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Abstract: Wavelet scattering is a redundant time-frequency transform that was shown to be a
powerful tool in signal classification. It shares the convolutional architecture with convolutional
neural networks, but it offers some advantages, including faster training and small training sets.
However, it introduces some redundancy along the frequency axis, especially for filters that have
a high degree of overlap. This naturally leads to a need for dimensionality reduction to further
increase its efficiency as a machine learning tool. In this paper, the Minimum Description Length is
used to define an automatic procedure for optimizing the selection of the scattering features, even
in the frequency domain. The proposed study is limited to the class of uniform sampling models.
Experimental results show that the proposed method is able to automatically select the optimal
sampling step that guarantees the highest classification accuracy for fixed transform parameters,
when applied to audio/sound signals.

Keywords: signal classification; minimum description length; support vector machine; wavelet
scattering

1. Introduction

Wavelet scattering [1–3] is a time-frequency transform that is able to better represent
signal characteristics due to the use of a recursive chain. The latter consists of a constant-
Q factor wavelet decomposition, a non-linear operation (namely absolute value) and a
lowpass averaging filtering for each layer. It is a deep convolutional operator where filters
are given instead of being learnt. The Wavelet Scattering Transform (WST) was originally
derived from the MEL spectrum decomposition for audio/speech signals processing. It
is shift invariant, stable to deformations and non-expansive; as a result, the depth of the
network can be limited, as most of the signal energy is concentrated in the first layers.
In addition, it allows for a fast implementation. Even though each task requires ad hoc
neural network architectures, WST provides useful features that can be an optimal input
for specific classifiers or for Convolutional Neural Networks (CNN) themselves [4–9],
especially for sound signals. In fact, it overcomes some limitations of Mel Frequency
Cepstral coefficients (MFCC) thanks to the CNN-like structure; on the other hand, it
allows us to reduce the depth of a deep neural network (DNN) thanks to the compact
representation of the significant signal time-frequency structures. For example, for acoustic
scenes classification, WST can work better than the baseline CNN when properly combined
with a specific classifier—Support Vector Machine (SVM) is used in [4], while two ensemble
classifiers are employed in [6]. Similar conclusions are drawn in [10], where WST and SVM
are used to successfully classify alcoholic EEG signals, resulting a compelling alternative
to CNN-based classification. On the contrary, hybrid architectures, i.e., WST as input
for a CNN, guarantee a significant reduction in the number of parameters to be learnt,
as shown in [5], where this hybrid architecture has been successfully exploited for speaker
identification using a small number of samples as training set.
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In CNN architectures, stride is one of the parameters to be set. It is necessary to reduce
the data to process at each layer, reducing the computational complexity and eliminating
some redundancies that can make the training process more complicated and misleading.
While stride is automatically applied by WST in the time domain, the intrinsic redundancy
of the transform in the frequency domain could provide too much information, which
can be discarded in some cases without affecting the final result. With regard to this
point, some papers studied the influence of each layer of the transform in the classification
process. In particular, in the pioneering and seminal papers [1,11], the dependence of the
classification error on the number of layers has been analysed, and it has been shown
that the error does not decrease significantly when using a number of layers greater than
three. The more recent study presented in [12] gave evidence of the benefit of using
normalized scattering coefficients by exploiting their natural parent–child relationships.
Based on the standard data reduction problem [13–16], some others approaches tried to
preserve useful scattering coefficients, such as, for example, [17–19]. In this case, Principal
Component Analysis (PCA), multidimensional scaling (MDS) and random sampling have
been used to reduce the dimension of the scattering feature matrix, while guaranteeing
nearly comparable classification accuracy. More precisely, in [18], the problem of arrhythmia
classification in ECG signals has been addressed; PCA has been combined with some
classifiers, including neural network, probabilistic neural network, and the k-nearest
neighbour (kNN), and it has been shown that the last one achieves the best performance.
In [17] a twin support vector machine (TWSVM) has been used to classify ECG signals
from the wavelet scattering feature matrix, whose dimension has been reduced using
MDS. MDS provided more significant features than PCA, while TWSWM contributed to
speed up the classification step. Finally, in [19] a random selection of scattering coefficients
has been used to reducing 1/4 of the dimension of the feature matrix. Despite the high
classification rates, the aforementioned methods require some parameters to be predefined,
such as the number of features to preserve, the sampling step or the number of layers.
As a consequence, specific criteria for feature selection are required to fully exploit the
advantages of the proposed approaches. Feature selection is a widely investigated topic;
see [13,20] for a complete review. Briefly speaking, it consists of selecting a subset of features
which can efficiently describe the input data while neglecting irrelevant or redundant
information but still providing good predictions (such as, for example good classification
rates). Feature selection methods can be split into three main classes: filter methods,
wrapper methods and embedded methods. The former exploit a specific criterion for
ranking the features, from the most to the least significant, and consist of preprocessing of
the classification/prediction step. On the contrary, wrapper methods use the performance
of the predictor as feature selection criterion. Finally, embedded methods try to combine
the advantages of the two aforementioned classes. Independent of the class, the desired
goal for a feature selection method is to select those significant and not redundant features
with the least computational burden. That is why filter methods are the most popular and
widely investigated [20].

Based on the considerations above, this paper investigates a preprocessing method
for wavelet scattering coefficients that are able to optimize the learning process in terms
of time and/or accuracy. It consists of a uniform sampling along the frequency axis to
be applied just before running the classifier. An automatic procedure for the estimation
of the best sampling step is proposed. It estimates the uniform sampling of the feature
matrix that is able to provide the best classification results for fixed transform settings (Q
factors and number of layers). The Minimum Description Length (MDL) [21,22] is used
for the automatic best model selection by looking at the compression cost of the analysed
sequences. SVM [23] is then used for classification on the basis of the selected model.

Experimental results show that the advantageousness of the proposed approach is
twofold. It defines a preprocessing method that is able to optimize the learning process in
terms of computing time and/or accuracy, and it introduces the first study concerning an
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optimization procedure that depends on the entropy of the layers and that may be directly
included in NN architectures in the future.

The remainder of the paper is as follows. The next section provides a brief introduction
to the wavelet scattering transform and the minimum description length; then, it describes
how they have been combined in the proposed feature-selection-based method. Section 3
presents some experimental results concerning classification of signals through SVM based
procedures. Finally, Section 4 draws some conclusions.

2. The Proposed Method

This section introduces the adopted notation by giving a brief description of WST and
MDL; then, it presents the details of the proposed method.

2.1. Wavelet Scattering

Wavelet scattering is a non-linear multiscale transform that has a tree structure, such
as the one in Figure 1. It consists of a recursive application of proper band-pass filters, but
each convolution is followed by a non-linear operation: the absolute value. Each level of
the tree consists of the application of a classical redundant filter bank with a predefined Q
factor. The scattering coefficients are obtained by lowpass filtering the absolute value of the
output of the filter bank, and they are the ones that are retained by the transform. More
precisely, the zeroth-order scattering coefficients (layer 0) are defined as

S0(t) = f ∗ φ(t), (1)

where f denotes the analysed signal that depends on the time variable t, φ is a lowpass
filter, while ∗ denotes the convolution product. The zeroth-order layer is therefore the row
vector S0, which is composed of Nt temporal samples, as defined in Equation (1).

Figure 1. Wavelet Scattering decomposition tree.

The first-order coefficients (first layer) still consist of a lowpass filtering operation that
is applied to the absolute value of the output of a Q1-factor high-pass wavelet filter bank.
More precisely, by denoting with ψλQ1

the temporal wavelet filter dilated by λQ1 , and with
ΛQ1 the set of scaling coefficients that are defined according to the octave resolution Q1,
we have

S1(λQ1 , t) = U1,λQ1
∗ φ(t), λQ1 ∈ ΛQ1 (2)

with
U1,λQ1

(t) = | f ∗ ψλQ1
(t)|, (3)

where | · | denotes the absolute value. Let NQ1 = #Λ1 be the cardinality of the set ΛQ1 ; that
is, the number of filters used in the filter bank, then the first-order layer S1 is the matrix
whose dimension is NQ1 × Nt and whose rows are as defined in Equation (2).

Accordingly, the m-th layer coefficients are

Sm(λQ1 , ..., λQm , t) = Um,λQm
∗ φ(t), λQm ∈ ΛQm , (4)
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with
Um,λQm

(t) = |Um−1,λQm−1
∗ ψλQm

(t)|. (5)

The mth-order layer Sm is the matrix, whose rows are defined as in Equation (4),
which has dimension NQm × Nt, where NQm = #Λm depends on the number of filters
required by the Qm-filter bank and their overlap with the Qm−1-filter bank.

WST of f is, therefore, the collection of the layers S0, S1, ..., Sm. More precisely, it is a
N × Nt matrix, with

N = 1 +
m

∑
k=1

NQk , (6)

and consists of the columnwise aggregation of the matrices S0, S1, ..., Sm; that is

S =


S0
S1
...

Sm

. (7)

WST is highly redundant, and its redundancy depends on the sequence of Q factors.
The latter is a critical issue, as it strictly depends on the analysed signal; in particular, it
causes a faster or slower energy decrease as the number of layers increases [1]. However,
the selection of the best sequence of Q factors is out of the scope of this paper. On the
contrary, for a fixed number of layers, we are interested in reducing the number of scattering
coefficients, as they refer to overlapping frequency bands. The rule proposed in this paper
is the uniform sampling along the frequency axis. The latter acts as a post-processing
operation, and it is applied to the whole WST.

To better decorrelate scattering coefficients, parent–child normalization can be ap-
plied [1,3], and the logarithm of the corresponding value can be retained, i.e., ∀ t and ∀ λQk S̃0(t) = log(S0(t))

S̃k(λQ1 , ..., λQk , t) = log
Sk(λQ1

,...,λQk
,t)

Sk−1(λQ1
,...,λQk−1

,t) , k = 1, ..., m (8)

As a result, the normalized scattering transform is the N × Nt matrix

S̃ =


S̃0
S̃1
...

S̃m

. (9)

The latter usually guarantees better classification results [12,18,24].

2.2. Minimum Description Length

MDL is a well known and powerful tool to estimate the best data model (among a
class of candidates) and related parameters [21,22]. This principle allows for the selection
of a good model for approximating the data with the least complexity. It is based on the
rationale: good compression as good approximation, in agreement with the definition of
Kolmogorov complexity [25]. In other words, given a finite-size data sample, the simplest
model that well fits it is also the best one. The simplest formal way to implement MDL is
the crude MDL. It selects a model M̄ from a setM of candidates as it follows

M̄ = argmin
M∈M

L(M) + λL( f |M) (10)

where L(M) is the cost (in terms of bits) required for coding the model M, L( f |M) is the
number of bits required for coding the data f given the model, while λ is a balancing param-
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eter. In general, the better the model, the higher its cost, but the smaller the approximation
error. That is why the selection of the best model is a trade off between complexity and
good approximation. λ tuning represents a critical issue that is often solved empirically by
properly adjusting the quantization step adopted for data coding or by properly selecting
the coding algorithm [26]. Among the several applications of MDL-based strategy [27,28],
it is worth mentioning the one recently presented in [29], where MDL was used for the
selection of the number of components for PCA method [16]. As it is not trivial to practically
define MDL, a linear regression model has been used as bound for its normalized version.
In order to overcome this kind of problem, in this paper, we propose a different approach
that simply consists of limiting the class of models to the one of the uniform sampling
operator (of the feature matrix) and then using MDL for the selection of the best sampling
step—in agreement with the standard sampling (stride) adopted in DNN architectures.

2.3. Mdl Based Selection of Wavelet Scattering Coefficients

In this paper, the normalized scattering coefficients S̃ in Equation (9) are properly
modified in order to be considered as a distribution, and the corresponding entropy is used
to define the coding lengths involved in the MDL functional.

To simplify the notation, the superscript ˜ will be omitted in the sequel. In addition, let

S|p = S� Tp (11)

denote the subsampled scattering feature matrix along the frequency axis (row index),
where � is the Hadamard matrix product, p is the sampling step and Tp is the sampling
matrix, and let

Sc
|p = S� Tc

p (12)

be its counterpart. Since the subsampling is odd, S0 is always preserved when subsampling
S, and the sampling matrix Tp is such that

Tp(i, j) =
{

1 i = hp, h ∈ N, i ≤ N, j = 1, . . . , Nt
0 otherwise

, (13)

while Tc
p = I− Tp, with I as the all-ones matrix.

Now, let P be the N × Nt matrix, such that

P = [P(i, j)]i=1,...,N, j=1,...,Nt
(14)

with

P(i, j) =
S2(i, j)
‖S‖2 . (15)

The elements of P are positive; their value is less than one and defines a probabil-
ity distribution.

The subsampled (by p) and rescaled distribution along the frequency axis is, therefore,

P|p =
‖S‖2

‖S|p‖2 (P� Tp), (16)

while its rescaled counterpart is

Q|p =
‖S‖2

‖Sc
|p‖2 (P� Tc

p). (17)
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Accordingly, the elements of P|p and Q|p define two distinct probability distributions.
Therefore, according to Equation (10), the bits budget for the encoding error of the data,
given the model (L( f |M)), is

L( f | p) = L(Q|p) = H(Q|p) ‖Sc
|p‖

2. (18)

L(Q|p) is the entropy H of the data distributed as Q|p multiplied by the amount
of energy they convey. The latter is proportional to the number of elements, and it is
necessary to express the cost in terms of bits. Accordingly, the cost of the model L(M)
should include both the cost of the sampling step p and the entropy of the data distributed
as P|p, multiplied by their energy, i.e.,

L(P|p) = λH(P|p) ‖S|p‖2 + 2 log2dpe+ 1, (19)

with λ as a proper balancing parameter. By setting l(p) = 2log2dpe+ 1 [21], the optimal
sampling p̃ f is then

p̃ f = barg min
p

H(Q|p)‖Sc
|p‖

2 + λH(P|p)‖S|p‖2 + l(p)e, (20)

where b·e denotes the approximation to the nearest integer.
λ definition deserves some attention. By definition, WST layers do not have the

same nature; all layers require high pass filtering operations before the application of
the lowpass filter, except for S0. Dishomogeneity among layers is emphasized in the
normalized scattering transform, because S0 does not have a parent. If this event does
not influence L(Q|p), as it does not depend on S0, it is not so for L(P|p). Therefore, λ is
required to compensate this imbalance. Specifically, it must depend on the probability that
S0 is generated by the same source of the remaining normalized layers S̄ = S− S0, where
− denotes the difference between sets. To this end, the reciprocal relations between mean,
standard deviation and energy of the two sources, S0 and S̄, are evaluated. In particular,
a correction is needed whenever the contribution of S0 to the energy exceeds the one of
S̄, its standard deviation is considerably smaller and the mean is very different. Hence,
by denoting with µ∗ and σ∗, respectively, the mean and the standard deviation (std) of ∗,
and considering S̄ as a row vector,

STD if σS0 << σS̄, then S0 resembles a uniform distribution. Hence, it satisfies the diffu-
sivity property and its entropy dominates the one of the second source. A correction
of the global entropy is then required accordingly, by measuring the probability
Pr
(
|S0(j)− µS0 | ≤ σS̄

)
. The Chebyshev inequality [25] gives

Pr
(
|S0(j)− µS0 | ≤ σS̄

)
>

(
1−

σ2
S0

σ2
S̄

)
, (21)

and the bound is not trivial whenever σ2
S0

< σ2
S̄;

Mean if the previous condition holds and the mean values of S0 and S̄ are far apart, then
the two sources are different. Since µS0 − µS̄ = N(µS − µS̄), where N is the number
of WST filters as defined in Equation (6), then

Pr
(
|µS0 − µS̄| > ε

)
= Pr

(
|µS − µS̄| >

ε

N

)
≤

N2σ2
S

ε2 (22)

where the Chebyshev inequality [25] extended to the sample mean has been applied.
ε has been set equal to N·Nt√

12
and denotes the std of a diffusive WST;

Energy to check if the contribution to the energy of S0 is greater than the one of S̄,

Pr
(
|S0(j)|2 ≥ ‖S̄‖

2

Nt

)
is estimated. By denoting with n the number of WST coeffi-
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cients, i.e., n = N · Nt, the Markov inequality [25], extended to the square root
function, gives

Pr

(
|S0(j)|2 ≥

‖S̄‖2
2

Nt

)
≤
‖S̄‖1
n−Nt
‖S0‖2√

Nt

≤
‖S̄‖2√
n−Nt
‖S0‖2√

Nt

. (23)

The equivalence between compatible norms has been used to obtain the rightmost

bound that is not trivial if ‖S̄‖2
√

Nt
‖S0‖2

√
n−Nt

≤ 1;

By combining Equations (21)–(23), λ can then be defined as

λ =


1 σ2

S0
≥ σ2

S̄(
1−

σ2
S0

σ2
S̄

)
12σ2

S̄
N2

t
min

1,
‖S̄‖2√
n−Nt
‖S0‖2√

Nt

 σ2
S0

< σ2
S̄

. (24)

This makes the proposed method completely automatic.

2.4. The Algorithm

Let T be the training set. The algorithm consists of the following steps.

1. For each signal f in D ⊂ T , fixed number of layers (m) and Q factors:

• Compute the normalized WST (feature matrix) of f as in Equation (9) and the
distribution matrix P as in Equation (14).

• For each sampling step p = 1, 2, 3...., compute p̃ f by minimizing the MDL
functional as in Equation (20).

2. Set the optimal sampling step p̃ =
⌊

1
|D| ∑ f∈D p̃ f

⌉
, with |D| as the number of signals

in D. It is the average of the sampling steps estimated in step 1 for each f .
3. Apply SVM to estimate the classification model by using the sampled distribution

matrix S| p̃ of each signal in T as input.

3. Results

The proposed MDL-based selection strategy has been applied to different datasets of
sound signals. This section refers to three datasets: GTZAN [30], PhysioNet (ECG) [31]
and the Free Spoken Digits Database (FSDD) [32]. The GTZAN dataset is widely used for
comparative studies in music genre classification. It includes 10 genres, each containing
100 clips of 30 s sampled at 22,050 Hz. The second dataset consists of 162 ECG recordings
obtained from three groups of people with: cardiac arrhythmia (96), congestive heart failure
(30) and normal sinus rhythms (36). The Spoken Digit Dataset consists of recordings of
spoken digits in ‘wav’ files sampled at 8 kHz. It is an open dataset that grows over time.
The one used in the tests (downloaded on 17 May 2021) consists of 3000 recordings of digits
zero through nine, pronounced by six English speakers. Equal-length signals, three layers
(m = 2) WST with different Q factors and a polynomial kernel-based SVM classifier, have
been used in all tests. The percentage of each class for training and test sets for each dataset
has been, respectively, 80–20 (GTZAN), 70–30 (PhysioNet) and 80–20 (FSDD).

Results have been evaluated in terms of classification accuracy and with respect to the
goals of the paper:

(i) Preservation or improvement of the classification accuracy provided by the full WST
feature matrix for fixed Q factors;

(ii) Reduction in the learning time in terms of reduced number of weights to learn;

(iii) Definition of an automatic procedure.

They have been compared with PCA-based scattering features selection and WST
layer-selection methods, as in the seminal papers [1,11].
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Regarding points (i) and (ii), Table 1 refers to the Physionet dataset and five couples
of Q factors. In this case, normalized WST (3rd column) easily reaches the classification task,
independently of WST parameters. On the other hand, a reduced number of scattering
coefficients (fourth column) allows us to reach the classification task too, while reducing the
complexity of classification algorithm, as a lower number of weights has to be estimated by
the classifier. The gain is not negligible, as sampling reduces the number of features up to
25% (p̃ = 4) of the full matrix. Table 1 also compares the results achieved by the proposed
uniform sampling to the ones achieved using a lower number of layers, as shown in [1].
As can be observed in the last three columns of the table, the use of a smaller number of
layers cannot guarantee the same results, in terms of accuracy and/or number of features,
of the suitably sampled WST feature matrix. On the one hand, the second layer allows
for high classification accuracy but retains a large number of features; on the other hand,
the first two layers (0th and 1st) retain a smaller number of features: not enough to exactly
assess cardiac conditions.

Table 1. Physionet dataset: Classification accuracy (%) for different couples of Q factors. The feature
matrix consists of the logarithm of: WST (2nd col); normalized WST (3rd col); the uniformly sampled
feature matrix (normalized WST) using the estimated sampling step p̃, as in Equation (20) (4th col);
normalized WST coefficients which, respectively, belong to the 0th and 1st layer, only the 1st layer,
only the 2nd layer (last three cols). The number of features for each time t is in round brackets, while
the value of p̃ is in square brackets. Best results are in bold.

Q1, Q2 log(S) logS̃ p̃ logS̃0, logS̃1 logS̃1 logS̃2

3, 2 95.92 100 100 [3] 95.9 89.8 95.9
(395) (395) (132) (35) (34) (361)

4, 2 95.92 100 100 [3] 98.0 93.9 100
(483) (483) (161) (45) (44) (438)

4, 3 97.96 100 100 [4] 98.0 93.9 100
(721) (721) (181) (45) (44) (676)

8, 1 97.96 100 100 [2] 98.0 98.0 93.9
(409) (409) (205) (84) (83) (325)

8, 3 97.9 100 100 [4] 97.9 97.9 100
(1221) (1221) (306) (84) (83) (1137)

Regarding points (i) and (iii), results presented in Table 2 aim to show that uniform
sampling can provide non-negligible gain in terms of accuracy and that the proposed
method is able to correctly estimate the required sampling step. To this aim, some represen-
tative results obtained using different couples of Q factors for the three datasets are shown.
The same results are compared to those achieved when using PCA to reduce the dimension
of the WST feature matrix (last three columns), as shown in [1,17]. As can be observed,
a reduced number of scattering coefficients (sampling p = 2, 3, 4) can provide higher
classification accuracy than using the full feature matrix (sampling p = 1). In addition,
the proposed MDL-based procedure is able to correctly guess the sampling p̃, providing
the highest classification accuracy in most cases. In addition, if more than one sampling
step guarantees the best classification accuracy, the proposed method selects the one that
provides the highest (or nearly the highest) data reduction in terms of number of retained
scattering samples. With regard to this point, it is worth observing that sometimes the
method can fail to predict the optimal sampling, as the latter is defined as the average of the
optimal sampling steps that are estimated from each signal independently. More accurate
estimations can be obtained by refining the averaging adopted in step 2 of the algorithm,
e.g., by discarding eventual outliers or unacceptable solutions, and this will be the topic
of future work. Regardless, without applying any correction, for the three datasets and
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several couples of Q factors, the measured success rate for this preliminary version of the
method was about 93%.

Table 2. 1st col: Dataset; 2nd col: WST Q factors; Cols 3–6: Classification accuracy (%) for different
sampling steps—the number of samples is in the brackets; 7th col: Optimal sampling step selected by
the proposed method; Cols 8–9: PCA-based classification: classification accuracy (%) by retaining
those principal components expressing the 95% and the 99% of the total variance of the feature
matrix (the number of components is in the brackets); Last col: PCA-based classification: classification
accuracy (%) by retaining a number of principal components equal to the frequency samples (in the
brackets) retained when the sampling step p̃ is applied. Best results are in bold.

Dataset Q1, Q2 Sampling p p̃ PCA
1 2 3 4 95% 99% p̃

FSDD 4, 2 96.2 96.8 96.2 95.2 2 86.7 94.7 95.0
(265) (133) (89) (67) (13) (226) (133)

FSDD 4, 3 95.3 96.5 94.7 93.3 2 71.0 91.7 93
(367) (184) (123) (92) (8) (23) (184)

FSDD 5, 2 96.7 96.8 96.3 97.2 4 88.5 95.3 96.7
(311) (156) (104) (78) (14) (33) (78)

GZTAN 4, 2 87.5 90.0 88.5 82.5 2 88.5 86.5 87
(500) (250) (167) (125) (110) (87) (250)

GZTAN 4, 3 89.0 90.0 88.5 88.0 2 87.0 87.5 88
(595) (298) (199) (149) (176) (336) (298)

GZTAN 8, 1 85 86.5 88 85 3 89 87.5 89.5
(341) (171) (114) (86) (87) (201) (114)

Physionet 2, 1 95.9 95.9 98.0 91.8 3 93.9 93.9 98.0
(143) (72) (48) (38) (19) (55) (48)

Physionet 4, 1 100 98.0 98.0 95.9 3 98.0 100 98.0
(241) (121) (81) (61) (27) (86) (241)

Physionet 6, 2 100 100 100 100 3 100 98.0 100
(659) (330) (220) (165) (45) (179) (165)

With regard to PCA-based feature reduction, two different criteria for the selection of
the number of components have been adopted. The former is the standard selection of those
components retaining a predefined percentage of variance (cols 7–8); the latter selects the
first L principal components, with L equal to the first dimension of the sampled WST feature
matrix that is obtained using p̃ as sampling step (last col). Table 2 emphasizes two interesting
aspects. The first one is that PCA + SVM does not provide the best classification accuracy if
the number of principal components is estimated by retaining the principal components
conveying the highest percentage of variance (cols 7–8). A criterion for selecting the best
percentage of preserved variance is then required, either for maximizing classification
accuracy or for minimizing the number of components providing the same accuracy. This
further gives evidence of the need for an automatic and effective selection of significant
components. The second one is that for a fixed number of components, i.e., the one
corresponding to the optimal sampling step, the proposed method provides classification
accuracies that are comparable to—or even better than—the one provided by PCA (last col)—
this holds for all Q factors pairs in Table 2, except for the 7th row. As a result, the selection
of some samples from each frequency band can represent a robust approach. In addition, it
is less time consuming, and thus is computationally advantageous.

To further evaluate the proposed approach, some feature ranking methods have been
adopted for the selection of significant scattering coefficients. Table 3 shows some results
achieved on FSDD dataset. They refer to the minimum redundancy maximum relevance
(MRMR) algorithm. It is a filter-type feature selection method that ranks the features by
using mutual information [33]. The table shows the classification rates achieved by using
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the first most significant ranked features that are selected so that the sum of their ranking
scores equals a predefined percentage of the overall ranking score. As can be observed,
the number of features whose global ranking exceeds 90% is higher than the one given by
the optimal uniform sampling step that is estimated by the proposed method. In addition,
the selected features do not allow us to reach the same classification rates. This confirms
the proposed approach as a reliable and effective feature selection method, even though
it is restricted to the uniform sampling procedure. Table 4 refers to FSDD and Physionet
datasets and reports the classification rates achieved using a sequential selection criterion
(wrapper-type feature selection method). In this case, features are selected on the basis of
the multiclass error-correcting output codes (ECOC) model using SVM binary learners.

Table 3. FSDD Dataset; 1st col: WST Q factors; 2nd col: Classification accuracy (%) for the optimal
sampling step; Cols 3–10: MRMR ranking-based feature selection: classification accuracy (%) by
retaining the first most significant features, whose global ranking is a predefined percentage (respec-
tively, 5%, 10%, 20%, 30%, 40%, 50%, 75%, 90%). The number of features is in the brackets. Best results
are in bold.

Q1, Q2 Sampling p̃ MRMR
5% 10% 20% 30% 40% 50% 75% 90%

4, 2 96.8 95.2 94.8 95.3 95.2 95.7 95.7 95.8 96.0
(133) (43) (72) (106) (134) (156) (156) (183) ( 225)

4, 3 96.5 94.7 95.0 95.0 95.3 95.8 95.7 95.3 95.0
(184) (37) (73) (106) (150) (193) (214) (271) (319)

5, 2 97.2 95.7 96.8 96.5 96.0 96.3 96.2 96.5 96.8
(78) (43) (72) (108) (128) (154) (181) (208) (261)

Table 4. 1st col: Dataset; 2nd col: WST Q factors; 3rd col: Classification accuracy (%) for the optimal
sampling step—and the one estimated by the proposed method if different from the expected one; 4th
col: classification accuracy for the sequential feature selection method (SFS). The number of selected
features is in the brackets. Best results are in bold.

Dataset Q1, Q2 Sampling p̃ SFS

Physionet 2, 1 98.0 87.8
(48) (24)

Physionet 4, 1 100—98.0 98.0
(241)—(81) (18)

Physionet 6, 2 100—100 91.8
(165)—(220) (17)

FSDD 4, 2 96.8 95.5
(133) (24)

FSDD 4, 3 96.5 94.5
(184) (20)

As can be observed, the sequential feature selection (SFS) is shown to be too conserva-
tive. In fact, it selects a very small number of features, and reaches satisfying classification
rates only for some couples of Q-factors. Moreover, it requires significant computational
effort: the required cpu time is at least 10 times greater than the one required by the pro-
posed selection method when running on the same machine. It is also worth observing
that, even when the proposed method is not able to select exactly the best sampling step, it
allows us to reach the highest classification rates, as in the case of the couple (6, 2) in the
Physionet dataset, or the same performance of the SFS method but requiring a considerably
lower computing time (Physionet dataset, couple (4, 1)).
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4. Conclusions

In this paper, the first study concerning the best selection of scattering coefficients
for sound signals classification was presented. Uniform sampling was adopted and a
MDL-based model selection procedure was defined. The main goal was to establish to
what extent an automatic procedure for dimensionality reduction, although simple, can
contribute to improving signal classification tasks in terms of both computing time and
accuracy. One of the main efforts required weighting a MDL functional through a data-
dependent parameter; the latter plays a key role in the proposed approach, as any user’s
intervention is required, as well as any a priori information concerning the signal type.
The use of WST for the classification of sound signals allows us to exploit the benefits
coming from a CNN architecture, while both reducing training time, as WST emphasizes
distinctive time-frequency structures, and tuning the automatic procedure. In addition,
the latter requires very little computational effort, as it consists of sampling and energy
computation. Future study will focus on refining the definition of MDL functional used for
model selection as well, as its generalization to a wider class of models.
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