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Abstract: Official statistics demonstrate the role of traffic accidents in the increasing number of
fatalities, especially in emerging countries. In recent decades, the rate of deaths and injuries caused
by traffic accidents in Iran, a rapidly growing economy in the Middle East, has risen significantly with
respect to that of neighboring countries. The present study illustrates an exploratory spatial analysis’
framework aimed at identifying and ranking hazardous locations for traffic accidents in Zanjan,
one of the most populous and dense cities in Iran. This framework quantifies the spatiotemporal
association among collisions, by comparing the results of different approaches (including Kernel
Density Estimation (KDE), Natural Breaks Classification (NBC), and Knox test). Based on descriptive
statistics, five distance classes (2–26, 27–57, 58–105, 106–192, and 193–364 meters) were tested when
predicting location of the nearest collision within the same temporal unit. The empirical results of
our work demonstrate that the largest roads and intersections in Zanjan had a significantly higher
frequency of traffic accidents than the other locations. A comparative analysis of distance bandwidths
indicates that the first (2–26 m) class concentrated the most intense level of spatiotemporal association
among traffic accidents. Prevention (or reduction) of traffic accidents may benefit from automatic
identification and classification of the most risky locations in urban areas. Thanks to the larger
availability of open-access datasets reporting the location and characteristics of car accidents in both
advanced countries and emerging economies, our study demonstrates the potential of an integrated
analysis of the level of spatiotemporal association in traffic collisions over metropolitan regions.

Keywords: urban transportation; traffic accidents; spatiotemporal interactions; hazardous locations

1. Introduction

Road accidents are demonstrated to be one of the major sources of injuries and fatalities
worldwide [1–4]. Every year, more than 1.24 million people die on the road, and 50 million
people suffer non-fatal injuries [5]. Traffic injuries are continuously increasing, representing
the ninth cause of death in 1999, and being expected to rank third by 2020 [6,7]. Traffic
crashes have been reported to be a leading injury-related causes of death among people
aged between 15 and 29 years [8–10]. Moreover, these events account for a loss of nearly
1% of Gross National Product in many countries [11]. The share of fatal traffic accidents in
total accidents is particularly high in low- and middle-income countries [12].

Identification of hazardous locations is one of the most important issues when pre-
venting (or containing) traffic accidents. Transportation planners usually identify ‘risky’
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places in an attempt to enhance road safety by undertaking risk reduction actions [13]. The
recognition of ‘risky’ locations or ‘safety black zones’ is the initial step of a comprehensive
‘traffic safety’ analysis [14]. This investigation stage identifies target locations as the earli-
est action of a more comprehensive road safety management strategy [15]. Background
information provides a scientific basis for traffic management and regulation, optimizing
‘safety black zones’. To improve safety, it is necessary to consider every component of
the urban traffic system. Detecting ‘safety black zones’ and analyzing the spatiotemporal
factors affecting car accidents at these sites—as well as undertaking a series of measures to
regulate vehicle traffic at these locations—may reduce the risk of collisions, saving human
and financial resources [16].

Since local mobility and safe transportation are key elements in the development
of safer traffic environments [17], analysis of spatiotemporal interactions among specific
events has become relevant in urban planning and management [18–23]. Spatial and
temporal correlations and relations of traffic crashes have been observed across different
time scales, i.e., years, months, weeks, days, and even hours [15,21,24,25]. Spatiotemporal
correlation profiles in car collisions can be explained with the assumption that several
traffic-related factors exhibit some spatiotemporal features [26–28], e.g., since neighboring
roads have similar traffic flow characteristics and, consequently, accidents are spatially
clustered over defined temporal units. Results of a spatiotemporal analysis of traffic
accidents may become a useful guide for accident management and prevention [20,29–32].

Empirical models have more frequently incorporated a detailed analysis of spatiotem-
poral interactions among traffic collisions with the final aim at improving precision of
statistical estimates and higher prediction capability [33–36]. This goal can be realized
with the implementation of a spatiotemporal investigation of the intrinsic risk associated
with different travel modalities [18]. Assuming spatiotemporal interactions as a basic
factor shaping collision density [37–40], different approaches have been proposed for ex-
plicit analysis of processes interacting over space [13–20]. Given the benefits associated
with a comprehensive knowledge of temporal and spatial correlation among individual
events [31–33], crash (frequency) data were usually aggregated over space and time [16],
which may produce unobserved heterogeneity, as crashes that occur close in space or time
are likely to share some unobserved characteristics [21,41–43].

Methodologies evaluating areal data (e.g., density of collisions over local adminis-
trative domains, such as counties, districts, municipalities and boundaries of local com-
munities/settlements) are relatively common [44], implementing both spatially implicit
and spatially explicit methodologies [45]. Use of spatially explicit approaches in accident
analysis and prevention intensified in the last two decades [46], with the advent of open-
access data, statistical software, and customary geographical information systems [47]. For
instance, descriptive statistics, mapping, and spatial autocorrelation coefficients were exten-
sively adopted when exploring the spatial distribution of road collisions [48–50]. Refined,
geographically weighted estimation methodologies were also occasionally presented and
adopted for analysis of specific cases [51]. Accident seasonality (over days, months, and
years) was also evaluated [52], confirming the importance of both analysis’ dimensions
(time and space).

More recently, Aguero-Valverde and Jovanis [6] developed a spatiotemporal model
for analysis of fatal accidents and injury crashes at the county level under a Bayesian
framework, proposing a flexible approach that evaluates the hierarchical nature of collision
data [37]. Waizman et al. [53] introduced a dynamic micro-simulation approach particularly
useful in prediction and prevention of road collisions at specific hotspots. Despite a
long tradition of study, multivariate spatiotemporal models accounting for unobserved
heterogeneity [54] separately in spatial, temporal, and joint spatiotemporal correlations
among different severity levels, were more occasionally developed [55–58]. Empirical
results of earlier studies confirmed the intrinsic superiority of spatiotemporal models [59]
over alternative random effects and more simplified exploratory approaches [18,60,61].
Given the issues mentioned above, road networks safety and the important (and sometimes



Int. J. Environ. Res. Public Health 2021, 18, 4498 3 of 15

irreversible) physical, psychological, social, and financial damages of collisions, justify
further investigation of spatiotemporal approaches informing (evidence-based) strategies
for the reduction of traffic accidents in urban areas [62].

Iran has one of the highest crash-related death rates in emerging economies (34 cases
out of 100,000 inhabitants) [63]. One out of four casualties in Iran is caused by traffic
accidents [8]. Human failure was reported as the primary cause of death in more than 70%
of such events [64], and the cost of road traffic injuries accounts for 2.2% of gross domestic
product [26]. According to national Forensic Medicine Statistics, one person dies in a traffic
accident every 24 min in Iran and over 200 thousand deaths and injuries happen annually
within the road network (extending only 117 thousand kilometers and including 1017
urban centers). Official statistics indicate that the number of car accidents in the country
has decreased slightly in recent years. While the slow decline in road collisions seems to
be a promising argument, Iran is still one of the most vulnerable countries in the world
as far as traffic accidents are concerned [26]. Collision density is increasingly associated
with urbanization, increasing population in residential settlements, economic growth,
technological development, changing lifestyles, and concentration of private vehicles in
metropolitan regions.

Being reflective of generalized dynamics typical of several cities in the Middle East,
Zanjan—a medium-size city in Iran—has expanded road infrastructures because of the
increase in car ownership and traffic load, as a result of massive (and mostly unplanned)
urban development. Traffic accidents have been (and still are) a key transportation issue
in Zanjan. According to the General Directorate of Roads and Urban Development of the
Zanjan province, more than 350 people die each year in traffic accidents on provincial roads
and more than 950 people are injured and taken to hospitals [65]. The high volume of
private vehicles, the availability of nonstandard accesses to motorways, and the improper
design of roads justify a spatially explicit analysis of urban accidents and the resulting
injuries in this city. Based on these premises, the present study assesses spatiotemporal
interactions among traffic accidents in the city of Zanjan, comparing results from Nearest
Neighbor Indexes (NNI), Kernel Density Estimation (KDE), Natural Breaks Classification
(NBC), and Knox’s model applied to individual records of collisions. A comparative analy-
sis of such methodologies allows a spatially explicit investigation of the spatiotemporal
association among traffic collisions, as a contribution to a refined strategy containing road
accidents in densely populated cities.

2. Methodology
2.1. Study Area

The area investigated in our study corresponds to the administrative boundaries of
Zanjan city (Figure 1), the capital of the Zanjan province, located along the Tehran-Tabriz
road, at an average elevation of 1663 m above the sea level and with a resident population
of more than 430,000 inhabitants (Source: Iranian Statistical Centre). Zanjan was developed
on a narrow plain with a gentle slope from northeast to southwest, so that the elevation
difference along the north–south gradient is about 100 m. Settlement growth in recent times
has been concentrated toward the northern direction due to the topographical position of
the area.

According to the available demographic statistics, the total population of Zanjan
amounted to 20,000 inhabitants in 1869, and increased to 39,450 inhabitants in 1941. Ac-
cording to the first official census, the city had 47,159 inhabitants in 1956. The last census
(2016) enumerated a population of nearly 430,000 inhabitants (Table 1). Zanjan city faces
with traffic problems due to the increased number of private cars. One of the main sources
of traffic collisions is the ineffective system of public transportation. Only four bus lines
and one minibus line circulate within the city boundaries. Private transportation was used
in about 67 per cent of urban trips.
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Figure 1. Location of Zanjan province in Iran (right) and a map of Zanjan city structure (insert).

Table 1. Total population of Zanjan city and urban population of the respective province, Iran in selected years between
1966 and 2016.

Population 1966 1976 1986 1996 2006 2011 2016

Zanjan city population 58,714 100,351 215,261 286,295 349,713 386,851 430,871
Annual population growth rate (%) – 5.5 7.9 2.9 2 2 2.2
Urban population (Zanjan province) 82,599 144,612 317,113 429,013 559,340 634,809 711,177
Zanjan city in total urban population 71.1 69.4 67.9 66.7 62.5 60.9 60.6

Source: Statistical Centre of Iran, 1966–2016.

2.2. Data Sources and Variables

A complete data set reporting road accidents (vehicle collisions) was adopted in
the present study as obtained from the Zanjan Provincial Directorate of Traffic. This file
includes all traffic accidents (n = 1943) occurred within the boundaries of Zanjan city from
October 2014 to October 2015. Road accidents were geo-referenced and individual data
were supplemented with basic information such as road, date, day of the week, and time.
The basic cause of collision was finally recorded.

2.3. Statistical Analysis

A statistical strategy integrating different spatially explicit approaches was presented
in this study with the aim of assessing the (intrinsic) relationship among road accidents
in Zanjan city, considering together space and time dimensions. This strategy included
(i) an automatic (non-parametric) estimation of collision density using Kernel algorithms,
(ii) a nearest neighbor analysis of the spatial structure (clustering vs. randomness) of
car accidents, (iii) a natural breaks algorithm identifying optimal classes describing the
spatial distribution of car accidents in Zanjan, and finally (iv) a Knox test providing an
inferential analysis of spatiotemporal associations among collisions in the study area. These
approaches are described and discussed below in more detail. ArcGIS, SPSS, Excel and
ClusterSeer2.5 software packages were used to analyze individual accident records.

2.3.1. Kernel Density Estimation

Kernel Density Estimation (KDE) is a popular hotspot mapping methodology, con-
verting point observations to a continuous density surface that summarizes the point
distribution [65]. KDE was demonstrated to significantly outperform other statistical tech-
niques in predictive hotspot mapping [17], being mainly used for determination of spatial
point patterns such as geo-referenced location of road collisions. Assessing road accident
hotspots using KDE has become increasingly popular because of its technical advantages
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over other hotspot detection approaches [19,30,43]. Unlike general clustering algorithms,
grouping collision data in an unsupervised manner and determining a continuous den-
sity surface of road collisions are the main advantage of KDE [14]. The following KDE
parameters were adopted in this study:

f̂n =
1

nh

n

∑
i=1

k (
x− Ri

h
), ∀x ∈ R

where n is the sample size, h is the bandwidth, i is the observation, and R is the set of real
numbers, respectively. These values are required for application of Kernel functions [37]
under the following conditions:

Non-negativity: K(x) > 0, ∀x ∈ R
Symmetry: K(x) = K(-x), ∀x ∈ R
Normalization:

∫ −a??
+a?? K(x) = 1

2.3.2. Nearest Neighbor Approach

Nearest-Neighbor Interchange (NNI) is a methodology testing for observations’ ran-
domness or clustering in a given geographical area [66]. The NNI evaluates small-scale
spatial interactions between individual collisions by analyzing, case by case, the nearest
accidents in the data. With this test, the apparent distribution of empirical observations
(i.e., location points) was compared with (i) a random set of observations having the same
sample size and with (ii) an irregular distribution of observations over space. If the re-
sulting statistic is equal to one, the events in the study area are randomly distributed. A
statistic value below 1 indicates the clustered nature of the spatial distribution of observa-
tions. Statistical values above 1 highlight a uniform distribution of observations over space.
Z-scores were used to ensure accuracy in the NNI testing procedure. This test specifies the
difference between the mean distance from the nearest (apparent) neighbor relative to the
mean distance from the nearest (random) neighbor and is calculated as follows:

z =
DO − DE

SE

In this relation, DO (i.e., the mean distance to the nearest neighbor point) was calcu-
lated as follows:

DO =
∑n

i=1 di

n

In addition, DE (i.e., the mean distance from the nearest neighbor assuming a random
point distribution) was calculated as follows:

DE =
0.5√

n
A

where n and A are the number of point events and the surface area of the region, respec-
tively; the Standard Error (SE) was calculated as follows:

SE =
0.26136√

n2

A

SE =
0.26136√

n2

A

(1)

2.3.3. Natural Breaks Classification (NBC)

This algorithm is commonly used to prepare histograms and thematic maps, as well
as being a basic tool for better visualization of spatial data [66,67]. NBC is considered one
of the most common unsupervised methods applied to geo-visualization and spatial data
analysis [68]. It provides an experimental solution for optimal delineation of homogeneous
classes of a statistical distribution by minimizing the sum of the absolute standard deviation
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of each class. The algorithm selects an optimal set of classes calculating the absolute
deviation from the class median; the observations are then transferred to the neighboring
classes to reduce this error. In our study, NBC was used to produce homogeneous distance
classes for the nearest neighbor collisions. Class boundaries were used as critical distances
in the Knox test (see below).

2.3.4. Knox Test

Being one of the most adopted tests for clustering, the Knox test allows a proper
analysis of spatiotemporal interactions [68] using location (and additional attributes) of
point events (road collisions in our case). The Knox test is a simple and widely used
method aimed at providing a practical way to determine relevant thresholds for analysis
of spatiotemporal interactions among point events. In this work, the spatiotemporal
neighborhood status of the studied variable (road collisions) was evaluated on the basis
of a 2 × 2 contingency table, reported below [69], outlining how two events have a
spatiotemporal interaction when they are close to each other in both spatial and temporal
dimensions. More specifically, this test examines the spatial and temporal neighborhood
status of a given process based on a linear measure of proximity. Proximity status was
determined using a neighborhood radius applied to events recorded within the same time
interval. If two accidents fall within a given radius and time interval, they were considered
associated over both time and space (label: 1), otherwise they were labeled as 0. In this
study, distance classes were determined according to an algorithm based on optimal natural
breaks (see above), discriminating classes based on the maximum intra-group similarity
and the maximum inter-group differences. Natural breaks of the nearest neighbor distance
in a given statistical distribution (road accidents in this case) is an appropriate technique
identifying spatial thresholds of a spatiotemporal analysis according to Knox test. The
Knox statistic was calculated as follows:

X =
n

∑
i=1

n

∑
j=1

as
ij at

ij

where n is the total number of events (sample size), δ is a location threshold (or critical
distance) and is the time threshold or critical time.

at
ij =

{
1 if the distance between cases i and j <??

0 otherwise

as
ij =

{
1 if the distance between cases i and j <?′

0 otherwise

at
ij =

{
1 if the distance between cases i and j <??

0 otherwise

Thresholds commonly adopted in the Knox test (see above) were used to determine at
what temporal or spatial interval(s) the null hypothesis is confirmed or rejected.

3. Results
3.1. Descriptive Results

A total of 1943 traffic accidents were recorded in Zanjan city between October 2014
and October 2015. The specific location of 100 accidents was not clear, preventing a specific
investigation of these events that were removed from analysis. The spatial distribution of
1843 accidents recorded within the legal boundaries of Zanjan city was thus investigated
using maps and spatial analysis. The largest number of accidents (41.6% of total collisions)
occurred because of lack of attention to vehicles moving forward. Not respecting the
right way was the cause of 25.7% accidents. A smaller number of collisions (6.9%) was
associated with speeding violations. Sudden change of direction, reverse gear, left turn,
and moving in the opposite direction were at the base of 4.9%, 4.7%, 4.0%, and 3.0% of
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collisions, respectively. Regarding the type of damages, 70.5% of total accidents led to
(more or less) important vehicle damage. Injury-related accidents accounted for 29.3% of
total accidents and 2% were fatal. The largest proportions of traffic accidents were recorded
in October (10.9%), August (9.7%), and July (9.2%). As it was the beginning of school after
a long summer holiday in Iran, traffic volumes increased in October, leading to a significant
rise of collisions (Figure 2). The smallest proportion of traffic accidents was observed in
March (6.4%).

Figure 2. Distribution of road accidents (absolute number) in Zanjan city by month (a), weekday (b) and time (c).

The frequency of road accidents was also relatively stable over weekdays: the highest
proportion of road accidents was recorded on both Saturday and Monday (15.1%); the low-
est proportion was observed on Friday (11.9%). Closure of economic activities (factories),
office centers, and businesses has intrinsically reduced the probability of having a road
collision on Friday. The largest proportion of road accidents took place between 7 p.m. and
9 p.m. (8.2%). The lowest rate of collisions was observed at night, between 3 and 4 a.m.
(0.1%). These results reflect the peak traffic hours in Zanjan city.

Figure 3 illustrates the spatial distribution of traffic accidents by time (four classes
cumulating 6 h of the day each). A high number of accidents occurred downtown along
central hours of the day (6–12 and 12–18), when businesses and office are open (Figure 4).
Evening collisions (18–24) were also observed in suburban districts.

Figure 3. Map of road accidents in Zanjan city by time of the day including four classes that cover
6 h each, namely night (00–06), morning (06–12), afternoon (12–18) and evening (18–24).
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Figure 4. Density of road accidents (per hectare) density by time of the day (four classes covering
6 h each).

3.2. Spatial Analysis

Clustering (or spatial randomness) in the spatial distribution of road collisions was
evaluated based on their temporal distribution along the day. Table 2 illustrates the results
of a nearest neighbor analysis testing for road accidents’ clustering (or randomness) by time
interval. The highest degree of spatial clustering in road accidents was observed between
12 a.m. and 6 p.m. Road accidents were clustered, displaying (i) an average distance
of 79.1 m (the lowest in the sample) and (ii) a negative z-score (−19.8). Road accidents
between 6 p.m. and 12 p.m. ranked second as far as the intensity of spatial clustering is
concerned. The mean distance between accidents’ location was 85.4 m, with a z-score of
−17.7. Clustering intensity decreased for morning collisions (between 6 a.m. and 12 a.m.)
and night collisions (between 0 a.m. and 6 a.m.). Total accidents were definitely clustered
(z-score = −38.1).

Table 2. Results of a nearest neighbor test by time interval.

Interval Number Mean
Distance (m)

Expected
Distance (m)

Nearest
Neighbor Rate Z-Score p-Value Clustering

Rank

Accidents 0 a.m.–6 a.m. 91 241.6 359.5 0.67 −5.98 <0.001 4
Accidents 6 a.m.–12 a.m. 394 111.0 172.8 0.64 −13.57 <0.001 3
Accidents 12 a.m.–6 p.m. 665 79.1 130.3 0.61 −19.79 <0.001 1
Accidents 6 p.m.–12 p.m. 693 85.4 133.0 0.64 −17.66 <0.001 2

Total accidents 1843 42.8 79.9 0.54 −38.13 <0.001 –

Descriptive statistics indicate a mean distance between the nearest neighbor car
accidents of 42.8 m and a standard deviation of 50.1 m; minimum and maximum distances
were 2 m and 364 m, respectively. The spatial distribution of car accidents based on
the distance from the nearest neighbor collision was investigated here considering a few
representative distance classes defined using the natural breaks’ algorithm. This procedure
has identified 5 classes with open boundaries reported in Table 3. The largest number of
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collisions occurred at the smallest distance range (2–26 m). Taken together, about 75% of
road collisions were recorded at a distance less than 57 m, confirming a clustered pattern
of car accidents, especially at major road intersections.

Table 3. Distribution of road accidents by distance to the nearest traffic accident (distance classes
were determined according to the natural breaks criterion.

Class of Nearest Distance
(m) Number of Collisions Per Cent Share in Total

Accidents

2–26 1017 55.18
27–57 375 20.35

58–105 255 13.84
106–192 152 8.24
193–364 44 2.39

Spatiotemporal interactions of road accidents in Zanjan were illustrated in Figure 5
considering spatial thresholds (p < 0.1, <0.05, <0.01) that reflect three levels of significance
(i.e., 90%, 95%, 99% confidence). The blue line in Figure 5 represents a continuous time
trend of the probability value associated with Knox statistic against time. The values of
this line below a give threshold line (green, yellow, red) indicate statistical significance
of such interactions at the same confidence level. Considering a 90% confidence level,
spatiotemporal interactions within a 26 m threshold were all significant for all days of
the month investigated. Spatiotemporal interactions were found also significant at 95%
confidence level for almost all days. A 99% confidence level was observed for spatial
interactions at only four days in a month. Conversely, spatiotemporal interactions for the
57 m threshold were significant at a 90% confidence level only for one day. No significant
spatiotemporal interactions were observed for the 105 m threshold. Considering the 192 m
threshold, significant spatiotemporal interactions at 90%, 95% and 99% confidence levels
were observed for 5, 8 and 4 days of a month, respectively. Considering the 364 m threshold,
significant spatiotemporal interactions at 90%, 95% and 99% confidence level were observed
respectively for 9, 9 and 0 days of a month.

Table 4 summarizes the graphical results of Figure 5 by comparing the total number
of significant interactions by spatial threshold and probability level. The results indicate
that the 26 m threshold had a very high difference with the remaining spatial thresholds
as far as the number of significant spatiotemporal interactions is concerned. The highest
frequency of road collisions car accidents was observed at this small distance range. Using
a strict probability level (99% confidence level), only few interactions were significant at
both small (26 m) and medium–large scale (192 m), suggesting the importance of local
hotspots (e.g., large roads, traffic junctions, insertion of peri-urban motorways into the
urban road network) influencing the probability of a car collision in Zanjan.

Figure 5. Cont.
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Figure 5. Analysis of spatiotemporal interactions in road accidents in Zanjan according to Knox test, by bandwidth range
(m) and spatial threshold.

Figure 6 maps the areas with the highest number of spatiotemporal interactions in
road accidents using the empirical results of Knox test. Ayatollah Dastgheib Street in
Safarabad district, the Sarbaz-e Gomnam underpass on 22 Bahman axis, the intersection
of Tarbiat and Southern section of Shahrak road, 17 Shahrivar intersection (i.e., Amjadieh
intersection), Jihad square (West entrance of Zanjan city), and Shilat square (Moghaddam)
were classified as local hotspots for road collisions, i.e., locations with the highest spa-
tiotemporal interactions of car accidents. This means that such places have the highest
frequency of road accidents at the same time of the day.

Figure 6. Spatial distribution of high spatiotemporal interactions of car accidents in Zanjan.
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Table 4. Per-month significant accidents’ interactions by spatial threshold and probability level.

Upper Bandwidth
Threshold (m)

Number of Significant Interactions by Confidence Level (out of
30 Total Interactions)

p < 0.1 p < 0.05 p < 0.01

26 30 24 4
57 1 0 0

105 0 0 0
192 5 9 4
364 9 9 0

4. Discussion

Although recent measures of traffic regulation have been adopted in Iran at various
governance levels (e.g., national, regional, local), casualties and injuries caused by vehicle
accidents have increased rapidly. From this perspective, an automatic identification and
classification of risky locations (i.e., local hotspots) for car accidents may contribute to
informing practical actions reducing collisions and the consequent, undesired damages [70].
Geo-referenced data automatically recorded from, e.g., police, local authorities, and other
public actors are a necessary information base for such methodologies. As pivotal knowl-
edge for traffic safety management, the identification of local collision hotspots and ranking
the importance of spatiotemporal interactions in car collisions can provide an accurate map
of locations classified with increased risk for road accidents [71]. This information is also
important for resource allocation and policy-making that contribute to mitigating health
damage and economic losses derived from collisions [72]. The combined delineation of a
spatial and temporal profile of road accidents is particularly appropriate information for
risk classification mapping. In this regard, spatially explicit techniques seem to be relevant
tools when analyzing the intrinsic characteristics of traffic crashes [73].

The present study was carried out with the aim of identifying hazardous locations of
road accidents in a medium-size city in Iran, considering the space and time dimensions
together. We demonstrated how a refined understanding of interactions between these two
analytical dimensions may provide a complete picture of collision distribution patterns
within cities, informing practical guidelines for traffic management [74]. Spatial analysis
identifying local hotspots with high risk of road accidents at specific times of the day may
finally contribute to more effective prevention measures [75]. To reach these objectives,
a largely integrated set of spatially explicit techniques, including nearest neighbor and
natural breaks algorithms and Knox test, were implemented in this study, offering a
simplified procedure to analysis of spatiotemporal interactions in road accidents. This
integrated strategy, and especially Knox test, seems to be more flexible than other clustering
approaches because of the intrinsic ability to delineate joint spatiotemporal thresholds in
the statistical distribution of collisions. The main purpose of a spatiotemporal investigation
of collision interactions intrinsically assumes that a correct and complete classification of
road accident hotspots requires joint identification of locations and time with the highest
frequency of events [76].

Hotspot analysis indicates how, although properly designed, the roads with the most
intense traffic load (such as the ring road, 22 Bahman road and its main intersections,
Sarbaz-e Gomnam underpass, Jihad Square, and Tarbiat intersection) were locations with a
particularly intense collision’s clustering. High speed, vehicle density, unregulated pedes-
trian ways, and car parking on the roadside were factors contributing to increased numbers
of collisions. More effective traffic regulation and specific measures for reducing the risk
of collisions in these locations seem to be rational measures for potentially containing the
occurrence of road accidents.

The empirical results of our study also identify districts with mainly informal settle-
ments (e.g., Islamabad (Safarabad) in the northwestern part of Zanjan) as areas with the
most significant spatiotemporal interactions of traffic accidents in the study area. Such
districts are particularly problematic because of traffic congestion, population density,



Int. J. Environ. Res. Public Health 2021, 18, 4498 12 of 15

and hyper-compact settlements. Our results clearly reconnect collision risk with external
factors, among which urban design is one of the most important, and likely less studied
and planned [77–81]. An improper design of both private and public spaces within the
urban fabric, e.g., with respect to pedestrian crossings, is taken as an indirect cause of
collisions in Zanjan, as well as in many other cities with the same intrinsic (morphological
and functional) characteristics. Informal buildings, spontaneous settlements, unplanned
infrastructures, and a persistent lack of public participation in urban management and
sustainable development strategies are typical issues in cities in the Mediterranean basin
and the Middle East [82–86]. Further investigation is necessary to better document the
relationship between (unplanned) urban design and increased collision risk along road net-
works in (informal) metropolitan regions [87]. A comparative exercise based on a spatially
explicit analysis of distribution and recurrence over time of car accidents in cities with
homogeneous settlement characteristics over a representative time span [88] may definitely
fill this knowledge gap.

5. Conclusions

The present study demonstrated how a spatially explicit analysis may provide a
complete knowledge relevant to practical strategies for traffic management, especially in
cities dominated by informal settlements and deregulated urban expansion. The intrinsic
development of open-access data with more precise geo-referencing of road collisions and
(increasingly rich and complete) ancillary attributes will stimulate continuous improve-
ments in statistical techniques evaluating spatiotemporal interactions in car accidents as
honest (early warning) indicator of collision risk. Identification of local hotspots for road
accidents, creation of maps of collision risk and a refined delineation of temporal profiles of
crash events in urban areas are appropriate tools for informing strategies that may reduce
(individual and community) damage caused by car accidents as a contribution to safe and
sustainable urban landscapes.
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