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One of the very first results about designs over finite fields, 
by S. Thomas, is the existence of a cyclic 2-(n, 3, 7) design 
over F2 for every integer n coprime with 6. Here, by means 
of difference methods, we reprove and improve a little bit this 
result showing that it is true, more generally, for every odd n. 
In this way, we also find the first infinite family of non-trivial 
cyclic group divisible designs over F2.
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1. Introduction

In this paper we adapt very well known difference methods to the construction of 
designs over finite fields. Our main result will be the existence of a cyclic 2-(n, 3, 7)
design over F2 for every odd positive n. It should be noted that in the case n ≡ ±1
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(mod 6) our designs are the same found by S. Thomas [8] a long time ago by means of 
a geometric approach. Anyway our proof is algebraic and completely different; we hope 
it may open the door to new ideas on this topic. In the new case n ≡ 3 (mod 6) we 
get designs which, maybe, are not very nice since they are far from being simple; indeed 
they have 2

n−1
7 blocks repeated 7 times. On the other hand, though “ugly”, these designs 

allow us to get the first infinite class of cyclic and simple group divisible designs over 
finite fields.

Here we give all prerequisites that are necessary for understanding our proof of the 
main result.

Classic 2-designs and group divisible designs

A 2-(n, k, λ) design is a pair (P, B) with P a set of n points and B a multiset of 
k-subsets (blocks) of P with the property that any 2-subset of P is contained in precisely 
λ blocks.

A (mg, g, k, λ) group divisible design, briefly a (mg, g, k, λ)-GDD, is a triple (P, G, B)
with P a set of mg points, G a partition of P into m subsets (groops)1 of size g, and B
a multiset of k-subsets (blocks) of P with the two properties that a block and a groop 
have at most one common point, and any two points belonging to distinct groops are 
contained, together, in exactly λ blocks.

It is clear that a (n, 1, k, λ)-GDD is completely equivalent to a 2-(n, k, λ) design.
An automorphism of a 2-design or group divisible design is a permutation of its 

point-set leaving invariant its block-multiset.
A 2-design or group divisible design is said to be simple if it does not have repeated 

blocks.

Cyclic 2-designs and difference families

A 2-design is said to be cyclic if it admits an automorphism cyclically permuting all 
its points or, equivalently, if it has a cyclic automorphism group acting sharply transi-
tively on the points. It is known that every cyclic 2-design can be described in terms 
of differences [1]. We recall here the difference methods using the notion of an ordinary 
difference family.

If B is a subset of an additive (resp. multiplicative) group H, the list of differences of 
B is the multiset ΔB of all possible differences x −y (resp. quotients xy−1) with (x, y) an 
ordered pair of distinct elements of B. The development of B under H is the collection 
devB = {B ∗ h | h ∈ H} where ∗ is the (additive or multiplicative) operation of H.

Note that if stab(B) is the stabilizer of B under the regular right action of H on 
itself, then devB coincides with the orbit of B replicated |H : stab(B)| times. So devB
coincides with the orbit of B when stab(B) is trivial.

1 Here, following [2], we misspell the word “group” on purpose in order to avoid confusion with the groups 
understood as algebraic structures.
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If F is a collection of subsets of H, then the list of differences and the development 
of F are, respectively, the multiset sums

ΔF :=
⊎

B∈F
ΔB and devF :=

⊎
B∈F

devB.

Definition 1.1. Let H be a group of order n. A collection F of k-subsets of H is an 
ordinary (n, k, λ) difference family if the list of differences of F covers every non-identity 
element of H exactly λ times.

In the following, the adjective “ordinary” will be omitted. The members of a difference 
family are usually called base blocks. Sometimes, as in [2], it is also required that the 
base blocks have trivial stabilizers. We prefer to remove this constraint since it is not 
necessary for the validity of the following well known result.

Theorem 1.2. If F is a (n, k, λ) difference family in a group H, then the pair (H, devF)
is a 2-(n, k, λ) design admitting an automorphism group isomorphic to H acting sharply 
transitively on the points.

So, in particular, the existence of a (n, k, λ) difference family in a cyclic group is a 
sufficient condition for the existence of a cyclic 2-(n, k, λ) design.

Remark 1.1. The design generated by a difference family F is simple if and only if all 
the base blocks of F have trivial stabilizer and they belong to pairwise distinct orbits.

Designs and difference families over F2

As it is standard, we denote by Fn
q the n-dimensional vector space over the field Fq

of order q. The multiplicative group of a field F will be denoted by F∗ and the set of 
non-zero vectors of Fn

q will be often identified with F∗
qn .

The q-analog of a t-(n, k, λ) design – also said a t-(n, k, λ) design over Fq or t-(n, k, λ)q
design – is a collection S of k-dimensional subspaces of Fn

q with the property that any 
t-dimensional subspace of Fn

q is contained in exactly λ members of S. For the survey 
on recent results, we refer the reader to [6]. The most spectacular design over a finite 
field, obtained by Braun et al. [5], has parameters 2-(13, 3, 1)2. Its discovering allowed to 
disprove the longstanding conjecture according to which the only Steiner t-designs over 
finite fields are the trivial ones (spreads).

Here we are interested only in 2-(n, k, λ) designs over F2.

Remark 1.2. Every 2-(n, k, λ) design over F2 is completely equivalent to a
2-(2n − 1, 2k − 1, λ) design (F∗

2n , B) in the classic sense with the crucial property that 
B ∪ {0} is a subspace of the vector space Fn

2 for every B ∈ B.

Indeed, deleting the zero-vector from each block of a 2-(n, k, λ)2 design one gets the 
block-multiset of a classic 2-(2n − 1, 2k − 1, λ) design with point-set F∗

2n .
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For instance, the mentioned 2-(13, 3, 1)2 design is a classic 2-(8191, 7, 1) design where 
the points are the non-zero vectors of F13

2 and where every block is the set of non-zero 
vectors of a 3-dimensional subspace of F13

2 . It is cyclic since it admits F∗
213 as an au-

tomorphism group acting sharply transitively on the points. The authors found it by 
using the famous Kramer-Mesner method and then they proved that it could be also 
obtained from a (8191, 7, 1) difference family.2 Of course this difference family has the 
special property that all its members are subspaces of F13

2 with the zero-vector removed. 
This naturally leads to the following definition.

Definition 1.3. A (n, k, λ) difference family over F2 or, briefly, a (n, k, λ)2 difference fam-
ily, is a (2n − 1, 2k − 1, λ) difference family in F∗

2n with the property that B ∪ {0} is a 
subspace of Fn

2 for every B ∈ F .

The above terminology is justified by the following.

Proposition 1.4. A (n, k, λ)2 difference family generates a cyclic 2-(n, k, λ)2 design.

Proof. Let F be a (n, k, λ)2 difference family. By Definition 1.3, F is a (2n−1, 2k−1, λ)
difference family in F∗

2n and then, by Theorem 1.2, the pair D = (F∗
2n , devF) is a cyclic 

2-(2n − 1, 2k − 1, λ) design. By definition of devF , each block of D is of the form xB
with x ∈ F

∗
2n and B ∈ F . Also, by Definition 1.3, we have that B ∪ {0} is a subspace 

of the vector space Fn
2 so that xB ∪ {0} is a subspace of Fn

2 as well. Thus every block 
of D is a subspace of Fn

2 deprived of the zero vector. This means, by Remark 1.2, that 
D can be seen as a 2-(n, k, λ)2 design. �

We will use the above proposition to reprove and improve an old result by S. Thomas 
[8] about cyclic 2-(n, 3, 7) designs over F2.

Cyclic group divisible designs and relative difference families

Cyclic group divisible designs – namely group divisible designs with an automorphism 
group acting sharply transitively on the point-set – can be also described in terms of 
differences. In particular, some of them are generated by relative difference families.

Definition 1.5. Let G be a subgroup of order g of a group H of order mg. A collection 
F of k-subsets of H is a (mg, g, k, λ) difference family if the list of differences of F does 
not contain any element of G and covers every element of H \G exactly λ times.

One usually says that a difference family F as above is relative to G. It is clear that 
an ordinary difference family in H can be seen as a difference family relative to the 

2 As a matter of fact, there was no need to prove this since it is possible to see that every cyclic 2-(n, k, λ)
design with gcd(n, k) = 1 is necessarily generated by a (n, k, λ) difference family.
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trivial subgroup of H. More specifically, a (v, k, λ) difference family in H is nothing but 
a (v, 1, k, λ) difference family.

Here is the “group-divisible-analog” of Theorem 1.2 [3].

Theorem 1.6. Let F be a (mg, g, k, λ) difference family in H relative to G. Then, if G is 
the set of right cosets of G in H, the triple (H, G, devF) is a (mg, g, k, λ)-GDD with an 
automorphism group isomorphic to H acting sharply transitively on the points.

So, in particular, the existence of a (mg, g, k, λ) difference family in a cyclic group is 
a sufficient condition for the existence of a cyclic (mg, g, k, λ) group divisible design.

The GDD generated by a relative difference family F is simple if and only if all the 
base blocks of F have trivial stabilizer and they belong to pairwise distinct orbits.

We will need the following very elementary fact.

Proposition 1.7. Let F be a (mk, k, k) difference family in H with a base block G that is 
a subgroup of H. Then F \ {G} is a (mk, k, k, k) difference family in H relative to G.

Proof. It is enough to note that ΔG is k times the set of non-identity elements of G. �
Group divisible designs and relative difference families over F2

The q-analog of a group divisible design is a concept very recently introduced in [4]. 
First recall that a g-spread of the vector space Fn

q is a set of g-dimensional subspaces 
covering Fn

q and intersecting each other trivially.

Definition 1.8. Let S be a g-spread of Fn
q and let T be a collection of k-dimensional 

subspaces of Fn
q . The triple (Fn

q , S, T ) is a (n, g, k, λ) group divisible design over Fq, 
briefly a (n, g, k, λ)q-GDD, if any 2-dimensional subspace of Fn

q is either contained in 
exactly one member of S or contained in exactly λ members of T but not both.

Note that when g = 1, then S is necessarily the set of all 1-dimensional subspaces of 
F
n
q and T is a 2-(n, k, λ)2 design.

Remark 1.3. Every (mg, g, k, λ) design over F2 is completely equivalent to a (2mg −
1, 2g − 1, 2k − 1, λ)-GDD with point-set F∗

2mg and the properties that the groops are the 
elements – with the zero-vector removed – of a g-spread, and that each block is the set 
of non-zero vectors of a k-dimensional subspace.

Indeed, deleting the zero-vector from each groop and from each block of a
(mg, g, k, λ)2-GDD one get a classic (2mg − 1, 2g − 1, 2k − 1, λ)-GDD.

Definition 1.9. A (mg, g, k, λ)2 difference family over F2, briefly a (mg, g, k, λ)2 difference 
family, is a (2mg − 1, 2g − 1, 2k − 1, λ) difference family in F∗

2mg with the property that 
B ∪ {0} is a subspace of Fmg

2 for every B ∈ F .
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The above terminology is justified by the following result.

Proposition 1.10. Every (mg, g, k, λ)2 difference family generates a cyclic (mg, g, k, λ)2-
GDD.

Proof. Let F be a (mg, g, k, λ)2 difference family. So, by definition, F is a (2mg −1, 2g −
1, 2k − 1, λ) difference family in F∗

2mg . Let G be the subgroup of F∗
2mg not covered by the 

list of differences of F and let G be the set of cosets of G in F∗
2mg . Then, by Theorem 1.6, 

the triple D = (Fn
q , G, devF) is a cyclic (2mg − 1, 2g − 1, 2k − 1, λ)-GDD. Now note that 

G is the multiplicative group of the subfield of order 2g of Fmg
q . Hence, adding 0 to each 

member of G we get the so-called regular or Desarguesian g-spread. Also, each block of 
devF is of the form xB with x ∈ F

∗
2n and B ∈ F . On the other hand, by Definition 1.9, 

we have that B ∪ {0} is a subspace of F2n so that xB ∪ {0} is a subspace of F2n as 
well. Thus every block of D is a subspace of Fn

2 deprived of the zero vector. We conclude 
that D can be seen as a (mg, g, k, λ)2 design by Remark 1.3. �

The above proposition will allow us to get a cyclic (n, 3, 3, 7)2-GDD for every n ≡ 3
(mod 6).

2. Revisiting and improving Thomas’ result on 2-(n, 3, 7) designs over F2

Here we obtain a (n, 3, 7)2 difference family for any positive odd integer n. Thus, in 
view of Proposition 1.4, we prove the following.

Theorem 2.1. There exists a cyclic 2-(n, 3, 7) design over F2 for every odd positive inte-
ger n.

The above result was already obtained by Thomas [8] in the hypothesis that 
gcd(n, 6) = 1. We first need to recall how the solvability of a quadratic equation 
over F2n can be established using the absolute trace of F2n . This is the function 

Tr : x ∈ F2n −→
n−1∑
i=0

x2i ∈ F2. Some elementary properties of this function which 

could be useful later are the following:

Tr(x) + Tr(y) = Tr(x + y) for all x, y ∈ F2n ;
Tr(x2) = Tr(x) for all x ∈ F2n ;
Tr(1) = 0 or 1 according to whether n is even or odd, respectively.

Here is the well known result concerning quadratic equations in a finite field of char-
acteristic two (see, e.g., [7]).

Lemma 2.2. Let ax2 + bx + c = 0 be a quadratic equation in F2n and let m be the number 
of its distinct solutions in the same field. We have:
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m = 1 if and only if b = 0;
m = 2 if and only if b �= 0 and Tr(acb2 ) = 0;
m = 0 if and only if b �= 0 and Tr(acb2 ) = 1.

The following fact is an immediate consequence of the above lemma.

Lemma 2.3. Let ax2 + bx + c = 0 and αx2 + βx + γ = 0 be two quadratic equations 
in F2n with bβ �= 0. Exactly one of these equations is solvable in F2n if and only if 
Tr(acb2 ) + Tr(αγβ2 ) = 1.

We are now ready to prove our main result.

Theorem 2.4. There exists a (n, 3, 7)2 difference family for every positive odd integer n.

Proof. We first associate with every x ∈ F
∗
2n \ {1} the subspace Sx of Fn

2 generated by 
1, x and x2. Note that these three elements are independent since, in the opposite case, 
we would have x2 +x +1 = 0 which implies x3 = 1. This would mean that x has order 3 
in F∗

2n so that 2n − 1 would be divisible by 3 contradicting the hypothesis that n is odd. 
Thus Sx has dimension three. Now set Bx := Sx \ {0}, hence

Bx = {1, x, x2, x + 1, x2 + 1, x2 + x, x2 + x + 1}. (2.1)

Note that Bx = Bx+1 for every x. It is convenient, anyway, to consider Bx and Bx+1 as 
distinct blocks. Now consider the collection

F := {Bx | x ∈ F
∗
2n \ {1}}

and, for any t ∈ F
∗
2n \ {1}, let m(t) be the multiplicity of t in ΔF .

Let δij(x) be the (i, j) entry in the following table

− 1
x

1
x2

1
x+1

1
x2+1

1
x2+x

1
x2+x+1

x − 1
x

x
x+1

x
x2+1

1
x+1

x
x2+x+1

x2 x − x2

x+1
x2

x2+1
x

x+1
x2

x2+x+1

x + 1 x+1
x

x+1
x2 − 1

x+1
1
x

x+1
x2+x+1

x2 + 1 x2+1
x

x2+1
x2 x + 1 − x+1

x
x2+1

x2+x+1

x2 + x x + 1 x+1
x x x

x+1 − x2+x
x2+x+1

x2 + x + 1 x2+x+1
x

x2+x+1
x2

x2+x+1
x+1

x2+x+1
x2+1

x2+x+1
x2+x −

representing the list ΔBx of quotients of Bx. More precisely, δij(x) is the quotient be-
tween the i-th and the j-th element of Bx in the ordering of (2.1). For every t ∈ F

∗
2n \{1}, 

let mij(t) be the number of distinct solutions in F2n of the equation
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Eij(t) : δij(x) = t

in the unknown x. It is clear that we have

m(t) =
∑
i�=j

mij(t).

Note that Eij(t) can be rewritten as a quadratic equation ax2 + bx + c = 0 with b �= 0
for any pair (i, j) belonging to the 18-set

I = {(1, 6), (1, 7), (2, 5), (2, 7), (3, 4), (3, 7), (4, 3), (4, 7), (5, 2),

(5, 7), (6, 1), (6, 7), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6)}.

Thus mij(t) = 0 or 2 for every (i, j) ∈ I. On the other hand, it is easily seen that 
for all twenty-four pairs (i, j) /∈ I we have mij(t) = 1 since in this case Eij(t) becomes 
either an equation of the first degree or an equation of the form ax2 + c = 0. It follows 
that m(t) = 24 + 2 · r(t) where r(t) is the number of equations Eij(t) with (i, j) ∈ I

which are solvable in F2n . We want to prove that r(t) = 9 for every t. For this, we have 
to show that it is possible to match the eighteen equations Eij(t) with (i, j) ∈ I in such 
a way that, in each match, only one equation is solvable in F2n . Using Lemma 2.3 and 
taking into account the mentioned properties of the trace function, the reader can easily 
check that such a good matching is the following.

E61(t) : x2 + x + t = 0 E71(t) : x2 + x + t + 1 = 0

E16(t) : tx2 + tx + 1 = 0 E17(t) : tx2 + tx + t + 1 = 0

E52(t) : x2 + tx + 1 = 0 E37(t) : (t + 1)x2 + tx + t = 0

E72(t) : x2 + (t + 1)x + 1 = 0 E27(t) : tx2 + (t + 1)x + t = 0

E43(t) : tx2 + x + 1 = 0 E73(t) : (t + 1)x2 + x + 1 = 0

E74(t) : x2 + (t + 1)x + t + 1 = 0 E47(t) : tx2 + (t + 1)x + t + 1 = 0

E75(t) : (t + 1)x2 + x + t + 1 = 0 E25(t) : tx2 + x + t = 0

E76(t) : (t + 1)x2 + (t + 1)x + 1 = 0 E67(t) : (t + 1)x2 + (t + 1)x + t = 0

E34(t) : x2 + tx + t = 0 E57(t) : (t + 1)x2 + tx + t + 1 = 0

Consider, as an example, the third of the above pairs (E52(t), E37(t)). By Lemma 2.2, 
E52(t) is solvable if and only if Tr( 1

t2 ) = 0, while E37(t) is solvable if and only if 
Tr( t+1

t ) = 0. Now, by the properties of the trace function, we have:

Tr

(
1
2

)
+Tr

(
t + 1

)
= Tr

(
1
)

+Tr

(
t + 1

)
= Tr(1) = 1.
t t t t
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Hence, by Lemma 2.3, only one of the two equations E52(t) and E37(t) is solvable in F2n .
We conclude that m(t) = 24 + 2 · 9 = 42 for any t ∈ F

∗
2n \ {1}. This means that F is 

a (n, 3, 42)2 difference family.
Now consider the 2-regular graph Γ with vertex-set F∗

2n \{1} where the two neighbors 
of any vertex x are x + 1 and 1

x . It is clear that the connected components of Γ are all 
the hexagons of the form

1
x+1x + 1

Hx := x

1
x

x+1
x

x
x+1

We note that all blocks By with y lying in the hexagon Hx are in the same F∗
2n-orbit. 

Indeed we already commented that Bx and Bx+1 coincide. Also, the reader can easily 
check that B1/x = 1

x2 ·Bx. It follows that all six blocks associated with the vertices of any 
hexagon of Γ produce the same list of quotients. Then, considering that F is a (n, 3, 42)2
difference family, it is evident that if X is a complete system of representatives for the 
hexagons of Γ, then F ′ := {Bx | x ∈ X} is a (n, 3, 7)2 difference family. The assertion 
follows. �

In the following we will keep the same notation that we used in the above proof. It is 
clear that the design constructed in the above theorem does not depend on the system 
X of representatives for the hexagons of Γ. Recall in fact that Bx = Bx+1 and that 
Bx = x2 · B1/x so that the blocks associated with the vertices of Hx have all the same 
development.

When n ≡ ±1 (mod 6), that is the case also considered by Thomas, our design 
coincides with his design. Indeed our blocks are exactly what he calls special triangles. 
The two descriptions are different since while Thomas’ approach is essentially geometric, 
our approach is purely algebraic.

Now, given x ∈ F
∗
2n \ {1}, we want to show that a block By of the (n, 3, 7)2 difference 

family F is in the same F∗
2n-orbit of Bx if and only if y is in V (Hx), the set of vertices 

of the hexagon Hx. The “if-part” has been already shown in the proof of Theorem 2.4. 
Let us prove the “only-if-part”. Assume that By is in the same F∗

2n-orbit of Bx so that 
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there exists a non-zero field element t such that By = tBx. Such equality implies that ⎧⎪⎪⎨
⎪⎪⎩

1 = tf0

y = tf1

y2 = tf2

with (f0, f1, f2) a triple of distinct elements of Bx. In its turn the above 

system implies that f0f2 + f2
1 = 0. Considering the form of the elements of Bx, we see 

that

f0f2 + f2
1 = c0 + c1x + c2x

2 + c3x
3 + c4x

4

for a suitable quintuple (c0, . . . , c4) of elements of F2, namely x is a zero of the polynomial 
p(z) =

∑4
i=0 ciz

i ∈ F2[z]. First note that p(z) is the null polynomial – namely we have 
ci = 0 for each i – exactly when (f0, f1, f2) and y are as follows:

f0 1 x2 1 x2 + 1 x2 x2 + 1

f1 x x x + 1 x + 1 x2 + x x2 + x

f2 x2 1 x2 + 1 1 x2 + 1 x2

y x 1
x x + 1 1

x+1
x+1
x

x
x+1

So we see that in this case y is a vertex of Hx.
Now assume that p(z) has degree d with 1 ≤ d ≤ 4. In this case the zeros of p(z) lying 

in F2n are in the subfield of order 2gcd(n,d). Considering that n is odd we have either 
gcd(n, d) = 1 or gcd(n, d) = 3. In the first case x should lie in the subfield of order 2, 
i.e., x ∈ {0, 1} which is absurd. In the second case x would be in the subfield K of order 
8 and consequently both Bx and V (Hx) coincide with K∗ \ {1}. It immediately follows 
that y is also in K and then y ∈ V (Hx).

It is clear that the stabilizer of any Bx is a common divisor of 2n − 1 and |Bx| = 7. 
Thus it is always trivial when n ≡ ±1 (mod 6). Instead, for n ≡ 3 (mod 6), Bx has 
non-trivial stabilizer if and only if Bx is the multiplicative group of the subfield K of 
order 8.

The above considerations, together with Remark 1.1, allow us to state the following.

Remark 2.1. The cyclic (n, 3, 7)2 design constructed in Theorem 2.4 is simple if and only 
if n ≡ ±1 (mod 6).

When n ≡ 3 (mod 6), that is the case not considered by Thomas, F2n has a subfield 
K of order 8 and we already commented that for every x ∈ K

∗ the block Bx coincides 
with K∗ (which is also the vertex-set of Hx). Thus, if y is the representative of X in K∗, 
then F ′ is a (2n−1, 7, 7) difference family in F∗

2n with a base block By that is a subgroup 
of F∗

2n . It follows, by Proposition 1.7, that F ′′ := F ′ \ {By} is a (n, 3, 3, 7)2 difference 
family and then, by Proposition 1.10, we can state the following.
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Theorem 2.5. There exists a cyclic and simple (n, 3, 3, 7)2 group divisible design for every 
integer n ≡ 3 (mod 6).

As far as we know this the first infinite family of cyclic GDDs over a finite field.
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