C independent of Λ, then the subdivision scheme Sa is
convergent [3].

Assuming that Φa ∈ Cd(Rs), by differentiating (4), we obtain the refinement equation
for the partial derivatives DνΦ(x) = ∂ν1

∂x
ν1
1
· · · ∂νs

∂xνs
s

Φ(x1, . . . , xs), ν = (ν1, . . . , νs) ∈ Zs
+, i.e.,

DνΦa(x) = 2|ν| ∑
α∈Z

aα DνΦa(2x− α), x ∈ Rs. (11)

where
|ν| = ν1 + . . . + νs ≤ d. (12)

Derivatives of Univariate Refinable Functions

In the univariate case (s = 1), the sum rules (5) imply that the mask symbol, i.e., the
z-transform

a(z) = ∑
α∈Z

aα zα , z ∈ C , (13)

can be factorized as a(z) = 2−1(1 + z) b(z), where the difference symbol

b(z) = ∑
α∈Z

bα zα (14)

is a Laurent polynomial such that b(1) = 2. It can be shown [3,9] that if Φa ∈ C1(R) is `∞-
stable, then the subdivision scheme Sb associated with the difference mask b = {bα, α ∈ Z}
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is convergent and the first derivative of Φa can be easily evaluated by the backward finite
difference of Φb, i.e.,

D1Φa(x) = Φb(x)−Φb(x− 1), x ∈ R. (15)

More generally, if Φa ∈ Cd(R) is `∞-stable, the symbol can be factorized as a(z) =
2−d(1 + z)d b(z), d ≥ 1, and Sb is convergent [3], then the higher derivatives of Φa can be
easily evaluated as

DνΦa(x) = ∇νΦb(x), x ∈ R, 1 ≤ ν ≤ d, (16)

where the backward finite difference operator is defined recursively as

∇ν f (x) = ∇(∇ν−1) f (x), ∇ f (x) = f (x)− f (x− 1). (17)

2.2. The Eigenvalue/Eigenvector Problem for Refinable Functions

When the mask a is compactly supported on Z ⊂ Zs, the refinable Equation (4) evalu-
ated on the integers α ∈ Zs, gives rise to the following eigenvalue/eigenvector problem

Φa(α) = ∑
β∈F

a2α−β Φa(β), α ∈ F , (18)

where F ⊂ Zs denotes the set of integers where Φa(α) 6= 0 [5,15]. Analogously, the partial
derivatives of Φa satisfy the eigenvalue/eigenvector problem

2−|ν|DνΦa(α) = ∑
β∈F

a2α−β DνΦa(β), α ∈ F . (19)

Defining the sequence Vν = (Vν
α = DνΦa(α), α ∈ F ), the eigenvalue/eigenvector

problems (18) and (19) can be written as

2−|ν|Vν = A Vν, 0 ≤ |ν| ≤ d, (20)

where the matrix A has entries Aα,β = a2α−β.
The eigenvalues can be simple or not, depending on the value of ν and on the proper-

ties of the mask a. For instance, when |ν| = 0, the eigenvalue 1 is simple. Moreover, if the
subdivision scheme Sa is convergent, then the eigenvector V0 = {Φa(α)} is the unique
sequence satisfying [15]

∑
α∈F

V0
α = 1 . (21)

In the univariate case (s = 1) also the eigenvalues 2−`, 1 ≤ ` ≤ d, are simple.
In this case, the convergence of the subdivision scheme Sa ensures that the sequence
V` = (D`Φa(α), α ∈ F ⊂ Z) is the unique sequence satisfying (20) such that

∑
α∈F

αp V`
α = (−1)p `! δp`, 0 ≤ p ≤ `. (22)

In the multivariate case (s > 1), the eigenvalues 2−|ν|, 1 ≤ |ν| ≤ d, may not be simple
so that the corresponding eigenvectors are not unique. If Φ ∈ Cd(Rs) satisfies the stability
estimate (10), then Vν is the unique sequence that satisfies both the eigenvalue/eigenvector
problem (20) and the conditions

∑
α∈F

αµ Vν
α = (−1)µ ν! δµν, |µ| ≤ |ν| ≤ d. (23)
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The Eigenvalue/Eigenvector Problem for Bivariate Refinable Functions (s = 2)

Assuming the mask a = {a(α1,α2)
, (α1, α2) ∈ Z} is compactly supported in Z ⊂ Z2,

the eigenvalue/eigenvector problem becomes

2−(|ν1|+|ν2|)V(ν1,ν2) = AV(ν1,ν2), 0 ≤ ν1 + ν2 ≤ d, (24)

where
A = (a(2α1−β1,2α2−β2)

, (α1, α2) ∈ Z , (β1, β2) ∈ Z). (25)

If Φa ∈ Cd(R2) satisfies the stability condition (10), the unique solution of
Equation (24) satisfying the conditions

∑
(α1,α2)∈Z

α
µ1
1 α

µ2
2 V(ν1,ν2)

(α1,α2)
= (−1)µ1(−1)µ2 ν1!ν2! δµ1ν1 δµ2ν2 , µ1 + µ2 ≤ ν1 + ν2 ≤ d, (26)

is V(ν1,ν2) =
(

V(ν1,ν2)
(α1,α2)

= ∂ν1
∂x1

∂ν2
∂x2

Φa(α1, α2), (α1, α2) ∈ F ⊂ R2
)

.

3. Exact Evaluation of Integrals of Refinable Functions

In this section, we are interested in the exact evaluation of integrals of type∫
I

Dν1 Φa(2jx− α) Dν2 Φa(2jx− β) dx, α, β ∈ Zs, j ∈ Z, (27)

where I ⊆ Rs and ν1, ν2 ∈ Zs, 0 ≤ |ν1|, |ν2| ≤ d, with D0Φa = Φa. We assume Φa ∈ Cd(Rs)
satisfies the stability condition (10) and a is a compactly supported mask. When I = [0, 1]s,
the above integrals can be written as∫

Rs
χ(x) Dν1 Φa(2jx− α) Dν2 Φa(2jx− β) dx, α, β ∈ Zs, j ∈ Z, (28)

where χ(x) is the characteristic function of the interval [0, 1]s. Since χ is also a refinable
function, at the end, we have to evaluate the integrals of products of integer translates and
dilates of refinable functions and their derivatives over the whole Rs. We first consider the
case j = 0.

Let us define the function

Ψa(x1, x2) =
∫
Rs

χ(y)Φa(y− x1)Φa(y− x2) dy, x1, x2 ∈ Rs. (29)

We note that the values Ψa(α1, α2), α1, α2 ∈ Zs, i.e., the values of Ψa on the integers,
coincide with the integrals (28) for |ν1| + |ν2| = 0 and j = 0. It turns out that Ψa is a
2s-variate refinable function with refinement mask [15]

h = {hα1,α2}, hα1,α2 =
1
2s ∑

β∈E
cβ aβ−α1 aβ−α2 , α1, α2 ∈ Zs, (30)

where E = {α = α1 · · · αs, 0 ≤ αi ≤ 1, 1 ≤ i ≤ s} and

c = {cα = 1, α ∈ E} (31)

is the mask of the characteristic function. Since the mask a is compactly supported, the mask
h is compactly supported too, and so is Ψa. Thus, the integrals for j = 0 can be evaluated by
solving the eigenvalue/eigenvector problem (24) for the mask h. If Φa is a stable refinable
function, the solution to the eigenvector problem is unique [15].

For the integrals involving derivatives of refinable functions, we notice that

Dν1
x1 Dν2

x2 Ψa(x1, x2) =
∫
Rs

χ(y) Dν1
x1 Φa(y− x1) Dν2

x2 Φa(y− x2) dy, (32)
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so that the integrals are the entries of the eigenvector corresponding to the eigenvalue
2−(|ν1|+|ν2|). Unfortunately, for |ν1| + |ν2| > 0, the uniqueness of the eigenvector is not
guaranteed nor can it be retrieved by imposing conditions (23).

Provided that the symbol

a(z) = ∑
α

aα zα, z ∈ Cs, (33)

can be factorized as

a(z) = 2−|ν1|(1 + z)ν1 b1(z) = 2−|ν2|(1 + z)ν2 b2(z), (34)

an easy way to evaluate the integrals (32) is to substitute the derivatives Dν1
x1 Φa(y− x1),

Dν2
x2 Φa(y− x2) by the finite difference formula (16). If the difference symbols

b1(z) = ∑
α

b1,α zα, b2(z) = ∑
α

b2,α zα, (35)

are associated with a convergent subdivision scheme, Equation (16) gives

Dν1
x Φa(x) = ∆ν1

x Φb1(x), Dν2
x Φa(x) = ∆ν2

x Φb2(x), x ∈ R, (36)

where Φb1 and Φb2 are the refinable functions associated with the difference masks

b1 = {b1,α}, b2 = {b2,α}, (37)

respectively. Since

Ψb1,b2(x1, x2) =
∫
Rs

χ(y)Φb1(y− x1)Φb2(y− x2) dy, (38)

is a refinable function, the values on the integers Ψb1,b2(α, β), α, β ∈ Zs, can be obtained by
solving the eigenvalue/eigenvector problem (24) with mask

h̃ = {h̃α1,α2}, h̃α1,α2 =
1
2 ∑

β∈E
cβ b1,β−α1 b2,β−α2 . (39)

In conclusion,
Dν1

x1 Dν2
x2 Ψa(α, β) = ∆ν1

x1 ∆ν2
x2 Ψb1,b2(α, β). (40)

When j > 0, we can use the change of the integration variable 2jx → x and the
refinement equation for χ into the integrals (28) to obtain

2−js ∑
γ1∈E

cγ1

∫
Rs

χ(2−j+1x− γ1) Dν1 Φa(x− α) Dν2 Φa(x− β) dx, (41)

where cγ1 are the coefficients of the mask associated with χ (see (31)). Using repeatedly the
refinement equation for χ in the above equation, we obtain∫

Rs
χ(x) Dν1 Φa(2jx− α) Dν2 Φa(2jx− β) dx,=

2−js ∑
γ1∈E
· · · ∑

γj∈E
cγ1 · · · cγj

∫
Rs

χ(x) Dν1 Φa(x− (α− γ̃)) Dν2 Φa(x− (β− γ̃)) dx,
(42)

where γ̃ =
j

∑
`=1

2j−` γ`. Thus, the integrals (28) can be expressed as a sum of integrals with

j = 0.
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3.1. Integrals of Univariate Refinable Functions on Finite Intervals

In this section, we focus on the evaluation of the integrals

Ik,l,j(Φa; I) =
∫
I

Φa(2jx− k)Φa(2jx− l) dx, k, l,∈ Z, j ∈ Z+, (43)

where I ⊂ R is a finite interval with dyadic rational length and Φa is a stable univariate
refinable function associated with the compactly supported mask

a = {a0, . . . , an+1}. (44)

Without loss of generality, we can assume I = [0, 1].
If supp (Φa(2jx− k)) ⊆ [0, 1] or supp (Φa(2jx− l)) ⊆ [0, 1], by the change of integra-

tion variable 2jx − k → x, it is easy to show that Ik,l,j(Φa; I) = 2−j I0,l−k,0(Φa;R). Thus,
except for the multiplicative factor 2−j, the integrals are the values on the integers of
the function

Ψ0,a(x) =
∫
R

Φa(y)Φa(y− x) dy, x ∈ R. (45)

It is well known [5,15] that Ψa is a refinable function with mask

h = {hα,−n− 1 ≤ α ≤ n + 1}, hα =
1
2

n+1

∑
β=0

aβ aβ−α, −n− 1 ≤ α ≤ n + 1, (46)

so that its values on the integers are the entries of the unique eigenvector V = (Vα,−n ≤
α ≤ n) corresponding to the eigenvalue 1 of the matrix H = (h2α−β) and such that
∑α Vα = 1.

If both supp (Φa(2jx− k)) and supp (Φa(2jx− l)) are not contained in [0, 1], we can
write the integral as

Ik,l,j(Φa; [0, 1]) =
∫
R

χ[0,1](x)Φa(2jx− k)Φa(2jx− l) dx, k, l ∈ Z, (47)

where χ[0,1](x) is the characteristic function of the interval [0, 1].
Using (42) we obtain

Ik,l,j(Φa; [0, 1]) = 2−j
1

∑
γ1=0
· · ·

1

∑
γj=0

cγ1 · · · cγj Ik−γ̃,l−γ̃,0(Φa; [0, 1]), (48)

where γ̃ = ∑
j
`=1 2j−`γ` and c = {cα, 0 ≤ α ≤ 1} = {1, 1} is the refinement mask of χ[0,1].

Thus, it is sufficient to evaluate the integrals

Ik,l(Φa; [0, 1]) =
∫
I

Φa(x− k)Φa(x− l) dx =
∫
R

χ[0,1](x)Φa(x− k)Φa(x− l) dx, (49)

which are non-zero only when −n ≤ k, l ≤ 0.
From Section 3, we know that we can evaluate the integrals (49) by solving the

eigenvector problem
V(0) = GV(0), (50)

where G = (g2α−β) with

gα1,α2 =
1
2
(
a−α1 a−α2 + a1−α1 a1−α2

)
, −n− 1 ≤ α1, α2 ≤ 1. (51)
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3.2. Integrals of Derivatives of Univariate Refinable Funcions

For integrals involving the first derivative DxΦa, i.e.,

Ik,l(DxΦa; [0, 1]) =
∫
I

DxΦa(x− k) DxΦa(x− l) dx, k, l,∈ Z, (52)

we notice that they are the values on the integers of the partial derivative ∂
∂x1

∂
∂x2

Ψa(x1, x2)
(see (29)).

Assuming a(z) = (1 + z)b(z)/2 and substituting the differentiation formula (15) in
Equation (52), we obtain

Ik,l(DxΦa; [0, 1]) = ∆x1 ∆x2 Ψb(k, l) =
1

∑
α1,α2=0

(−1)α1+α2 Ik−α1,l−α2(Φb; [0, 1]), (53)

where Ψb is the bivariate refinable function associated with the mask

g̃α1,α2 =
1
2
(
b−α1 b−α2 + b1−α1 b1−α2

)
, −n− 1 ≤ α1, α2 ≤ 1, (54)

and Φb is the univariate refinable function associated with the difference mask b =
{bα, 0 ≤ α ≤ n}. At the end, the integrals (52) can be evaluated by solving the eigen-
value/eigenvector problem (24) for Ψb and taking the backward finite difference of the
unique eigenvector corresponding to the eigenvalue 1.

Analogously, the integrals∫
I

Φa(x− k) DxΦa(x− l) dx, k, l,∈ Z, (55)

can be evaluated by solving the eigenvalue/eigenvector problem (24) with mask

ĝα1,α2 =
1
2
(
a−α1 b−α2 + a1−α1 b1−α2

)
, −n− 1 ≤ α1, α2 ≤ 1, (56)

and taking the backward finite difference ∆x2 of the unique eigenvector corresponding to
the eigenvalue 1.

4. Examples

As an example, we evaluate the integrals of the translates of the pseudo-splines,
a family of compactly supported refinable functions which contains some well-known
refinable functions as special cases. The pseudo-splines of type I were introduced in [16].
Their symbol is defined as

|aI
(m,n)(z)|

2 = 2
(

1 + z
2

)2m n

∑
j=0

(
m + n

j

)
(−1)j

(
1− z

2

)2j(1 + z
2

)2(n−j)
. (57)

It depends on the two integer parameters m, n ≥ 0 with n ≤ m − 1. The pseudo-
splines of type I are compactly supported on [0, m + n] and belong to Cm−1(R). When
n = 0, the symbol aI

(m,0)(z) coincides with the symbol associated with the cardinal B-splines,

while aI
(m,m−1)(z) coincides with the symbol of the Daubechies family [4]. The cardinal

B-spline ΦI
(m,0)(x) is a piecewise polynomial of degree m − 1 with breakpoints on the

integers. It is non-negative in its support [0, m], it is centrally symmetric and it is refinable
with mask [17]

aI
(m,0) = {a

I
(m,0),α, 0 ≤ α ≤ m}, aI

(m,0),α =
1

2m−1

(
m
α

)
. (58)
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The pseudo-spline ΦI
(m,m−1)(x) is the Daubechies refinable function of order m and is

orthogonal and nonsymmetric. The mask coefficients do not have an explicit expression
except for m = 2, 3. Their values computed up to order m = 10 can be found in [4].

In [18], the authors considered the pseudo-splines of type II, which are the autocorre-
lation of the pseudo-splines of type I. Their symbol is

aI I
(m,n)(z) = |a

I
(m,n)(z)|

2. (59)

The pseudo-splines of type II are symmetric, compactly supported on [0, 2(m + n)]
and belong to C2(m−1)(R). When n = 0, the symbol aI I

(m,0)(z) coincides with the symbol

associated with the cardinal B-splines of degree 2m− 1, while aI I
(m,m−1)(z) coincides with the

symbol of the symmetric interpolatory schemes introduced in [19]. The latter are associated
with the interpolatory symmetric refinable functions ΦI I

(m,m−1)(x), which are compactly

supported on [0, 2(m + n)]. We recall that interpolatory means that ΦI I
(m,m−1)(α) = 0 for all

integers α ∈ [0, 2(m + n)] except for α = m + n when its value is 1. In particular, the symbol

aI I
(2,1)(z) = −

1
16

+
9z2

16
+ z3 +

9z4

16
− z6

16
(60)

corresponds to the mask of the four-point scheme

aI I
(2,1) =

{
− 1

16
, 0,

9
16

, 1,
9

16
, 0,− 1

16

}
. (61)

In the pseudo-spline family, only the cardinal B-splines have a known analytic form [20]
and therefore, in order to evaluate integrals of products of refinable functions for n > 0,
the procedure described in the previous section must be evoked. Here, we evaluate the
integrals of the pseudo-splines ΦI

(3,n) for n = 1, 2 and ΦI I
(m,1) for m = 2, 3. Starting from

the values on the integers, we can use recursively the refinement equation to evaluate the
pseudo-splines at the dyadic points 2−jZ (see Figure 1 where j = 4).

(a) (b)

(c) (d)

Figure 1. (a) The pseudo-spline of type I ΦI
(3,1). (b) The orthogonal pseudo-spline ΦI

(3,2). (c) The

interpolatory pseudo-spline ΦI I
(2,1). (d) The pseudo-spline of type II ΦI I

(3,1).
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In Tables 1 and 2, the values of the integrals Ik,l(ΦI
(3,1); [0, 1]), −3 ≤ k, l ≤ 0,

and Ik,l(ΦI
(3,2); [0, 1]), −4 ≤ k, l ≤ 0, evaluated up to machine precision, are listed.

Table 1. The values of the integrals Ik,l(ΦI
(3,1); [0, 1]) evaluated up to machine precision.

k\l −3 −2 −1 0

−3 9.405347704967639 · 10−5 −7.429899242365393 · 10−4 5.965724179228820 · 10−3 6.355932203389832 · 10−4

−2 −7.429899242365290 · 10−4 1.194479158530555 · 10−2 −7.761299435028242 · 10−2 −3.477928350126270 · 10−2

−1 5.965724179228801 · 10−3 −7.761299435028246 · 10−2 5.682811971152597 · 10−1 1.878898825796037 · 10−1

0 6.355932203389766 · 10−4 −3.477928350126270 · 10−2 1.878898825796037 · 10−1 2.569680934156055 · 10−1

Table 2. The values of the integrals Ik,l(ΦI
(3,2); [0, 1]) evaluated up to machine precision.

k\l −4 −3 −2

−4 1.477911329137502 · 10−6 3.249351710498510 · 10−5 −1.343887189602012 · 10−4

−3 3.249351710498180 · 10−5 1.338460917999608 · 10−3 −5.684787772731729 · 10−3

−2 −1.343887189602028 · 10−4 −5.684787772731725 · 10−3 3.106353271270828 · 10−2

−1 4.413282832766463 · 10−4 1.892752442573810 · 10−2 −1.176759414601629 · 10−1

0 −2.496131194086296 · 10−19 −4.413282832766528 · 10−4 −1.879313570677787 · 10−2

k\l −1 0

−4 4.413282832766551 · 10−4 2.468424057727266 · 10−20

−3 1.892752442573811 · 10−2 −4.413282832766530 · 10−4

−2 −1.176759414601628 · 10−1 −1.879313570677789 · 10−2

−1 4.709487303525829 · 10−1 1.233282357157897 · 10−1

0 1.233282357157897 · 10−1 4.966477981053796 · 10−1

In Tables 3 and 4, the values of the integrals Ik,l(DxΦI
(3,1); [0, 1]), −3 ≤ k, l ≤ 0,

and Ik,l(DxΦI
(3,2); [0, 1]), −4 ≤ k, l ≤ 0, evaluated up to machine precision, are listed.

Table 3. The values of the integrals Ik,l(DxΦI
(3,1); [0, 1]) evaluated up to machine precision.

k\l −3 −2 −1 0

−3 5.411255411255435 · 10−3 −2.218614718614711 · 10−2 2.813852813852805 · 10−2 −1.136363636363638 · 10−2

−2 −2.218614718614718 · 10−2 1.677489177489169 · 10−1 −2.689393939393933 · 10−1 1.233766233766235 · 10−1

−1 2.813852813852817 · 10−2 −2.689393939393933 · 10−1 1.453463203463204 · 100 −1.212662337662338 · 100

0 −1.136363636363642 · 10−2 1.233766233766235 · 10−1 −1.212662337662338 · 100 1.100649350649351 · 100

Table 4. The values of the integrals Ik,l(DxΦI
(3,2); [0, 1]) evaluated up to machine precision.

k\l −4 −3 −2

−4 1.983592433357107·10−4 1.530794761546635·10−3 −4.779464493845230 · 10−3

−3 1.530794761546657·10−3 4.602360988387802·10−2 −1.282995712968333 · 10−1

−2 −4.779464493845280 · 10−3 −1.282995712968330 · 10−1 4.673646354266377·10−1

−1 8.407453346105716·10−3 2.034383342832282·10−1 −1.011817206037050 · 100

0 −5.357142857142803 · 10−3 −1.226931676318198 · 10−1 6.775316064010912·10−1

k\l −1 0

−4 8.407453346105731 · 10−3 −5.357142857142848 · 10−3

−3 2.034383342832284 · 10−1 −1.226931676318198 · 10−1

−2 −1.011817206037050 · 100 6.775316064010909 · 10−1

−1 3.051861626311564 · 100 −2.251890207903847 · 100

0 −2.251890207903848 · 100 1.702408911991719 · 100
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In Tables 5 and 6, the values of the integrals Ik,l(ΦI I
(2,1); [0, 1]), −5 ≤ k ≤ 0, −5 ≤ l ≤

−3, and Ik,l(ΦI I
(3,1); [0, 1]), −7 ≤ k ≤ 0, −7 ≤ l ≤ −4, evaluated up to machine precision,

are listed. Since the pseudo-splines are centrally symmetric, the integrals for −3 ≤ l ≤ 0
can be obtained by the symmetry properties

Ik,l(ΦI I
(m,n); [0, 1]) = I−l−2(m+n)+1,−k−2(m+n)+1(ΦI I

(m,n); [0, 1]),

Ik,l(ΦI I
(m,n); [0, 1]) = Il,k(ΦI I

(m,n); [0, 1]).

Table 5. The values of the integrals Ik,l(ΦI I
(2,1); [0, 1]) evaluated up to machine precision.

k\l −5 −4 −3

−5 5.116257874460724 · 10−6 −8.276163812145549 · 10−5 1.223026662915586 · 10−3

−4 −8.276163812145549 · 10−6 2.614407773849806 · 10−3 −2.921345302778139 · 10−2

−3 1.223026662915586 · 10−3 −2.921345302778139 · 10−2 3.978644961832378 · 10−1

−2 2.816182665282207 · 10−4 −2.134545530552364 · 10−2 1.956342116650678 · 10−1

−1 −3.796236980093334 · 10−5 2.231891234044411 · 10−3 −2.134545530552362 · 10−2

0 −1.482905070348861 · 10−7 −3.796236980093487 · 10−5 2.816182665282243 · 10−4

Table 6. The values of the integrals Ik,l(ΦI I
(3,1); [0, 1]) evaluated up to machine precision.

k\l −7 −6 −5 −4

−7 2.471301925974684 · 10−8 −1.395875479686866 · 10−6 4.454752965851973 · 10−6 4.892398758858539 · 10−5

−6 −1.395875479686949 · 10−6 9.722157641353062 · 10−5 −2.139339860762161 · 10−4 −4.332435082294774 · 10−3

−5 4.454752965854710 · 10−6 −2.139339860762127 · 10−4 2.589299713488763 · 10−3 −7.870711960958931 · 10−3

−4 4.892398758858467 · 10−5 −4.332435082294773 · 10−3 −7.870711960958921 · 10−3 3.377964641315861 · 10−1

−3 7.773866800986866 · 10−6 −9.339605823889749 · 10−4 −2.195108918141705 · 10−2 2.288901274136763 · 10−1

−2 −1.969121331976882 · 10−6 2.459688163128797 · 10−4 6.354809670166827 · 10−4 −2.195108918141705 · 10−2

−1 5.801489206488096 · 10−8 −1.198584434179334 · 10−5 2.459688163128797 · 10−4 −9.339605823889730 · 10−4

0 3.191528292077578 · 10−11 5.801489206488360 · 10−8 −1.969121331976856 · 10−6 7.773866800990127 · 10−6

In Tables 7 and 8, the values of the integrals Ik,l(DxΦI I
(2,1); [0, 1]),−5 ≤ k ≤ 0,−5 ≤ l ≤

−3, and Ik,l(DxΦI I
(3,1); [0, 1]), −7 ≤ k ≤ 0, −7 ≤ l ≤ −4, evaluated up to machine precision,

are shown. Also in this case, the integrals for −3 ≤ l ≤ 0 can be obtained by symmetry.

Table 7. The values of the integrals Ik,l(DxΦI I
(2,1); [0, 1]) evaluated up to machine precision.

k\l −5 −4 −3

−5 2.777777777777467 · 10−4 −2.222222222222164 · 10−3 3.611111111111101 · 10−3

−4 −2.222222222222133 · 10−3 3.527777777777726 · 10−2 −4.666666666666633 · 10−2

−3 3.611111111111009 · 10−3 −4.666666666666641 · 10−2 1.075555555555556 · 100

−2 −1.666666666666628 · 10−3 −3.611111111110925 · 10−3 −1.027222222222223 · 100

−1 5.080672813160866 · 10−18 1.722222222222225 · 10−2 −3.611111111111147 · 10−3

0 4.525501419255835 · 10−20 −8.844442985958084 · 10−19 −1.666666666666667 · 10−3

We notice that all the computations were performed in Matlab (version 2022b). The eigen-
value/eigenvector problem was solved with the function eig.
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Table 8. The values of the integrals Ik,l(DxΦI I
(3,1); [0, 1]) evaluated up to machine precision.

k\l −7 −6 −5 −4

−7 1.800273644710908 · 10−6 −5.290448342381944 · 10−5 3.470271682158227 · 10−4 1.567105861812087 · 10−4

−6 −5.290448342381998 · 10−5 1.906204102861672 · 10−3 −1.189757439834966 · 10−2 −1.360635067201347 · 10−2

−5 3.470271682158154 · 10−4 −1.189757439834967 · 10−2 7.808373767258711 · 10−2 4.118636082849043 · 10−2

−4 1.567105861812070 · 10−4 −1.360635067201344 · 10−2 4.118636082849041 · 10−2 6.014774534800320 · 10−1

−3 −5.191351035369562 · 10−4 2.610202916007258 · 10−2 −1.347429248319731 · 10−1 −5.200541434472525 · 10−1

−2 6.933751699985054 · 10−5 −2.460284570668251 · 10−3 2.941432061469777 · 10−2 −1.347429248319734 · 10−1

−1 −2.829703823829584 · 10−6 1.171056534476690 · 10−5 −2.460284570668251 · 10−3 2.610202916007260 · 10−2

0 −6.254256978012706 · 10−9 −2.829703823829591 · 10−6 6.933751699984900 · 10−5 −5.191351035369660 · 10−4

5. Conclusions

Except for the seminal paper by Dahmen and Micchelli [15], the literature is scarce in
terms of papers dealing with methods for the exact evaluation of the connection coefficients
involving refinable functions and wavelets. In [21], a similar reasoning is used to evaluate
the connection coefficients of a wavelet Galerkin method but the evaluation of integrals
involving derivatives of wavelets is a little cumbersome since the authors do not take
advantage of the differentiation rule (40). In [22], the authors describe a method derived
from [23] for the exact evaluation of the integrals (27). The drawback of the proposed
method is that it gives rise to a linear system for which the existence and uniqueness
of the solution are not guaranteed. Moreover, nothing is said about integrals involving
boundary functions. On the other hand, since refinable functions can only be calculated on
the dyadic points, for evaluating the integrals with quadrature rules, the Newton–Cotes
formula should be employed, having the dyadic points as nodes. However, to obtain an
accurate approximation, these formulas require a large number of nodes which would
produce a loss of accuracy in the values of the refinable functions as they are calculated
through the recursive use of Equation (4).

Instead, our approach, which follows directly from [15], allows to evaluate the integrals
of both refinable functions and their derivatives by solving an eigenvalue/eigenvector
problem that involves only the refinement masks. The conditions (23), which guarantee
the existence and uniqueness of the solution, can be easily imposed while, in the case
of integrals of derivatives, the use of the differentiation rule (40) avoids the difficulty of
imposing further conditions.

The examples in Section 4 show the effectiveness of the method in evaluating integrals
of refinable functions whose explicit expressions is not known.

As a final remark, we note that the same procedure can be used to evaluate integrals
of multivariate refinable functions and wavelets with any dilation matrix M, while a
generalization to integrals involving multiwavelets can be found in [24].
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