
Partitioned difference families:

the storm has not yet passed

Marco Buratti ∗

Dieter Jungnickel †

June 12, 2021

Abstract

Two years ago, we alarmed the scientific community about the
large number of bad papers in the literature on zero difference balanced
functions, where direct proofs of seemingly new results are presented in
an unnecessarily lengthy and convoluted way. Indeed, these results had
been proved long before and very easily in terms of difference families.

In spite of our report, papers of the same kind continue to prolif-
erate. Regrettably, a further attempt to put the topic in order seems
unavoidable. While some authors now follow our recommendation of
using the terminology of partitioned difference families, their methods
are still the same and their results are often trivial or even wrong. In
this note, we show how a very recent paper of this type can be easily
dealt with.

1 Introduction

We recall that a collection F of subsets (blocks) of an additive group G is
a difference family (DF) of index λ if the list of differences from F , that is
the multiset ∆F = {x − y | (x, y) ∈ B × B;B ∈ F}, covers every non-zero
element of G exactly λ times. If G has order v and K is the multiset of all
the block-sizes, then one says that F is a (v,K, λ)-DF in G. If all blocks
have size k, the DF is said to be uniform, and one writes (v, k, λ) rather than
(v,K, λ). If we have only one block, then this block is said to be a (v, k, λ)
difference set (DS). For general background on uniform DFs and DSs we
refer to [1] and [12], respectively. A DF whose blocks are pairwise disjoint is
said to be disjoint (DDF), and it is partitioned (PDF) if the blocks partition
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G. It is evident that every DDF can be extended to a PDF by adding all
possible singletons {g} which are not contained in one of its blocks. From
the design theory perspective, the PDFs having one block of size k and all
other blocks of size k+1 are of particular interest since they are equivalent to
resolvable 2-designs with an automorphism group acting sharply transitively
on all but one point (see Theorem 2.2 in [6]).

The notion of a PDF was introduced in [7] in view of its application
to optimal constant composition codes. Subsequently, the equivalent notion
of a zero difference balanced function (ZDBF) has been considered, and
this probably caused some confusion. In [4] it has been shown that the
most celebrated results on ZDBFs were known since the 90’s and can be
immediately deduced from the following much more general result:

Theorem 1.1. [4] Let A be a group of automorphisms of order k of a group
G of order v. If the action of A on G \ {0} is semiregular1, then the set F
of A-orbits on G\{0} is a (v, k, k−1)-DDF in G. Moreover, if G is abelian
and vk is odd, F can be split into two (v, k, k−12 )-DDFs.

One of the many consequences of the above result is the disjoint version
of some old DFs due to Steven Furino. In what follows, given an integer
v > 1, we shall denote the ring of order v which is the direct product of
finite fields by Rv. By abuse of language, if we speak of a DF in Rv, we will
mean a DF in the additive group of Rv.

Corollary 1.2. [8] If the prime divisors (resp. the maximal prime power
divisors) of v are all congruent to 1 (mod k), then there exists a (v, k, k−1)-
DDF in Zv (resp. Rv). Under the additional hypothesis that vk is odd, there
also exists a (v, k, k−12 )-DDF in Zv (resp. Rv).

In [5], besides giving four good reasons to prefer PDFs rather than
ZDBFs, we had to point out that despite the work done by the first au-
thor in [4], ZDBF-papers without anything new, except for tremendously
involved proofs in a different setting, continued to proliferate. Anyway, as
the title of the present note says, the storm has not yet passed.

For instance, a very recent 20-page paper [14] claims to present three
new classes of PDFs. However, one of these classes is a trivial consequence
of Theorem 1.1, the second class is a special case of Corollary 1.2, and the
third construction is actually wrong. Moreover, the corrected version of
their third class turns out to be a very special case of a well-known, rather
trivial, construction in design theory.

In their introduction, the authors of [14] comment that our note [5]
deserves full attention. Nevertheless, apart from the terminology, they con-
tinue to apply generalized cyclotomy as in almost all papers dealing with
ZDBFs. It is conceivable that this concept introduced in several papers

1That is, for α ∈ A and g ∈ G \ {0} we have α(g) = g if and only if α = idG.
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such as [15] could have interesting applications. Unfortunately, none of the
three applications given by the authors falls into this category.

In this note we will give a complete analysis of [14], with a twofold aim:
to stop the flood of useless papers in this area, and to encourage researchers
to find new results on this interesting topic, after seriously studying the
established literature on difference sets, difference families, and their related
objects.

2 Analysis of a recent paper on PDFs

The three main results of the paper under investigation [14], displayed in its
Table 1, can be formulated as follows.

Result 1. If v is a product of prime powers all congruent to 1
(mod k(k + 1)), then there exists a (v(k + 1), k, k − 1)-DDF in
Zk+1 ×Rv.

Result 2. If k is odd and v is a product of prime powers all
congruent to 1 (mod 2k), then there exists a (v, k, k−12 )-DDF in
Rv.

Result 3. For any prime power q ≡ 1 (mod e), any m ≥ 3
coprime with e, and any h in the closed interval [1, e], there
exists a (v, k, λ)-DS in Z qm−1

e
× Zh with

v = (qm−1)h
e ; k = (qm−1−1)h

e ; λ = (qm−2−1)h
e .

2.1 Comments on Result 1

Note that our statement of Result 1 arises from the one given by the au-
thors by renaming e − 1 as k. Their hypotheses are much stronger than
necessary, since “(mod k(k + 1))” can be replaced by “(mod k)” and Zk+1

can be replaced by any group (even non-abelian) of order k + 1. Also, the
proof of this strengthened version is very elementary: it is an immediate
consequence of a considerably more general result easily deducible from the
disjoint version of Theorem 4.1 in [9].

Before stating and proving this result, we recall that a (v, k, 1) difference
matrix (DM) in an additive group H of order v is a k × v matrix with
elements in H and the property that the difference of any two distinct rows
is a permutation of H. It is called homogeneous (HDM) if each row is a
permutation of H as well. We note that adding a 0-row to a (v, k, 1)-HDM
gives a (v, k+1, 1)-DM. Conversely, any (v, k+1, 1)-DM can be normalized as
described in [10] to a (v, k+ 1, 1)-DM with a 0-row. Obviously, deleting this
row results in a (v, k, 1)-HDM. Thus a (v, k, 1)-HDM is completely equivalent
to a (v, k + 1, 1)-DM.
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Theorem 2.1. If there exist a (u, k, k − 1)-DDF in G, a (v, k, k − 1)-DDF
in H, and a (v, k + 1, 1)-DM, then there also exists a (uv, k, k − 1)-DDF in
G×H.

Proof. Let A be a (u, k, k − 1)-DDF in G, let B be a (v, k, k − 1)-DDF
in H, and let M be a (v, k, 1)-HDM in H (which exists in view of its
equivalence with a (v, k + 1, 1)-DM). For every A = {a1, a2, . . . , ak} ∈ A
and each j ∈ {1, . . . , v}, consider the k-subset Aj of G × H defined by
Aj = {(a1,m1j), (a2,m2j), . . . , (ak,mkj)}. Now let g be the unique element
of G not covered by the blocks of A and set

F = {Aj | A ∈ A; 1 ≤ j ≤ v} ∪ {{g} ×B | B ∈ B}.

It is straightforward to check that F is the required (uv, k, k − 1)-DDF in
G×H.

In view of the above theorem, in order to obtain Result 1 it is enough to
have the following ingredients:

(i) a (k + 1, k, k − 1)-DDF in Zk+1;

(ii) a (v, k, k − 1)-DDF in Rv;

(iii) a (v, k + 1, 1)-DM in Rv.

The first ingredient is the trivial difference set Zk+1 \ {0}. The second
ingredient is given by Corollary 1.2. The third ingredient is well-known. For
instance, it is easily obtainable by combining Theorems 3 and 4 in [10].

We note that the preceding proof immediately extends to the much
stronger version of Result 1 mentioned above. Also, all necessary ingre-
dients can easily be written down explicitly, so the construction could be
made as direct as desired.

2.2 Comments on Result 2

In their Remark 3, the authors of [14] concede that the parameters of the
DDF mentioned in Result 2 are not new, since they were already obtained
in [4] and [13]. But, according to them, their construction has the advantage
of being direct. While it is true that the construction in [13] is recursive, the
one derivable from the proof of Theorem 1.1 given in [4] is actually as direct
as possible. We now show that the explicit construction can be presented
in a dozen lines. Thus there is no need for several pages of generalized
cyclotomy calculations. As it is standard, Fq and F∗q will denote the field of
order q and its multiplicative group. Also, U(Rv) will denote the group of
units of Rv.
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Explicit construction of the (v, k, k−12 )-DDFs coming from Theorem 1.1.
Let Rv = Fq1 × · · · × Fqt with qi = 2kni + 1. For 1 ≤ i ≤ t, let ωi be

a primitive element of Fqi , and let A be the subgroup of order k of U(Rv)

generated by (ω2n1
1 , . . . , ω2nt

t ). For 1 ≤ i ≤ t, set Si = {ωji | 1 ≤ j ≤ ni}.
The set C of the associate classes2 of Rv is in one-to-one correspondence
with the power-set of {1, . . . , t}: the members of C are precisely all sets of
the form C = C1 × · · · × Ct where each factor Ci is either {0} or F∗qi . For
every non-zero C ∈ C, choose a non-null factor Ci of it, and let σ(C) be

the subset of C of size |C|2k obtained from C itself by replacing the chosen Ci

with the set Si. Set X =
⋃
C∈C∗

σ(C) where C∗ is the set of non-zero classes

of C. Then F = {xA | x ∈ X} is the desired (v, k, k−12 )-DDF.

Example. Let v = 1729 and k = 3. We have Rv = Fq1 × Fq2 × Fq3 with
(q1, q2, q3) = (7, 13, 19). Thus qi = 2kni + 1 with (n1, n2, n3) = (1, 2, 3).
Take the primitive elements ωi as follows: (ω1, ω2, ω3) = (3, 2, 2). Then A is
the group of units of order 3 generated by the triple (32, 24, 26) = (2, 3, 7),
i.e., A = {(1, 1, 1), (2, 3, 7), (4, 9, 11)}. The non-zero associate classes of Rv
are:

F∗7 × {0} × {0}; {0} × F∗13 × {0}; {0} × {0} × F∗19;

F∗7 × F∗13 × {0}; F∗7 × {0} × F∗19; {0} × F∗13 × F∗19;

U(Rv) = F∗7 × F∗13 × F∗19.

Following the instructions of the proof given above, the related σ(C) can be
taken as follows:
{3} × {0} × {0} = {(3, 0, 0)};
{0} × {(2, 4)} × {0} = {(0, 2, 0), (0, 4, 0)};
{0} × {0} × {2, 4, 8} = {(0, 0, 2), (0, 0, 4), (0, 0, 8)};
{3} × F∗13 × {0} = {(3, i, 0) | 1 ≤ i ≤ 12};
{3} × {0} × F∗19 = {(3, 0, i) | 1 ≤ i ≤ 18};
{0} × {2, 4} × F∗19 = {(0, i, j) | i = 2, 4; 1 ≤ j ≤ 18};
{3} × F∗13 × F∗19 = {(3, i, j) | 1 ≤ i ≤ 12; 1 ≤ j ≤ 18}.
If X is the union of the above sets, then {xA | x ∈ X} is a (1729, 3, 1)-

DDF in R1729.
It is worth noticing that there is a huge number of other possible choices

for X. Only the method described above gives 24 possibilities since we
may change the choices of some related σ(C). For instance, if C is the
fourth associate class F∗7 × F∗13 × {0}, as related σ(C) we could also take
{(i, j, 0) | 1 ≤ i ≤ 6; j = 2, 4}.

2Two elements a, b of a ring with identity R are associates if b = au for a suitable
unit u. Being associates is an equivalence relation whose equivalence classes are called the
associate classes of R.
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2.3 Comments on Result 3

In [14], Result 3 is stated in terms of a PDF with just one non-singleton
block. This realizes what we have privately been fearing for some time:
difference sets are translated to PDFs or ZDBFs. We strongly discourage
to use this approach, as it is not helpful for the study of difference sets.
Research on these objects has a long tradition, and the extensive literature
on difference sets contains a substantial number of deep results. To get an
idea of the complexity and wealth of the subject which had already been
reached by 1999, the reader might have a look at the 170 page chapter on
difference sets in [2]. Needless to say, there has been considerable further
progress since then.

Apart from these general reservations, Result 3 is unfortunately wrong.
It actually holds only for the special case (e, h) = (q − 1, 1), which corre-
sponds to the class of Singer difference sets – probably the best known and
truly classical examples of difference sets. On the other hand, it is easy to
see that it fails for all other pairs (e, h). Assume otherwise. Then we would
have two difference sets whose parameter triples (v, k, λ) and (vµ, kµ, λµ)
are distinct and proportional3. Let us show that this is never possible unless
(v, k, λ) is the trivial triple (k, k, k).

If D is a (v, k, λ)-DS and D′ is a (vµ, kµ, λµ)-DS, then the trivial iden-
tities (obtained by counting differences in two ways)

λ(v − 1) = k(k − 1), λµ(vµ− 1) = kµ(kµ− 1)

hold. Dividing the second identity by µ and then dividing the first identity
by the second, we obtain v−1

vµ−1 = k−1
kµ−1 which gives (v − 1)(kµ− 1)− (vµ−

1)(k−1) = 0. Expanding the left hand side, we finally have (v−k)(µ−1) = 0
which means that either v = k, that is (v, k, λ) = (k, k, k), or µ = 1. (Of
course, the same argument applies to symmetric designs in general.)

As an illustration of their Result 3, the authors of [14] consider the case
q = m = 4, e = 3 and h = 2, see their Example 3.10. They claim that
this gives a (170, 42, 10)-DS, and they explicitly display a 42-subset D of
Z170

∼= Z85 × Z2, inviting the reader to check its correctness by using a
computer. However, the list ∆D of differences from D actually covers every
element of Z170 \{0, 85} exactly 10 times, whereas the involution 85 appears
precisely 42 times as a difference.

It is really a pity that they did not realize that the triple (170, 42, 10) is
not admissible; in that case, they would have discovered this awful mistake.
Actually, one does not even need a computer check to see that the example
presented is not correct: just looking at the set D, one quickly notices that it
has the form A∪ (A+85), where A is a 21-subset of Z85, which immediately
explains why 85 appears precisely 42 times as a difference.

3One triple is (v, k, λ) with v = qm−1
q−1

, k = qm−1−1
q−1

, λ = qm−2−1
q−1

, and the other triple

is (v, k, λ) multiplied by µ = h(q−1)
e

.
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3 Some remarks on divisible difference sets

In this final section, we wish to point out that it is easy enough, even if only
marginally interesting, to give a corrected version of Result 3. The incorrect
specific Example 3.10 in [14] in reality gives a divisible difference set (DDS)
with parameters

m = 85, n = 2, k = λ1 = 42 and λ2 = 10

in Z170. Let us recall the definition of these objects.
A divisible difference set with parameters m, n, k, λ1 and λ2 (for short,

an (m,n, k, λ1, λ2)-DDS) in an (additively written) group G of order mn
relative to a normal subgroup N of order n is a k-subset D of G such that
every element g ∈ G \N has exactly λ2 representations as a difference g =
d− d′ with d, d′ ∈ D, whereas every element g 6= 0 in N has exactly λ1 such
representations. Again, such objects have been studied quite extensively,
with particular emphasis on relative difference sets, that is, the special case
λ1 = 0.

We suggest the old paper [11] by the second author as an extended
introduction to various aspects of this area. In particular, it should be
noted that divisible difference sets correspond to square divisible designs
with a Singer group, just as ordinary difference sets correspond to symmetric
designs with a Singer group. Using the DDS terminology, the corrected
version of Result 3 reads as follows:

Result 3*. For any prime power q ≡ 1 (mod e), any d ≥ 3
coprime with e, and any h in the closed interval [1, e], there
exists an (m,n, k, λ1, λ2)-DDS in Z qd−1

e

× Zh with

m = qd−1
q−1 ; n = h(q−1)

e ; k = λ1 = h(qd−1−1)
e , λ2 = h(qd−2−1)

e .

Again, the use of generalized cyclotomy just leads to a lot of entirely super-
fluous restrictions, while simultaneously obscuring the true reason behind
the result. In fact, Result 3* is an extremely special case of the following
simple observation (applied to the classical Singer difference sets).

Theorem 3.1. If there exists an (m, k, λ)-DS in G, then there also exists an
(m,h, kh, kh, λh)-DDS in G ×H, where H may be any (even non-abelian)
group of order h.

Proof. Let S be any (m, k, λ)-difference set in G and put D := S × H.
It is straightforward to check (either directly, or via a short group ring
computation) that D is the desired DDS in G×H.

Actually, Theorem 3.1 is not really interesting, even if it should be new,
as it is just the difference set version of an old result on divisible designs.
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In general, divisible designs with r = λ1 (that is, k = λ1 for the square case
in which we are) are said to be singular. A 1952 result by Bose and Connor
[3] states that all singular divisible designs are equivalent to 2-designs, with
each point taken n times; in the difference set setting, this translates into the
construction just presented. Perhaps this has never been stated explicitly,
because singular divisible designs are usually considered to be trivial, but it
is at least folklore. We note that virtually every paper on divisible designs
immediately excludes the singular case, for obvious reasons.

Of course, divisible difference sets are not pertinent to the topic of PDFs
and ZDBFs anyway, as they have two distinct λ-values. Let us express our
fervent hope that no new research trend will be started by using generalized
cyclotomy to construct “PDFs (or ZDBFs) with more than one λ-value”.
Unfortunately, in view of our experiences over the past years, we cannot be
entirely confident about this.
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