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Simple Summary: Breast cancer is the most common cancer in women worldwide. The axillary
lymph node status is one of the main prognostic factors. Currently, the methods to define the lymph
node status are invasive and not without sequelae (from biopsy to lymphadenectomy). Radiomics is
a new tool, and highly varied, but with high potential that has already shown excellent results in
numerous fields of application. In our study, we have developed a classifier validated on a relatively
large number of patients, which is able to predict lymph node status using a combination of patients
clinical features, primary breast cancer histological features and radiomics features based on 3 Tesla
post contrast—MR images. This approach can accurately select breast cancer patients who may avoid
unnecessary biopsy and lymphadenectomy in a non-invasive way.

Abstract: Background: axillary lymph node (LN) status is one of the main breast cancer prognostic
factors and it is currently defined by invasive procedures. The aim of this study is to predict
LN metastasis combining MRI radiomics features with primary breast tumor histological features
and patients’ clinical data. Methods: 99 lesions on pre-treatment contrasted 3T-MRI (DCE). All
patients had a histologically proven invasive breast cancer and defined LN status. Patients’ clinical
data and tumor histological analysis were previously collected. For each tumor lesion, a semi-
automatic segmentation was performed, using the second phase of DCE-MRI. Each segmentation
was optimized using a convex-hull algorithm. In addition to the 14 semantics features and a feature
ROI volume/convex-hull volume, 242 other quantitative features were extracted. A wrapper selection
method selected the 15 most prognostic features (14 quantitative, 1 semantic), used to train the final
learning model. The classifier used was the Random Forest. Results: the AUC-classifier was 0.856
(label = positive or negative). The contribution of each feature group was lower performance than the
full signature. Conclusions: the combination of patient clinical, histological and radiomics features of
primary breast cancer can accurately predict LN status in a non-invasive way.

Keywords: breast cancer; 3T-MRI; lymph node status; machine learning; radiomics; signature

1. Introduction

Breast cancer (BC) is the leading cause of death from cancer in women in Europe [1].
This tumor is considered a pool of different kind of cancer, with various molecular subtypes
and with distinct recurrence and survival rates. Among prognostic factors, axillary lymph
node status (ALNS) is one of the most important, and its identification is essential for
prognosis determination and to guide adjuvant therapy decisions [2,3]. Due to several
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side effects related to complete dissection, in the last few years, the sentinel node biopsy
(SNB) has been proposed as alternative to routine staging for patients with early-stage BC
with clinically negative axillary nodes [4,5]. However, also SNB is an invasive procedure
and with significant sequelae, including shoulder dysfunction, nerve damage, upper arm
numbness, and lymphoedema [5,6]. It remains to be determined whether the emerging
evidence for accurate diagnosis and adequate local control with SNB compared with ALN
dissection (ALND), is accompanied by equivalent survival outcomes. The ideal would
be to predict the ALNS in order to correctly classify breast cancer patients, identifying
those patients who will benefit of complete ALND or a more conservative Sentinel Node
dissection, avoiding unnecessary invasive treatment [7]. Even more, it is well known
that histopathological data of primary tumor, such as lymphovascular invasion, Ki-67
proliferation index, histological grade, estrogen receptor (ER) status and progesterone
receptor (PgR) status, are predictors of SLN metastasis. However, they are available
postoperatively and cannot be used to guide decisions on performing SLN biopsy [7,8].

In this scenario, MRI has played an evolving role in providing anatomical and func-
tional properties of breast tissues, in a non-invasive way. Findings on MRI such as tumor
size, morphology, shape and enhancement have been shown as significant in differentiating
breast cancer subtypes [9–13]. In particular, several studies have highlighted the value of
dynamic contrast-enhanced MRI (DCE-MRI), identifying it as the main sequence for the
detection and characterization of breast lesions, facilitating treatment choice [13,14]. How-
ever, manual annotation of tumor characteristics is generally limited to a few qualitative
descriptors and is dependent on the operator.

Over the past few years, pilot studies have attempted to correlate the tumor features
extracted from MRI with the molecular subtypes of BC. This filed is relatively new and is
referred to as radiomics, i.e., the conversion of the information contained in medical images
into high-dimensional, mineable and quantitative imaging characteristics, usually referred
to as features or descriptors, via high-throughput extraction of data-characterization algo-
rithms [15,16].

A growing interest is expressed in radiomics research in many fields. However, almost
all previous works focused on breast cancer, correlated histological and radiomics features
of primary tumors and only few works correlate the main breast tumor characteristics with
lymph-node status [13,17–20].

On these premises, the contributions of this work are:

• To demonstrate that a radiomics-based approach can provide a non-invasive approach
for predicting LN metastases useful for clinical practice, which helps identifying those
patients who have certain negative lymph node invasion and can avoid unnecessary
invasive procedure;

• To show that the combination of texture features extracted from anatomical and
functional DCE-MRI images combined with clinical and histological descriptors boost
the performance;

• To explore a large set of radiomics features, including also a 3D extension of Local
Binary Patterns to enrich the description.

The rest of the manuscript is organized as follows: the next section introduces the
materials and the methods, and Section 3 presents the results. Section 4 discusses our
findings, whilst Section 5 provides concluding remarks.

2. Materials and Methods
2.1. Patients

All breast MRI exams performed at the Central Radiology Department of Policlinico
Umberto I, from January 2017 until January 2019 for pre-operative evaluation, were retro-
spectively reviewed. The inclusion and exclusion parameters of the study were defined.
Only the patients having the following characteristics were included: MRI-examination
executed with 3 Tesla magnetic field, post-contrast sequences, mass-like tumors, diagnostic
confirmation of invasive breast cancer by histopathological analysis, complete histolog-
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ical analysis including molecular receptor structure and proliferation index Ki67, final
lymph-node status (ipsilateral axillary cable).

Patients who had breast implants or expanders, patients in post-chemotherapy follow-
up, patients in neo-adjuvant treatment and patients whose images were not of excellent
diagnostic quality were excluded.

For all patients, a written informed consensus was obtained before contrast-MRI execution.
Following the mentioned criteria, a total of 97 breast cancer patients (age range:

37–82 yo; mean age: 55.48 yo) with 99 breast lesions were included in the study (2 bilateral
breast cancer cases, 83 invasive ductal carcinoma (83.8%), 12 invasive lobular carcinoma
(12.1%) and 4 medullary carcinoma (4.0%).

2.2. MRI Examination

All MRI investigations were performed with a 3 Tesla magnetic field with Discovery
750 machinery, from GE Healthcare (Milwaukee, WI, USA), using a breast dedicated 8-
channel coil with patient in prone position [11]. Written informed consensus was obtained
before each procedure by the patient.

After a sequence performed for framing and carried out along the three space orthog-
onal planes, were acquired a T2-weighted single shot fast spin eco (IDEAL), a diffusion-
weighted sequence (DWI) with b values of 0 and 1000 sec/mm2 and T1-weighted 3D
axial sequences, dynamic gradient echo, with fat suppression (VIBRANT), before and five
times after administration of the intravenous contrast medium (Gadobenate dimeglumine),
administered at a concentration of 0.2 mmoL/kg and at a speed of 2 mL/s for a total of
14 mmoL in an ideal patient of 70 kg.

Therefore, “subtracted” images were obtained automatically, using the post-contrast
images to which the mask was removed. All the technical details of the sequences are
summarized in Table 1.

For each lesion, the following features were collected: localization (breast quadrant po-
sition, retro-areolar, upper- or lower-external, upper- or, lower-internal quadrant); margins
(divided in regular, irregular, lobulated and spiculated); maximum diameter (mm), mea-
sured on post-contrast images; contrast enhancement after contrast agent administration,
performed using signal intensity/time curve (type I, with both slow wash-in and wash-out,
type II, depicted as a plateau curve and type III, with both rapid wash-in and wash-out).

2.3. Clinical Data

Specific anamnestic-clinical data for each patient were previously collected and, ac-
cording to them, the population was divided into groups: age, menopausal status (42 pa-
tients in the pre- and 57 in the postmenopausal phase), hormone therapy (10 patients who
have performed at least 3 continuous months of hormone therapy of any kind contracep-
tive, replacement or therapeutic therapy and 89 patients who did not assume any hormone
therapy), familiarity (62 patients without any familiar, 33 patients with one familiar and
4 patients with at least 2 female or male family members affected by breast cancer at
any age).

2.4. Histological Data

The histological examination was performed for all the 99 breast lesion included in
the study. The samples were obtained by core-biopsy or surgery and analysed by an
anatomo-pathologist with more than 15 years of experience. The classification of the
tumor histotype was performed in accordance with the WHO classification. The tumor
histological grade was assigned following the NGS for which a score from 1 to 3 was given
for each of these parameters: tubular formation, nuclear pleomorphism and number of
mitoses. Immunohistochemical analysis was carried out to determine the receptor structure,
Estrogen Receptor (ER), Progesteron Receptor (PgR), Human Epidermal growth factor
Receptor (HER2), and the proliferation index Ki67. ER and PgR expression was considered
as positive when >10%; Her2 was considered as positive when >+2 and ki67 when >14%.
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Table 1. Study protocol adopted for MRI examination.

Sequences Values

Axial T2 IDEAL FSE

TR/TE (ms) 3500–5200/120–135

Matrix 352 × 224

FoV (mm) 370 × 370

NEX 1

Slice thickness (mm) 3.5

Axial EPI DW

TR/TE (ms) 2700/58

Matrix 100 × 120

FoV (mm) 360 × 360

NEX 6

B-values (s/mm2) 0–1000

Slice thickness (mm) 5

Axial T1 VIBRANT

TR/TE (ms) 6.6/4.3

Angle 10◦

FoV (mm) 380 × 380

Matrix 512 × 256

NEX 1

Slice thickness (mm) 2.4
TE: Time of Echo. TR: Time of Repetition. FOV: Field of View. FSE: Fast Spin Echo. EPI DW: Echo Planar Imaging
Diffusion-Weighted. VIBRANT: Volume Imaging for BReast AssessmeNT.

Hence, the following histological data were collected for each tumor: histotype (di-
vided in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), medullary
carcinoma), grading (three groups) and tumor class, basing on hormone receptor expres-
sion and proliferation index (Luminal A: ER+, HER2- and low ki67; Luminal B: ER+, HER2
−/+ and high ki67; HER2 overexpressed; Triple Negative (TN): ER−, PgR−, HER2−).

The status of the axilla was assessed after the diagnosis of breast cancer, analysing
radiologically (ultrasound of the axillary cable in the diagnostic phase and breast MRI
in the staging phase), clinically and then histologically the status of the axillary lymph
nodes during definitive surgery. Then, axillary cable definition consisted of sentinel node
dissection, sampling dissection or total lymphadenectomy, basing on surgeon decision, but
curative in all cases. The patients were simply classified as positive or negative, depending
on whether there was, in the first case, at least one lymph node involved, or, in the second
case, no positive lymph node. The status of the axillary cable defines the so-called final
label, dichotomized into positive LN or negative LN.

In the following sections, we present the method that predicts axillary lymph node
metastasis, therefore being a safe and non- invasive prognostic approach. A schema is
offered in Figure 1, which consists of 4 blocks, numbered I–IV. According to the figure,
next sections first describe the segmentation and the pre-processing approach adopted.
Then, we present the proposed method to compute the quantitative descriptors, i.e., feature
computation, and next we move to feature selection. Finally, we present the classifica-
tion approach.
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Figure 1. Schematic representation of the proposed approach. TR and TE denote the training and the test set, whilst the
subscript e and i stand for external and internal cross-validation, respectively.

2.5. Segmentation and Pre-Processing

This initial step of the method is depicted in the first block of Figure 1. This step
also includes data preparation operations, such as the anonymization. The preparation
of the images was performed on a personal workstation using 3D Slicer (version 4.8), an
open-source software freely available online (http://www.slicer.org, November 2012) [21].
Each case was identified with a progressive identification number (ID). For each tumor,
the subtracted post-contrast T1w-MRI was selected. Since five post-contrast phases were
available, we used the second sequences, because image lesions in the second phase
(60–120 s) had the highest contrast resolution.

At this point, for each case, a label-map was generated. Using manual and assisted
segmentation techniques with the thresholding technique, the lesions were manually drawn
(Figure 2).

Figure 2. Representation of the extraction of a segmentation mask. From left to right: first panel represents an example of
3D image analysed in our dataset which is the second phase of subtracted post-contrast sequence; then, for each 2D slice, we
have the region of interest drawn around the tumour mass and finally the binary mask extracted from this segmentation.

http://www.slicer.org
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The segmentation was initially always performed in the axial projections and subse-
quently remodeled and optimized in the other projections until the lesion was contoured
optimally, avoiding the necrosis when present into the lesion, as shown in Figure 3.

Figure 3. Two cases of breast cancer with positive and negative lymph node axillary involvement at definitive surgery,
respectively. The first (a–c) represented by a 32 mm mass, in 56yo patient with TN CDI tumor characterized by spiculated
margins, heterogeneous enhancement with a necrotic core and a signal/intensity curve type 3 at MRI exam. The second
(d–f) is a 13 mm nodule, in a 61 yo patient, LUMINAL A CDI, characterized by irregular margins, heterogeneous enhance-
ment and a signal/intensity curve type 3. The segmentation has been performed in the axial image (a,d), following the
margins and including the spicule characterized by contrast-enhancement. The segmentation was then optimized in the
sagittal (b,e) and coronal (c,f) planes, avoiding the darker part representing the necrosis and the vessels.

Any multifocal or multicenter lesions were also segmented. In the event of a bilateral
tumors, the lesions were attributed to the same patient but to different IDs, considering
them one at a time.

Let us now focus on the segmented slices; we notice that the boundaries of each ROI
are often coarse, affecting the quality of the features when calculated. This can be easily
understood considering that many of the second-order measures presented in the following
are computed from each voxel, considering also the other voxels in its neighbourhood.
Before the feature extraction step, we pre-process the lesions’ contours to obtain a 3D
volume with smoother edges, thus including large part of voxel neighbourhood. This is
performed in two stages. First, we iteratively compute a 3D convex hull (CH), which is
the minimum-volume bounded into a convex polygon and containing the ROI [22]; this
process begins considering all not connected three-dimensional regions segmented using a
default 26-connectivity. Second, all the 3D regions connected using a 26-connectivity are
merged into a single volume, determining a new global CH. Such technique iterates until
there are no more CHs left to merge, i.e., until the algorithm converges.

The CHs obtained so far are considered the definitive ROIs (Figure 4 depicts an
example) and from these volumes we extract the features defined in the next subsection.

It worth noting the double benefit of applying of the described algorithm. Indeed, it
is able to remove all the “outliers” from the ROI, i.e., all sub-volumes that are not large
enough to delineate a CH. Moreover, the final volume integrates a slightly larger region
surrounding the lesion, thus including all those voxels considered after the conversion
of the ROI into a three-dimensional convex shape, and such extra tissue can bring useful
quantitative information on how the tumour infiltrates during growth.
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Figure 4. Four pre-processing examples. Left side halves: Bifocal lesion localized at upper-external quadrant, characterized
by spiculated margins and IS/T curve. Right side halves: in pink, we highlight the original segmentation and, in blue, the
convex hulls obtained.

2.6. Feature Computation

In addition to the clinical data and the histological data presented in the materials,
this work leverages on several radiomic features that can be divided into first-order and
texture features. According to Figure 1, this step is performed in the second block. Texture
measures, in turn, are derived from the 3D Gray Level Co-occurrence Matrix and from the
Three Orthogonal Planes-Local Binary Patterns. Next will be described each feature group.

2.7. First-Order Features

They are based on counting of the image voxels grouped by their grey level and,
therefore, they measure the intensity density distribution of the ROIs. The literature
has shown that humans are mostly sensitive to the light distribution of pixels in images
and are better able to discriminate their differences when considering such characteristic
rather than others: this is because the first order features are usually referred to as human
inspired descriptors. In practice, we extracted the histogram from the 3D ROI and then
we computed 12 characteristics up to the fourth-order moments, which are: the mean,
the standard deviation, the skewness and the kurtosis. In addition, from the histogram,
we also extracted the width, the entropy, the energy, the value of the histogram absolute
maximum and the corresponding grey-level value, the energy around such maximum and
the number of relative maxima in the histogram and their energy. More details and the
definitions of all the features are available in the paper by Cordelli et al. [23].

2.8. 3D Gray Level Co-Occurrence Matrix Features

Usually, healthy tissues and tumours have different textures. Therefore, a deeper
focus on the relative distribution of voxels within a ROI rather than simply counting them
can reveal many details that can be used as a measure of its microstructure. To this goal, for
each ROI we computed the 3D grey level co-occurrence matrix (GLCM3), i.e., a well-known
image transformation that captures such a distribution as it can be considered the 3D
generalisation of the more popular planar GLCM.
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Let us denote with I a 3D greyscale image, and consider a Cartesian reference system
O(x, y, z). If we position the origin of the reference system in the upper left corner of I,
the position of all its voxels is given by the vector p = px î + py ĵ + pz k̂, with px, py and
pz ∈ N, and î, ĵ, k̂ are the direction vectors of the axes. We also denote a displacement
vector d = dx î + dy ĵ + dz k̂, with dx, dy and dz ∈ N. If we define m equal to the number
of bit used to represent I, a GLCM3 is a square matrix of size N = 2m, where each entry
(gi, gj), with both gi and gj ∈ [0, 2m − 1], represents the number of times a voxel in p
with intensity gi is separated by a displacement d from another voxel with intensity gj,
therefore located in p + d. Denoting as dh the h-th component of d, to assess all possible
directions, we considered the combination of dh ∈ {−1, 0, 1} as displacements, without
considering the (0, 0, 0) vector yielding to 26 different displacement directions. More details
on GLCM3 are reported by Sebastian et al. [24]. As last step, from each GLCM3 we compute
7 measures, namely the autocorrelation, homogeneity, entropy, energy, covariance, inertia
and absolute contrast [25]. Concatenating such GLCM3 measures we get 26 × 7 = 182
textural descriptors for each ID.

2.9. Three Orthogonal Planes-Local Binary Patterns Features

This descriptor is a generalization of well-known planar Local Binary Pattern (LBP)
and, although relatively new in radiomics, it can be applied to a three-dimensional image.
Now we first presents a brief summary of the original LBP’s concepts and, then, we will
introduce the 3D descriptor.

Denoting again a generic 2D image with I, if we consider each pixel p, it is possible
to compare its intensity Ip with the intensities of all its j-th neighbours pixels laying on a
circle centred in p and with radius r. The i-th pixel is set to 1 if Ij > Ip, 0 otherwise. The
next step is to process all neighbours of p in a circular fashion, read the resulting sequence
of 0 s and 1 s as a binary string and encode the value of p to the equivalent decimal value.
In practice, all the pixels in I are processed following this procedure to obtain an image
encoding all the intensity distributions of the pixels with respect to their neighbours. Using
this descriptor, we thus grasp part of textural information contained in I. Finally, notice
that, if we denote with P the number of local neighbours that surround the central point p,
the number of patterns for this planar LBP implementation is 2P.

In order to extend this approach to a three-dimensional environment, in [26] the
authors presented a solution that considers an helicoidal neighbourhood for each voxel.
However, this produces 23P+2 patterns; to avoid this computational burden, we introduce
another 3D implementation of LBP transformation that considers the co-occurrence on
three orthogonal planes crossing the center of the analysed volume, as detailed in [26].
This method is named Three-Orthogonal-Planes LBP (TOP-LBP) and computes three 2D
LBPs, one for each plane, and the obtained histograms are concatenated to obtain a unique
representation for the specific volume. This conspicuously alleviates the computational
load, since the number of patterns for TOP-LBP is 3 × 2P. Furthermore, in our LBP
implementation, we consider two more variants to cope with other two issues of 2D LBP
definition. First, we computed rotation invariant LBP, i.e., all binary strings obtained as the
circular shift of a fundamental string are considered the same. Second, we implemented a
uniform version of LBP, i.e., all binary strings containing more than two crossings from 0 to
1 or from 1 to 0 are considered not uniform and coded with a specific string. In our case,
setting P = 8, we get 48 features by computing first-order measures from each histogram of
the three 2D LBP.

2.10. Feature Selection

One of the main goals of radiomics is to find a signature, i.e., the set of all those
features with the highest discriminative power for the task at hand. Moreover, this is also
beneficial for the learning phase of a classification algorithm, as reducing the number of
features to be considered reduces the risk of the curse of dimensionality. To this goal, we
searched for the most discriminative features by using a wrapper (third block of Figure 1).
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This feature selection method is known for being able to find dependencies between the
descriptors and, at the same time, it exploits the interaction between the subset of features
to be found and the model selection itself [27]. In fact, after determining a search method
for all possible subsets of features, it evaluates them by training and then testing a specific
classification model.

We used the Random Forest (RF) as a learning paradigm evaluating the feature subsets
by maximizing the area under the curve of the receiving operator (AUC-ROC). The reason
for selecting the RF is its ability to work with both qualitative and quantitative features, its
capacity to reduce the risk of data overfitting, and the fact that it can also handle datasets
with a large number of characteristics. Furthermore, for all its parameters, we used the
default values provided by the Matlab library, without any fine tuning. Indeed, we were
not interested in the best absolute performance and, also, it has been empirically observed
that in many cases the use of tuned parameters cannot significantly outperform the default
values of a classifier suggested in the literature [28].

With regard to the subset exploration strategy, it is worth noting that we set the
wrapper to work with the best first search by proceeding with nested cross-validation
to evaluate the model. This approach ensures that the performance of the model during
validation is not affected by a possible favourable split of the data into training and testing,
and thus eliminates any bias in the final performance evaluation since the outer test set was
never used in the wrapper model evaluation, as also shown in the third block in Figure 1.

In practice, in each cycle of external cross-validation all samples are divided into
a training set and a test set. Then, in the feature selection we take into account only
the training samples and apply an additional five-fold internal cross-validation to them.
On each inner loop, we test several subgroups of Fm features, where each subgroup is
composed of the first m features of the whole pool.

Finally, for constructing the radiomic signature, we consider only those features that
are selected at least 20% of times in the nested cross-validation experiments described so
far. The purpose of this approach is two-fold: first, in this way a balance is maintained
between the discriminative power of Fm and the risk of overfitting, also reducing the curse
of dimensionality which, although mitigated thanks to the use of RF, still remains partly
present; second, the validity of this method has been experimentally determined in some
preliminary tests, omitted here in order not to burden the discussion. In conclusion, this
procedure returned the final set of 15 features shown in Table 2.

2.11. Classification and Model Construction

The fourth and last block in Figure 1 depicts the final classification stage, which
provides the resulting performance when using a RF as classifier. As before, we set its
parameters to the default values. In order to cope with the class imbalance in the dataset
we introduce a misclassification cost making the algorithm cost-sensitive. Let us recall that
cost sensitive learning is one of the three main approaches that can be used to address class
imbalance, a.k.a. class skew, which is the problem of having a disproportionate training
set among different classes. This issue arises since traditional learning algorithms are
designed to minimize errors over the majority samples, ignoring or paying less attention
to instances of the minority classes, and this usually results in poor predictive accuracy
over the minority ones. The predicted label will assume values of 0 in case of negative
axillary involvement, and 1 in case of positive axillary involvement. On this basis, in the
following, we consider an error cost matrix that sets to 0.59 the cost of false negative errors
(FN error = 0.59) and we set to 0.41 the cost of wrongly classifying a negative lymph node
into a positive one (FP error = 0.41). Straightforwardly, no penalties are set in the case of a
correct prediction. The rationale lies in observing that improperly indicating the presence
of a LN metastasis is less dangerous than wrongly indicating its absence, since in the latter
case the patient will be no further treated; we account for this by setting misclassification
cost to 50% more than the value of the other one.
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Table 2. The final feature set.

Histotype Semantic

Energy around relative maxima 1st order

Energy around absolute maximum 1st order

Energy in direction (−1.1.0) GLCM3

Energy in direction (0.−1.1) GLCM3

Energy in direction (0.−1.−1) GLCM3

Energy in direction (0.−1.1) GLCM3

Inverse in direction (−1.0.0) GLCM3

Inverse in direction (1.−1.1) GLCM3

Inverse in direction (−1.0.−1) GLCM3

Range LBP-TOP

Range U LBP-TOP

Range U RI LBP-TOP

Number of relative maxima RI LBP-TOP

Energy around relative maxima RI LBP-TOP
U—uniform. RI—rotation invariant.

We performed all the experiments in ten-fold cross-validation, using different ran-
domly generated partitions when cycling over the inner loop with respect to the outer
cross-validation loop of the feature selection. This approach as well as not using the outer
test partition in the feature selection stage, avoids any bias into the final classification model.

Finally, in order to quantify the results obtained in all the outer folds and, therefore,
evaluate the overall classification performances, we built the ROC and computed the
underlying area (AUC).

3. Results

In this study, 97 breast cancer patients with 99 breast lesions were enrolled (2 patients
had bilateral breast cancer). The average age of the entire cohort was 55.48 years. There
were 27/99 axillary cables confirmed as ALN positive metastases and the rest 72/99
as negative.

The clinical and pathological characteristics of the patients are summarized in Table 3.
For the sake of presentation, the proposed radiomic approach is divided into specific

steps as shown in Figure 1. After the feature selection, a signature of 15 features that lead
to the final results was individuated. The selected features were 14 radiomic features and
one semantic.

These features were used to build the classifier, whose performance is shown in the
first row of Table 4. Our classifier achieved a sensibility and specificity of 86% and 74%,
respectively. To deepen the results, we perform additional experiments by investigating
one group of features at a time. Hence, we obtained four features groups (1◦ order, GLCM3,
LBP-TOP and semantic features) in addition to the signature used to build the proposed
classifier. The sensibility and specificity calculated by each feature group were 85% and
48% for 1◦ order features, 79% and 52% for GLCM3 features, 69% and 41% for LBP-TOP
features and 97% and 11% for semantic features, respectively.

The accuracy and the AUC obtained by the proposed method and by each features
class considered are reported in Table 4. Furthermore, Figure 5 shows the ROC curve.
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Table 3. Main frequencies for the various semantic classes analyzed.

Class Group Frequency Percentage

Familiarity

none 62 62.6

1 fam 33 33.3

>1 fam 4 4.0

HT
no 89 89.9

yes 10 10.1

Menopause
no 42 42.4

yes 57 57.6

IS curve/T

I 3 3.0

II 53 53.5

III 43 43.4

Margins

regular 3 3.0

irregular 46 46.5

lobulated 30 30.3

spiculated 20 20.2

Histotype

IDC 83 83.8

ILC 12 12.1

Medullary 4 4.0

Grading

1 12 12.1

2 45 45.5

3 42 42.4

Class

Luminal A 39 39.4

Luminal B 35 35.4

Her2 9 9.1

TN 16 16.2

Table 4. Metrics that describe the various accuracies considering each feature class stand alone and the proposed approach,
obtained by the combination of all the features classes.

Features TP (%) FP (%) TN (%) FN (%) Accuracy ROC Area

Proposed 62 (89) 7 (11) 20 (67) 10 (33) 0.828
(95% CI, 73.6% to 92.0%)

0.856
(95% CI, 77.5% to 93.7%)

Clinical 71 (75) 24 (25) 3 (75) 1 (25) 0.748
(95% CI, 70.2% to 79.4%)

0.533
(95% CI, 45.7% to 60.9%)

First order 61 (81) 14 (19) 13 (54) 11 (46) 0.748
(95% CI, 66.6% to 83.0%)

0.665
(95% CI, 58.4% to 74.6%)

GLCM3 57 (83) 13 (17) 14 (48) 15 (52) 0.717
(95% CI, 64.1% to 79.3%)

0.763
(95% CI, 65.4% to 87.2%)

LBP-TOP 50 (76) 16 (24) 11 (33) 22 (67) 0.616
(95% CI, 54.2% to 69.0%)

0.618
(95% CI, 53.0% to 70.6%)

Where TP = True Positive. FP = False Positive. TN = True Negative. FN = False Negative. ROC = Receiver Operating Curve.
CI = Confidence Interval.
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Figure 5. The chart shows the ROC curve which is representative of the classifier performance.

4. Discussion

In the literature, it is well known that the condition of the axillary lymph nodes in
breast cancer patients is one of the most important prognostic factors in terms of loco-
regional recurrence and overall survival. In this regard, the American College of Surgeons
conducted an important study on 20,547 patients with local or regional disease treated with
radical mastectomy, and identified a recurrence rate of 19% and 49% and 5-year survival
rates without recurrence of 60% and 35%, for patients with negative and positive lymph
nodes, respectively [29]. Given the importance of lymph nodes status, not only for the
prognosis but also in the guide of oncological therapeutic choice, safer and non-invasive
approaches have been investigated for the initial lymph node staging [3,8,20].

Today, we know that radiological images contain much more information than that
which is perceivable and visible to the radiologist. This hidden information can provide
several interesting data about the tissues, data that are quantifiable. As stated by Gillies
RJ et al. in [15], radiomics is based on this principle because it extracts and analyses
large quantities of characteristics, defined as “features”, computed from medical images
routinely acquired.

In this work, we present an approach for providing valid, rapid and non-invasive
support in the prediction of axillary lymph node status, using radiomics features com-
puted from post-contrast MR images associated with patient clinical information and
tumor histology.

To date, there are works on breast radiomics which evaluate its effectiveness in
diagnosis, identification or characterization, prognosis or response to therapy, using the
imaging information produced by different techniques (US, mammography and MRI). The
most recent review on radiomics and breast cancer [16] has only 17 studies. Additionally,
even fewer are the studies which evaluate the use of breast radiomics in predicting axillary
lymph node status. To the best of our knowledge, there are six main papers that have
been published since 2017. All are monocentric retrospective studies, with a population
ranged from 62 to 163 patients with only one work using 411 samples. Our study includes
97 patients with 99 breast lesions, being in the average of the current literary trend. Chai
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et al. analyse the features with and without contrast medium agent sequences and compare
the two derived accuracy and AUC [30], while Dong et al. use only the T2-weighted and
diffusion sequences with the aim of identifying an instrument that prevents the use of the
intravenous contrast medium, obtaining AUC values of 0.770 and 0.787, respectively [19].
Our contribution and all the other work in the literature [13,17,18,20,30] use only contrast
enhanced sequences: this choice is motivated by the results obtained from studies of both
breast radiomics [16,31] and breast MRI [13,14], which identify in the contrast enhanced
sequence the main sequence for detection and characterization of the breast lesion.

Regarding the choice of the contrast enhanced phase, there is currently no consensus
in defining in which phase the extraction of features offers the best forecast. Liu et al.
have applied, for the same purpose of this paper, radiomic features extracted from the first
contrast enhanced phase obtaining an AUC of 0.806 [17]. In our study, instead, the second
contrast enhanced phase was used.

The higher contrast resolution of the contrast enhanced sequences among all the
sequences allows a high definition of the morphological lesion details [14]. Even more,
the use of a high-field magnet, 3 Tesla here, guarantees the production of high temporal
and spatial resolution image [32]. Obtaining high quality images not only allows a more
adequate definition and selection of the features, but reduces the classifier noise.

In our sample of 99 breast tumors, the selection method applied identified 14 quantita-
tive radiomic and 1 semantic features, represented by tumor histological class, correlating
significantly with the lymph node status.

Among the 15 selected features, the most numerous were first and second order ones,
which describe the intensity and textural characteristics of the tumor, representing the
intratumoral heterogeneity and the subtle alterations of the morphology of the tissues. The
selection of tumor histological class and not grading or dimension, as we can it can be
expected, may be explained to the type of wrapper used for the selection. The reason of such
behaviour is probably relied to the multivariate approach of the chosen feature selection
algorithm. In fact, when considering multiple features pools, the discrimination power of
each tested subset is usually outperforming the capability of predicting the correct class
using single features. Therefore, when considering a large set of features mainly computed
from the images, where only a smaller percent belongs to a semantic nature (i.e., the clinical
and histological data), the final signature is reasonably expected to contain only those
semantic features useful to maximize the performance when used in conjunction with the
radiomics features. Another motivation is related to the physiologic tumor behavior since,
as demonstrated by other studies [30], ductal carcinoma is characterized by morphological
and enhancement patterns which are expression of more aggressive behaviour.

Then, the combination of the selected features made it possible to train a classifier
capable of predicting the lymph node status in patients with breast cancer, with an AUC of
0.86. The AUC reported in Figure 5 shows the relation between the true positive (sensitivity)
and the false positive (1–specificity) rates. Our classifier identifies 20/27 TN patients with
a specificity of 74%, which is considered a very good result in comparison with US overall
specificity for palpable and non-palpable LN, which it is based on the LN size criteria
and it ranges between 44.1% and 97.9% [33]. It is interesting to note that the specificity
achieved using only semantic feature is of 11%, indicating the relevance of radiomics as
supporting tool.

An example of how the classifier correctly works is reported in the two cases shown
in Figure 6.

The study has several aspects worth highlighting. The set of analysed images was
acquired in a single center using a single MRI device, repeating the same protocol for all
patients, which allows maximum reproducibility in the extraction and analysis of radiomic
characteristics. Segmentation was performed for all patients by a single radiologist, who
used the same methodology; also the extraction of the features was performed starting
from free commercial software, validated in many previous studies, but modified according
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to the specific study needs, in particular the features analysed included also a 3D extension
of Local Binary Patterns in addition to the best known first-order features, GLCM and LBP.

Figure 6. Example of applicability of the proposed approach. Two cases of invasive breast cancer,
characterized by very similar MRI features (morphology, margin, post-contrast intensity, IS/T curve,
and size and position of the two lesions are comparable) as shown in the left panels. The first case
(first row) is a ductal G3 LUMINAL A carcinoma, in 31yo patient with familiarity, the second one
(second row) is also a ductal G2 LUMINAL A carcinoma, but in 68yo patient without familiarity.
Despite the common MRI and histological features, the produced classifier correctly categorizes the
two patients as positive and negative LN status, respectively.

There are also several limitations: first of all, it is a retrospective study with a relatively
small sample. The provenance of the population from a single medical center limits the
possible generalization and results. A larger cohort of patients, from multiple centers,
is needed for a more rigorous analysis. Secondly, ROIs were drawn manually by the
radiologist, so they are time-consuming and subject to user errors and variability. An
automatic, reliable and validated segmentation method is ideal but not yet available.
Thirdly, it was decided to use only the contrast enhanced sequences. Although these have
been demonstrated to have the best accuracy, we recognize that it could be limiting and, in
any case, lose some important information provided by the other sequences.

5. Conclusions

Our results suggest that histological data and radiomics features can be combined
for the prediction of lymph node metastases, guiding the treatment planning. The results
achieved suggest that they have the potential to impact the clinical practice by offering
to clinicians and to patients the possibility of avoiding invasive procedures such as lym-
phadenectomy or lymph node biopsy in unnecessary cases.
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