
POINTWISE UNIVERSAL GYSIN FORMULÆ AND

APPLICATIONS TOWARDS GRIFFITHS’ CONJECTURE

SIMONE DIVERIO AND FILIPPO FAGIOLI

Abstract. Let X be a complex manifold, (E, h)→ X be a rank r holo-
morphic Hermitian vector bundle, and ρ be a sequence of dimensions
0 = ρ0 < ρ1 < · · · < ρm = r. Let Qρ,j , j = 1, . . . ,m, be the tautologi-
cal line bundles over the (possibly incomplete) flag bundle Fρ(E) → X
associated to ρ, endowed with the natural metrics induced by that of
E, with Chern curvatures Ξρ,j . We show that the universal Gysin for-
mula à la Darondeau–Pragacz for the push-forward of a homogeneous
polynomial in the Chern classes of the Qρ,j ’s also holds pointwise at the
level of the Chern forms Ξρ,j in this Hermitianized situation.

As an application, we show the strong positivity of several polyno-
mials in the Chern forms of a Griffiths (semi)positive vector bundle not
previously known, thus giving some new evidences towards a conjecture
by Griffiths, which in turn can be seen as a pointwise Hermitianized
version of the Fulton–Lazarsfeld theorem on numerically positive poly-
nomials for ample vector bundles.

1. Introduction

Let E → X be a rank r ≥ 2 holomorphic vector bundle over a complex
manifold of dimension n. Once a sequence ρ of dimensions 0 = ρ0 < ρ1 <
· · · < ρm = r has been fixed, one can consider the (incomplete if m < r,
or complete when m = r) flag bundle π : Fρ(E) → X, which is naturally
endowed with m + 1 tautological rank ρj vector bundles Uρ,j → Fρ(E),
j = 0, . . . ,m. Out of this, one can form tautological line bundles

Qρ,j := det(Uρ,m−j+1/Uρ,m−j), j = 1, . . . ,m,

and consider the corresponding cohomology classes c1(Qρ,j) in the cohomol-
ogy group H2

(
Fρ(E)

)
.

Given a homogeneous polynomial F in m variables of degree dρ + k,
where dρ is the relative dimension of the proper holomorphic submersion
π : Fρ(E)→ X and 0 ≤ k ≤ n, the proper push-forward

π∗F
(
c1(Qρ,1), . . . , c1(Qρ,m)

)
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gives a cohomology class in H2k(X) which of course needs to be a character-
istic class for E. It is then a natural issue (which has been considered and set-
tled by several authors in different degrees of generality) to try to determine
a closed formula to express this class more or less explicitly as a polynomial,
call it Φ, in the Chern or Segre classes of E; see [Dam73, Ilo78, KT15, DP17],
just to cite a few. We shall consider in particular here the incarnation of such
a formula given by Darondeau–Pragacz in [DP17, Theorem 1.1, Proposition
1.2]

Now, alongside the cohomological situation, one can ask the analogue in
the Hermitian setting as follows. Suppose E is moreover endowed with a
smooth Hermitian metric h. Then, all the tautological bundles Uρ,j consid-
ered before inherit, being subbundles of π∗E, a Hermitian metric, and so do
the determinants of the successive quotients Qρ,j . Thus, the classes c1(Qρ,j)
now have special representatives Ξρ,j given by the Chern curvatures of their
induced Hermitian metrics.

Given the homogeneous polynomial F above, one can formally compute
it using the Ξρ,j ’s as variables to get a closed (dρ+k, dρ+k)-form on Fρ(E),
which can be pushed-forward on X via integration along the fibers to obtain
a (k, k)-form π∗F (Ξρ,1, . . . ,Ξρ,m) on X. Such a form is of course a special
representative for π∗F

(
c1(Qρ,1), . . . , c1(Qρ,m)

)
= Φ

(
c•(E)

)
. Certainly, one

can also compute the Chern curvature of (E, h), and by the Chern–Weil the-
ory represent the Chern classes of E by the Chern forms cj(E, h) associated
to its Chern curvature. In this way, Φ

(
c•(E, h)

)
is a special representative

for Φ
(
c•(E)

)
, too. Therefore, a priori π∗F (Ξρ,1, . . . ,Ξρ,m) and Φ

(
c•(E, h)

)
differ by an error term which is an exact 2k-form.

Our main result (see Theorem 3.5) can be now summarized by saying that

Main Theorem. We have the equality

π∗F (Ξρ,1, . . . ,Ξρ,m) = Φ
(
c•(E, h)

)
.

So, in fact, there is no error term at all: this generalizes previous re-
sult of [Mou04, Gul12, Div16] which concerned the case of projectivized
bundles, corresponding here to the special weight ρ = (0, 1, r) (or, dually,
ρ = (0, r − 1, r)). In other words, the universal Gysin formulæ to compute
the push-forwards in cohomology from the flag bundle can be used verbatim
to compute pointwise the push-forwards for differential form constructed
from the Chern–Weil theory in the Hermitian situation.

The second part of the paper is devoted to an application of our Main
Theorem to a positivity issue, in the same spirit of [Gul12], as follows.
Suppose (E, h) → X is a Griffiths (semi)positive vector bundle (for precise
definitions, see Section 4). In the seminal paper [Gri69] it is raised the
problematic of determine which characteristic forms built from the Chern
curvature of (E, h) are positive, and some partial result is given.

More precisely, it is asked (and expected) whether the Schur forms (and
hence, their positive linear combinations) are positive. Griffiths’ question
was thus a differential, pointwise forerunner of the Fulton–Lazarsfeld theo-
rem [FL83], which is a cohomological global statement, that characterizes
precisely all numerically positive polynomials for ample vector bundles. The
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Fulton–Lazarsfeld theorem indeed characterizes them exactly as the positive
linear combination of Schur polynomials.

Observe that a Griffiths positive (resp. semipositive) vector bundle on
a compact complex manifold is ample1 (resp. nef) and that a cohomology
class which can be represented by a positive differential form is numerically
positive. Thus, an answer in the affirmative to Griffiths’ question would
give a stronger Fulton–Lazarsfeld-type statement under the stronger (but
conjecturally equivalent) hypothesis of positivity in the sense of Griffiths.

Up to now, very little is known about this question beside the trivial
case of (any power of) the first Chern form: other Schur forms known to
be positive are the second Chern form [Gri69] (see also [Fag22]), and the
signed Segre forms [Gul12] (see again Section 4 for a more exhaustive list of
related results in literature).

Here, as a consequence of our Main Theorem, we are able to establish the
positivity of several new (positive linear combinations of) Schur forms, cf.
Section 4 and in particular Subsection 4.1. Namely, thanks to the general
curvature formulæ obtained by Demailly in [Dem88a] coupled with our uni-
versal pointwise Gysin push-forward formula, we obtain the following (see
Theorem 4.8).

Main Application. With notations as above, let (E, h)→ X be a Griffiths
semipositive vector bundle. Given a weight a ∈ Zm such that a1 ≥ · · · ≥
am ≥ 0, we have that the characteristic forms

π∗(a1 Ξρ,1 + · · ·+ am Ξρ,m)dρ+k

are strongly positive (k, k)-forms on X, and moreover positive linear combi-
nations of Schur forms of (E, h).

This confirms Griffiths’ conjecture for those positive linear combinations
of Schur forms of (E, h) which can be obtained as wedge products of push-
forwards of type π∗(a1 Ξρ,1+· · ·+am Ξρ,m)dρ+k (see Subsection 4.1 for several
concrete examples).

Remark 1.1. We discovered, right before uploading the first version of this
article on the arXiv, that a few hours before we completed the redaction
of that version it appeared on the arXiv the paper [Fin20] by S. Finski,
who proves —independently of us— similar results, some of which with
techniques not so far from ours.

In particular, he can prove the positivity of all Schur forms but under the
stronger hypothesis of (dual) Nakano positivity for (E, h) [Fin20, Theorem
1.1]. He also makes an interesting connection between some open question
for the so-called positive semidefinite linear preservers and the original ques-
tion of Griffiths, showing that they are in fact equivalent problems [Fin20,
Theorem 1.3].

Finally, let us remark that [Fin20, Theorem 7.2] is a special case of our
Main Theorem but for complete flag bundles and where, in our notations,
F is taken to be just a monomial with some specific decreasing degrees.

1The converse is not known, but expected to be true.
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2. Flag bundles and their curvature

Let X be a complex manifold of dimension n and let E → X be a holomor-
phic vector bundle of rank r. Fixed a sequence of integers ρ = (ρ0, . . . , ρm)
of the form 0 = ρ0 < · · · < ρj < · · · < ρm = r, the flag bundle of E
associated to ρ is the holomorphic fiber bundle

π : Fρ(E)→ X

where the fiber over x ∈ X is the flag manifold Fρ(Ex) of flags

{0x} = Vx,ρ0 ⊂ · · · ⊂ Vx,ρj ⊂ · · · ⊂ Vx,ρm = Ex, dimC Vx,ρj = ρj .

Over Fρ(E) we have a tautological flag

(1) Uρ,0 ⊂ · · · ⊂ Uρ,j ⊂ · · · ⊂ Uρ,m
of vector subbundles of π∗E, where the fiber of Uρ,j over the flag

{0x} ⊂ · · · ⊂ Vx,ρj ⊂ · · · ⊂ Ex
is Vx,ρj ; hence Uρ,j has rank ρj . The tautological filtration (1) allows us to
define natural line bundles over Fρ(E) as follows: for 1 ≤ j ≤ m set

Qρ,j := det(Uρ,m−j+1/Uρ,m−j).

For any multi-index a = (a1, . . . , ar) ∈ Zr satisfying

(2) ar−ρm−j+1+1 = ar−ρm−j+1+2 = · · · = ar−ρm−j , 1 ≤ j ≤ m,

set, for 0 ≤ j ≤ m, sj := r − ρm−j and define

Qa
ρ := Qρ,1

⊗as1 ⊗ · · · ⊗Qρ,m⊗asm .

In the particular case of complete flag bundles, i.e. m = r, we shall drop
the subscript ρ and simply write F(E), Uj , Qj and Qa.

Example 2.1 (To keep in mind as a toy case). Suppose that E is a rank
r vector bundle over X, and consider the flag bundle Fρ(E) corresponding
to the sequence ρ = (0, 1, r). Then, Fρ(E) coincides with the projectivized
bundle of lines P(E) on X. By definition, Uρ,1 equals the tautological line
bundle OE(−1), while Uρ,2 = π∗E. We thus have the short exact sequence

0→ OE(−1)︸ ︷︷ ︸
Uρ,1

→ π∗E︸︷︷︸
Uρ,2

→ π∗E/OE(−1)→ 0,

which gives, by taking the determinant, that Qρ,1 = OE(1) ⊗ π∗ detE and
Qρ,2 = OE(−1). Therefore,

Q(a1,a2)
ρ = OE(a1 − a2)⊗

(
π∗ detE

)⊗a1 .

Suppose that on E is given a Hermitian metric h, then we have an induced
pull-back metric on π∗E which endows all the vector bundles Uρ,j with the
restriction metric and all the line bundles Qρ,j with the determinant of the
quotient metric. Consequently, we have natural metrics induced on all the
line bundles Qa

ρ. In order to simplify the notation, by a slight abuse, denote
by h all these mentioned metrics.

Fix a point x0 ∈ X, local holomorphic coordinates (z1, . . . , zn) on an open
set of X centered at x0 and a point (x0, f0) ∈ Fρ(E). We can always choose
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a local normal frame (e1, . . . , er) of E at x0 such that f0 ∈ Fρ(Ex0) coincides
with the flag

{0x0} ⊂ Zρ1 ⊂ Zρ2 ⊂ · · · ⊂ Zρm−1 ⊂ Ex0 ,

where, for 1 ≤ j ≤ m,

Zρj = Span
{
er−ρj+1(x0), er−ρj+2(x0), . . . , er(x0)

}
.

For z in the coordinate open set considered, the basis
(
e1(z), . . . , er(z)

)
gives

affine coordinates ζ = (ζλµ) on the fiber Fρ(Ez), where 1 ≤ λ < µ ≤ r are
such that there is an integer ` = 1, . . . ,m − 1 with λ ≤ s` < µ. Such
coordinates parameterize flags of the form

{0z} ⊂ · · · ⊂ Span
{
εr−ρj+1(z, ζ), εr−ρj+2(z, ζ), . . . , εr(z, ζ)

}
⊂ · · · ⊂ Ez,

where, for 1 ≤ k ≤ r,

εk(z, ζ) = ek(z) +
∑

ζλk eλ(z),

and the summation is taken over all 1 ≤ λ < k such that as before there is
an integer ` = 1, . . . ,m− 1 with λ ≤ s` < k.

Summing up, we have constructed in this way local holomorphic coordi-
nates (z, ζ) = (z1, . . . , zn, ζλµ) on Fρ(E) around (x0, f0).

Let Θ(E, h) ∈ A1,1(X,End(E)) be the Chern curvature tensor of (E, h).
With respect to the local coordinates introduced before, at x0 we have

Θ(E, h)x0 =
r∑

α,β=1

n∑
p,q=1

cpqαβ(x0) dzp ∧ dz̄q ⊗ e∨α ⊗ eβ

=
r∑

α,β=1

Θβα(x0)⊗ e∨α ⊗ eβ,

where the (1, 1)-forms

Θβα =
n∑

p,q=1

cpqαβ dzp ∧ dz̄q

are the entries of the curvature matrix.
For a given multi-index a ∈ Zr satisfying condition (2), in [Dem88a,

Formula (4.9)] the Chern curvature Θ(Qa
ρ, h) of (Qa

ρ, h) at the point (x0, f0)
is computed and reads

(3) Θ(Qa
ρ, h)(x0,f0) =

∑
λ

aλΘλλ(x0) +
∑
λ,µ

(aλ − aµ)dζλµ ∧ dζ̄λµ,

where λ and µ in the second summation are chosen as before in order to
have that the ζλµ’s are defined.

Remark 2.2. In the particular case where the multi-index is non increasing,
which is indeed the case actually considered in [Dem88a, Formula (4.9)],
and which shall be of special interest later, the condition on λ and µ in
the second summation above is equivalent to require aλ > aµ, so that the
curvature formula becomes

(4) Θ(Qa
ρ, h)(x0,f0) =

∑
λ

aλΘλλ(x0) +
∑
aλ>aµ

(aλ − aµ)dζλµ ∧ dζ̄λµ.
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Observe that
∑

aλ>aµ
(aλ− aµ)dζλµ ∧ dζ̄λµ gives a positive definite block for

the curvature of (Qa
ρ, h) if and only if the non increasing multi-index a is

strictly decreasing at each place where it is allowed by condition (2), i.e.

(?) as1 > as2 > · · · > asm .

For 1 ≤ j ≤ m, denote by 1j the element of Zr with 1’s in the places
sj−1 + 1, sj−1 + 2, . . . , sj , and 0’s elsewhere. By definition, we have that

Q
1j
ρ = Qρ,j , and thanks to Formula (3) we can recover the curvature of the

line bundle Qρ,j at the point (x0, f0) ∈ Fρ(E):

(5) Θ(Qρ,j , h)(x0,f0) =

sj∑
λ=sj−1+1

Θλλ(x0)

−
∑

λ=1,...,sj−1
µ=sj−1+1,...,sj

dζλµ ∧ dζ̄λµ +
∑

λ=sj−1+1,...,sj
µ=sj+1,...,r

dζλµ ∧ dζ̄λµ.

Finally, let

Ξρ,j := c1(Qρ,j , h) =
i

2π
Θ(Qρ,j , h) ∈ A1,1

R (Fρ(E))

be the first Chern form of (Qρ,j , h) which represents the first Chern class
c1(Qρ,j), and similarly

Ξa
ρ :=

i

2π
Θ(Qa

ρ, h).

2.1. Splitting of the tangent bundle and intrinsic expression of the
curvature. Now, we rewrite Formula (5) more intrinsically. In order to do
this, consider the short exact sequence

0→ ker(dπ) ↪→ TFρ(E)
dπ−→ π∗TX → 0

induced by the differential of π : Fρ(E) → X, where TFρ(E) and TX are the
tangent bundles of Fρ(E) and of X respectively. Recall that ker(dπ) is the
relative tangent bundle, usually denoted by TFρ(E)/X .

We now define a natural orthogonal splitting of TFρ(E) into a vertical and
a horizontal part. In order to do this, observe that for any given weight
a as described at the end of Remark 2.2, by Formula (4) the line bundle
Qa
ρ is relatively positive. Hence, Ξa

ρ gives a positive definite Hermitian form
whenever restricted to the relative tangent bundle TFρ(E)/X . Therefore, for
any such a, we get a corresponding orthogonal decomposition (in the smooth
category)

TFρ(E) = TFρ(E)/X ⊕ T
⊥Ξa

ρ

Fρ(E)/X .

Finally, from the explicit expression of Formula (4), we see that such a
decomposition is independent of the particular choice of the weight a, so
that it depends only on h and we can drop any reference to the weight and
write

(6) TFρ(E) = TFρ(E)/X ⊕ T⊥hFρ(E)/X .

We denote by

p1 : TFρ(E) → TFρ(E)/X and p2 : TFρ(E) → T⊥hFρ(E)/X
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the natural projections relative to the splitting (6).

Remark 2.3. Observe that the above splitting is compatible with dπ in the

following sense. The restriction dπ|
T
⊥h
Fρ(E)/X

: T⊥hFρ(E)/X → π∗TX is a smooth

isomorphism of complex vector bundles, and moreover, by a direct pointwise
computation in the local holomorphic coordinates chosen above, we have
dπ = dπ ◦ p2, and dπ ◦ p1 = 0.

In particular, observe that, for any given point (x0, f0) ∈ Fρ(E), given the
holomorphic coordinates (z, ζ) centered at (x0, f0) as above, we explicitly
have that

TFρ(E)/X,(x0,f0) = Span{∂/∂ζλµ|(z,ζ)=(0,0)},

T⊥hFρ(E)/X,(x0,f0) = Span{∂/∂zk|(z,ζ)=(0,0)}.

The remark above shows that, for 1 ≤ j ≤ m, if we define

Ξvert
ρ,j := Ξρ,j ◦ (p1 ⊗ p1)

and

Ξhor
ρ,j := Ξρ,j ◦ (p2 ⊗ p2),

which are both sections of
∧1,1 T∨Fρ(E), we have

Ξρ,j = Ξvert
ρ,j + Ξhor

ρ,j .

Moreover, again with the same choice of coordinates, pointwise at (x0, f0)
we have

(7)
(
Ξhor
ρ,j

)
(x0,f0)

=
i

2π

sj∑
λ=sj−1+1

Θλλ(x0).

Next, for x ∈ X, let f ∈ Fρ(Ex) be given by a unitary basis (v1, . . . , vr) of

Ex. Define a section θj : Fρ(E)→
∧1,1 T∨Fρ(E) as follows

θj(x, f) =
i

2π

sj∑
λ=sj−1+1

〈
π∗Θ(E, h)(x,f) · vλ, vλ

〉
h
.

Proposition 2.4. The section θj is well defined, i.e. it does not depend
upon the choice of a particular representative v = (v1, . . . , vr) for f .

Proof. Take a local normal frame (e1, . . . , er) of E at x such that e :=(
e1(x), . . . , er(x)

)
and v identify the same flag f . For λ = 1, . . . , r, we have

(8) vλ = a1λe1(x) + · · ·+ arλer(x)

where A = (apq) is the change of coordinates matrix. Since the unitary
bases e and v give both the same flag, it follows that A is a block matrix
with the following form A11 0 0

0
. . . 0

0 0 Amm

 ,
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where the diagonal block Ajj is again a unitary matrix of size sj − sj−1;
in particular, for 1 ≤ λ ≤ r if the entry (λ, λ) hits the block Ajj , i.e. if
sj−1 < λ ≤ sj , Formula (8) reads as

vλ =

sj∑
k=sj−1+1

akλek(x).

Using the local normal frame e we get

i

2π

sj∑
λ=sj−1+1

〈
π∗Θ(E, h)(x,f) · vλ, vλ

〉
h

=
i

2π

sj∑
λ=sj−1+1

〈
π∗Θ(E, h)(x,f) ·

 sj∑
α=sj−1+1

aαλeα

 ,

sj∑
β=sj−1+1

aβλeβ

〉
h

=
i

2π

sj∑
α,β=sj−1+1

sj∑
λ=sj−1+1

aαλaβλ︸ ︷︷ ︸
=δαβ

〈
π∗Θ(E, h)(x,f) · eα(x), eβ(x)

〉
h

=
i

2π

sj∑
λ=sj−1+1

〈
π∗Θ(E, h)(x,f) · eλ(x), eλ(x)

〉
h
,

and the proposition follows. �

Of course, θj is smooth, hence it is a form in A1,1(Fρ(E)).

Lemma 2.5. The equality
θj = Ξhor

ρ,j

holds.

Proof. At any given (x, f) ∈ Fρ(E), choose (e1, . . . , er) to be a local normal
frame for E at x such that f is given by

(
e1(x), . . . , er(x)

)
, and consider the

induced holomorphic coordinates around (x, f) as above.
Since the evaluation of θj in (x, f) does not depend on the choice of the

unitary basis defining f , we have the following chain of equalities

θj(x, f) =
i

2π

sj∑
λ=sj−1+1

〈
π∗Θ(E, h)(x,f) · eλ(x), eλ(x)

〉
h

=
i

2π

sj∑
λ=sj−1+1

π∗Θλλ(x, f) =
i

2π

sj∑
λ=sj−1+1

Θλλ(x)

=
(
Ξhor
ρ,j

)
(x,f)

,

where the last equality follows from Formula (7). �

Now, in order to simplify the notation in what follows, let us relabel
Ξvert
ρ,j = ωj . The section ωj is smooth since, for instance, by Lemma 2.5 it

equals Ξρ,j − θj , which are two smooth (1, 1)-forms on Fρ(E).
Summing up, for 1 ≤ j ≤ m, we have shown that

(9) Ξρ,j = θj + ωj ,
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that is, the first Chern form of (Qρ,j , h) can be written as a sum of a horizon-
tal and a vertical part with respect to the natural splitting defined above,
where the horizontal part contains the information coming from the curva-
ture of E while the vertical part is the standard curvature of the determinant
of the tautological successive quotients on a flag manifold.

3. Pointwise Gysin’s formulæ à la Darondeau–Pragacz

We are now in a good position to prove the following main technical
proposition.

Proposition 3.1. Let F (Ξ) := F (Ξρ,1, . . . ,Ξρ,m) be a complex homoge-
neous polynomial in the (1, 1)-forms Ξρ,1, . . . ,Ξρ,m on Fρ(E). Then the
push-forward π∗F (Ξ) is given by a universal (weighted) homogeneous poly-
nomial evaluated in the Chern forms of (E, h).

In the statement, by universal we mean that this polynomial depends only
on the shape of F and on the rank of E.

Proof. Denote by dρ the relative dimension of the flag bundle Fρ(E) and
write F (Ξ) as ∑

j1+···+jm=dρ+k

a(j1,...,jm)Ξ
j1
ρ,1 ∧ . . . ∧ Ξjmρ,m, a(j1,...,jm) ∈ C,

where we can w.l.o.g. suppose that 0 ≤ k ≤ n, otherwise the push-forward
would be identically zero for obvious degree reasons. From now on, in or-
der to simplify the notation, we omit the symbol ∧ for the wedge product
of forms and we use, where useful, the multi-index notation. Thanks to
Formula (9), we can write

F (Ξ) =
∑

|J |=dρ+k

aJ(θ1 + ω1)j1 · · · (θm + ωm)jm

=
∑

|J |=dρ+k

aJ

j1∑
b1=0

(
j1
b1

)
θj1−b11 ωb11 · · ·

jm∑
bm=0

(
jm
bm

)
θjm−bmm ωbmm

=
∑

|J |=dρ+k

aJ

j1∑
b1=0

· · ·
jm∑
bm=0

(
j1
b1

)
· · ·
(
jm
bm

)
θj1−b11 · · · θjm−bmm ωb11 · · ·ω

bm
m .

Since π is a proper submersion, and by definition the push-forward π∗F (Ξ)
is given by integration along the fibers obtained by locally splitting the
variables (x, f), at x ∈ X, we have that

π∗F (Ξ)x =

∫
f∈Fρ(Ex)

F (Ξ)(x,f),

where the second term stands for the integral of F (Ξ)(x,f) performed only on

those differentials related to the variable f . Therefore, for degree reasons,
the only terms which can possibly survive after integration along the fibers
are those for which b1 + · · · + bm = dρ, since the ωj ’s and only the ωj ’s
contain the relevant vertical differentials.
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For the push-forward we thus obtain

π∗F (Ξ)x =
∑

|J |=dρ+k
b1=0,...,j1
···

bm=0,...,jm
b1+···+bm=dρ

aJ

(
j1
b1

)
· · ·
(
jm
bm

)∫
Fρ(Ex)

θj1−b11 · · · θjm−bmm︸ ︷︷ ︸
=:θJ−B

ωb11 · · ·ω
bm
m︸ ︷︷ ︸

=:ωB

.

What we want to do now is to explicitly write θJ−B at an arbitrary point
(x, f) ∈ Fρ(Ex). Let f be given by a unitary basis (v1, . . . , vr) of Ex, so
that θ`(x, f) = i/2π

∑s`
λ=s`−1+1 〈π

∗Θ(E, h)(x,f) · vλ, vλ〉h. Suppose as above

we had fixed a local normal frame (e1, . . . , er) for E centered at x ∈ X, and
let vλ =

∑
l v
l
λ el(x). Thus, we have

(10) θ`(x, f) =
i

2π

r∑
α,β=1

 s∑̀
λ=s`−1+1

vαλ v̄
β
λ

Θβα(x).

Then, we get the following expression for θJ−B:

θJ−B =

(
i

2π

)k m∧
`=1

 r∑
α`,β`=1

 s∑̀
λ`=s`−1+1

vα`λ` v̄
β`
λ`

Θβ`α`

j`−b`

=

(
i

2π

)k ∑
α1

1,β
1
1 ,...,α

j1−b1
1 ,β

j1−b1
1 =1,...,r

···
α1
m,β

1
m,...,α

jm−bm
m ,βjm−bmm =1,...,r

BQ
α1

1···α
jm−bm
m

β1
1 ···β

jm−bm
m

Θβ1
1α

1
1
· · ·Θ

βjm−bmm αjm−bmm
,

where

BQ
α1

1···α
jm−bm
m

β1
1 ···β

jm−bm
m

=

m∏
`=1

 s∑̀
λ`=s`−1+1

v
α1
`

λ`
v̄
β1
`
λ`

 · · ·
 s∑̀
λ`=s`−1+1

v
α
j`−b`
`

λ`
v̄
β
j`−b`
`
λ`

 .
Remark that the Θβα’s only depend on the point x, while the vlλ’s can be
seen, by a slight abuse of notation, as variables of integration even if they
have to be understood modulo the action (cf. with the construction of the
matrix A in the proof of Proposition 2.4) of

U(s1 − s0)× U(s2 − s1)× · · · × U(sm − sm−1) ⊂ U(sm − s0︸ ︷︷ ︸
=r

)

which of course corresponds to the homogeneous presentation of the (incom-
plete) flag manifold as U(r)/U(s1 − s0)× · · · × U(sm − sm−1).

At the end of the day, the integrals
∫
Fρ(Ex) θ

J−BωB are given by the

following sum:(
i

2π

)k ∑
α1

1,...,α
jm−bm
m =1,...,r

β1
1 ,...,β

jm−bm
m =1,...,r

Bq
α1

1···α
jm−bm
m

β1
1 ···β

jm−bm
m

Θβ1
1α

1
1
· · ·Θ

βjm−bmm αjm−bmm
,

where
Bq

α1
1···α

jm−bm
m

β1
1 ···β

jm−bm
m

=

∫
Fρ(Ex)

BQ
α1

1···α
jm−bm
m

β1
1 ···β

jm−bm
m

ωB.
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The good news is that these coefficients Bq
α1

1···α
jm−bm
m

β1
1 ···β

jm−bm
m

are universal, in the

following sense: they do not depend anymore on the metric h, nor on the
point x ∈ X, but only on the multi-index B and on the rank r of E.

Indeed, they might be calculated in the “absolute” case of the flag mani-
fold Fρ(Cr), where Cr is endowed with the standard Euclidean metric, the

vlλ’s are the element of a matrix in U(r) representing the given flag, and

where the top form ωB is nothing else than the corresponding wedge prod-
uct of the curvature forms of the determinant of the tautological quotients
line bundles on Fρ(Cr) with respect to the natural metrics induced by the
Euclidean metric of Cr.

Summing up, we have shown that

π∗F (Ξ)x =
∑

|J |=dρ+k
b1=0,...,j1
···

bm=0,...,jm
b1+···+bm=dρ

∑
α1

1,...,α
jm−bm
m =1,...,r

β1
1 ,...,β

jm−bm
m =1,...,r

aJ

(
j1
b1

)
· · ·
(
jm
bm

)
Bq

α1
1···α

jm−bm
m

β1
1 ···β

jm−bm
m

×
(
i

2π
Θβ1

1α
1
1

)
· · ·
(
i

2π
Θ
βjm−bmm αjm−bmm

)
.

The above expression is thus given by evaluating a homogeneous polynomial
P̃ of degree

(j1 − b1) + (j2 − b2) + · · ·+ (jm − bm) = |J | − |B| = k

on the entries Θβα’s of the matrix associated to the curvature Θ(E, h)x with
respect to the frame

(
e1(x), . . . , er(x)

)
.

This polynomial (i.e. its coefficients) is clearly independent of the point

x ∈ X. Moreover, P̃ is of course also invariant under change of frame at x,
because from its very definition in terms of push-forwards it is independent
of the local frame chosen to make the computation. It follows, say from
Chern–Weil theory (see for instance [GH78, p. 402]), that there exists a
weighted homogeneous polynomial P such that globally on X

(11) π∗F (Ξ) = P
(
c1(E, h), . . . , cr(E, h)

)
,

where

cj(E, h) = TrΛjE

(∧j i

2π
Θ(E, h)

)
is the j-th Chern form of (E, h). By construction, P is universal since it
obviously depends only on F and the rank of E. �

Remark 3.2. Of course, since Chern forms may be expressed in terms of
Segre forms, a completely analogous statement holds with a polynomial
whose variables are now the Segre forms sj(E, h) of (E, h).

3.1. Main result. We shall see now how to compute the push-forward of
the differential form F (Ξ) through the projection π, where F is a complex
homogeneous polynomial in Ξρ,1, . . . ,Ξρ,m. In order to do this, we use a
formula by Darondeau and Pragacz given in [DP17, Proposition 1.2], which
allows to compute the push-forward at the level of cohomology (in fact at
the level of Chow rings, but cohomology suffices for our purposes).
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First of all, observe that, even if it is stated for algebraic manifolds over an
algebraically closed field k, when k = C it also holds for non necessary alge-
braic complex manifolds. Indeed, ultimately, their proof only relay upon the
push-forward formula for the tautological class on the projectivized bundle
in terms of Segre classes, which is definitely valid also for general complex
manifolds.

So, from now on, we suppose that E is a rank r holomorphic vector
bundle over a complex n-dimensional manifold X and denote by dρ the
relative dimension of Fρ(E). In what follows, we use the same symbol for
the push-forward

π∗ : A2(dρ+k)(Fρ(E))→ A2k(X)

of differential forms and the one induced in cohomology, namely

π∗ : H2(dρ+k)(Fρ(E))→ H2k(X).

With the same notation of [DP17], we denote by ξ1, . . . , ξr the (virtual)
Chern roots of π∗E∨. The Darondeau–Pragacz formula allows us to compute
the push-forward of any cohomology class of the form

F̃ (ξ1, . . . , ξr) ∈ H2(dρ+k)(Fρ(E))

in terms of the Segre classes sj := sj(E), 1 ≤ j ≤ n, of the vector bundle E

(we are thus implicitly asking here that the polynomial F̃ has the appropriate
symmetries).

More precisely, let t1, . . . , tr be a set of formal variables, then

(12)

π∗F̃ (ξ1, . . . , ξr)

= [t`11 · · · t
`r
r ]

F̃ (t1, . . . , tr)
∏

1≤i≤r

1 +
n∑
j=1

sj

tji

 ∏
1≤i<j≤r

(ti − tj)


where, for a monomial m and a (Laurent) polynomial P , the notation [m](P )
stands for the coefficient of m in P , and the rule to determine the `j ’s
is as follows: for r − ρk < j ≤ r − ρk−1, say j = r − ρk + i for some
i = 1, . . . , ρk − ρk−1, we set `j = r − i. This is (one possible instance of)
Darondeau–Pragacz formula.

Remark 3.3. Let us call Φ(s1, . . . , sn) the right-hand side of Formula (12).
If we consider the Segre classes s1, . . . , sn as formal variables, we can affirm
that the polynomial Φ(s1, . . . , sn) is universal, in the sense that its coeffi-

cients depends only upon F̃ and the rank r. Moreover, Φ is, by construction,
weighted homogeneous of degree 2k, since deg sj = 2j.

Remark 3.4. Of course, for our purposes, it shall suffice to use some of the
possible polynomials F̃ considered above only, namely those whose symme-
tries are of the form

F̃ (ξ1, . . . , ξr) = F

. . . ,− sj∑
sj−1+1

ξ`, . . .

 = F
(
c1(Qρ,1), . . . , c1(Qρ,m)

)
.

Observe however, that in the special case of complete flag bundles, the classes
ξ1, . . . , ξr are not virtual and give actual cohomology classes, so that no
further requirements for symmetries of F̃ are needed.
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The key result of this section is that, in fact, Darondeau–Pragacz for-
mula (12) also holds pointwise at the level of differential forms, in the Her-

mitian setting, for polynomials F̃ satisfying the further symmetries consid-
ered in Remark 3.4.

Theorem 3.5. Let (E, h) be a rank r Hermitian holomorphic vector bundle
over a complex manifold X of dimension n, and let F be a complex ho-
mogeneous polynomial of degree dρ + k in m variables. Then, we have the
equality

π∗F (Ξρ,1, . . . ,Ξρ,m) = Φ
(
s1(E, h), . . . , sn(E, h)

)
.

Clearly, in the statement above, Φ is the polynomial introduced in Remark
3.3 associated to the polynomial F̃ (ξ•) = F

(
c1(Qρ,•)

)
, as in Remark 3.4.

Proof. If η ∈ A•(X) is a closed form, then [η] stands as usual for the coho-
mology class in H•(X) represented by η. By Formula (12), it holds that

[π∗F (Ξρ,1, . . . ,Ξρ,m)] = π∗
[
F (Ξρ,1, . . . ,Ξρ,m)

]
= π∗F̃ (ξ1, . . . , ξr)

= Φ(s1, . . . , sn)

=
[
Φ
(
s1(E, h), . . . , sn(E, h)

)]
.

Hence, the difference

π∗F (Ξρ,1, . . . ,Ξρ,m)− Φ(s1(E, h), . . . , sn(E, h))

must be an exact global (k, k)-form on X. Recall that by Proposition 3.1
and Formula (11), π∗F (Ξρ,1, . . . ,Ξρ,m) is a universal weighted homogeneous
polynomial P = P

(
c•(E, h)

)
of weighted degree 2k in the Chern forms

of (E, h). If we express the Segre forms in terms of the Chern forms, the
previous difference can be written as a complex weighted homogeneous poly-
nomial

G
(
c1(E, h), . . . , cr(E, h)

)
=

∑
k1+2k2+···+rkr=k

gk1···krc1(E, h)k1∧· · ·∧cr(E, h)kr

in the Chern forms. Note that G is universal (since P and Φ are) in the
sense that its coefficients gk1···kr do not depend upon E, nor X, but only
upon r, n, and F . Recall that our aim is to show that G is in fact identically
zero: following [Gul12], to achieve this we shall evaluate it on a particular
vector bundle on a particular class of manifolds, as follows.

Take X to be any n-dimensional projective manifold and fix an ample
line bundle A on X. Let ωA be a metric on A with positive curvature. For
m1, . . . ,mr positive integers, we define the totally split, rank r vector bundle

E := A⊗m1 ⊕ · · · ⊕A⊗mr ,
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and denote by ωE the natural induced metric on E by ωA. Hence,

G(c1(E , ωE), . . . , cr(E , ωE))

=
∑

k1+2k2+···+rkr=k
gk1···krc1(E , ωE)k1 ∧ · · · ∧ cr(E , ωE)kr

=
∑

k1+2k2+···+rkr=k
gk1···kr

r∧
s=1

 ∑
1≤j1<···<js≤r

mj1 · · ·mjsc1(A,ωA)s

ks

=

 ∑
k1+2k2+···+rkr=k

gk1···kr

r∏
s=1

 ∑
1≤j1<···<js≤r

mj1 · · ·mjs

ks
 c1(A,ωA)k.

Let T1, . . . , Tr be a set of formal variables, and consider the polynomial p
defined by
(13)

p(T1, . . . , Tr) =
∑

k1+2k2+···+rkr=k
gk1···kr

r∏
s=1

 ∑
1≤j1<···<js≤r

Tj1 · · ·Tjs

ks

.

We have by definition that

G(c1(E , ωE), . . . , cr(E , ωE)) = p(m1, . . . ,mr)c1(A,ωA)k

and, consequently, in cohomology it holds that

p(m1, . . . ,mr)c1(A)k = [G(c1(E , ωE), . . . , cr(E , ωE))] = 0.

Since A is ample, the only possibility is that the polynomial p is zero for
every choice of positive integers m1, . . . ,mr. But the set of points in Cr
whose coordinates are positive integers is Zariski dense, and thus p must be
identically zero. Consequently, having the same coefficients as p, G ≡ 0 and
this concludes the proof. �

Remark 3.6. As already said, Formula (12) is not the only possible instance
of the Gysin formula given by Darondeau–Pragacz. For example, they gives
in [DP17, Proposition 4.2] the universal Gysin formula for flag bundles in
terms of Schur functions (a sort of generalization of Schur polynomials, see
next section for a definition of Schur polynomial).

Such version of the Darondeau–Pragacz formula is particularly useful
since for instance it explicitly shows (with a little further manipulation,
see the forthcoming second-named author PhD thesis, as well as [Fag22], for
more details) that one can obtain all the Schur polynomials in the Chern
classes of E as a push-forward from the complete flag bundle of monomials
of type (−ξ1)λ1 · · · (−ξr)λr , provided the λj ’s, satisfy a certain relation (for
more details see again [DP17, Proposition 4.2]).

Clearly, the validity of [DP17, Proposition 4.2] at the level of differential
forms follows directly from our Theorem 3.5.

4. Application to Griffiths’ conjecture

Let us first recall a few notations about Schur polynomials, essentially
taken from the exposition in [DPS94, §2] (see also [FL83]).
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Denote by Λ(k, r) the set of all the partitions σ = (σ1, . . . , σk) in Nk such
that

r ≥ σ1 ≥ . . . ≥ σk ≥ 0, |σ| =
k∑
j=1

σj = k.

For every σ ∈ Λ(k, r) we can define a Schur polynomial Sσ ∈ Z[c1, . . . , cr] of
weighted degree 2k (where deg cj = 2j) as

Sσ(c1, . . . , cr) := det


cσ1 cσ1+1 · · · cσ1+k−1

cσ2−1 cσ2 · · · cσ2+k−2
...

...
. . .

...
cσk−k+1 cσk−k+2 · · · cσk


where, by convention, c0 = 1 and cj = 0 if j /∈ [0, r].

The Schur polynomials, as σ ∈ Λ(k, r) varies, form a basis for the Q-
vector space of degree 2k weighted homogeneous polynomials in r variables.
Thus, given such a polynomial P we can write

P =
∑

σ∈Λ(k,r)

bσ(P )Sσ.

The set of all P such that bσ(P ) ≥ 0 for every σ ∈ Λ(k, r), which is called
the set of positive polynomials, is of course a positive convex cone, which we
call Π(r) following [Gri69] (remark that this is not exactly the positive cone
considered by Griffiths, but they coincides a posteriori thanks to the work
of [FL83]). It is well known that any product of Schur polynomials can be
written as a linear combination of Schur polynomials with non-negative in-
tegral coefficients; the values of these coefficients is given combinatorially by
the Littlewood–Richardson rule. Thus, these positive cones are stable un-
der product (cf. with the analogous property for wedge product of strongly
positive forms, as observed in Remark 4.9).

Now, if E is a rank r holomorphic vector bundle over the complex manifold
X and if σ is a partition in Λ(k, r), the Schur class of E associated to σ is
the cohomology class

Sσ(E) := Sσ
(
c1(E), . . . , cr(E)

)
∈ H2k(X,Z)

formally obtained by computing Sσ on the the Chern classes of E.
In the same way, if (E, h) is a holomorphic Hermitian rank r vector bundle

on X, we can define the Schur form of (E, h) associated to σ formally
obtained by computing Sσ on the the Chern forms of (E, h), and we denote
it by Sσ(E, h). Clearly, the closed differential 2k-form Sσ(E, h) is a special
representative for the class Sσ(E).

Example 4.1. By definition, the k-th Chern class of E corresponds to the
partition (k, 0, . . . , 0︸ ︷︷ ︸

k − 1 times

) ∈ Λ(k, r), i.e.

S(k,0,...,0)(E) = ck(E),

while the partition (1, . . . , 1︸ ︷︷ ︸
k times

) ∈ Λ(k, r) give rise to the k-th signed Segre

class
S(1,...,1)(E) = (−1)ksk(E).
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Clearly, at the level of differential forms we get similar equalities.

As we saw in the introduction, Griffiths conjectured (and proved partially)
in [Gri69] that given any rank r Hermitian holomorphic positive vector bun-
dle on a projective manifold, the polynomials belonging to Π(r) whenever
evaluated on its Chern classes have to return a positive number once inte-
grated over any subvariety of the correct dimension. A full proof of this
conjecture is given in [FL83] in the more general setting of ample vector
bundles (see also [DPS94] for the even more general context of E nef and X
compact Kähler).

Actually, in [FL83] a more universal problem is considered and settled,
i.e. to characterize precisely the numerically positive polynomials for ample
vector bundles of rank r. These are defined to be those weighted homoge-
neous polynomials say of degree 2n that whenever evaluated on the Chern
classes of any rank r ample vector bundle E over an irreducible projective
variety of dimension n give a positive number. Once again, the characteri-
zation is that numerically positive polynomials for ample vector bundles of
rank r are exactly the non zero positive polynomials.

Remark 4.2. It is observed in [FL83], in Remark (1) right after the proof of
Proposition 3.4, that if a weighted homogeneous polynomial P of degree 2n
is not positive, i.e. it does not belong to Π(r), then there exists a smooth
projective manifold of dimension n, and an ample vector bundle of rank r
over it, such that when one evaluates this polynomial in its Chern classes
and integrates over the manifold, one gets a negative number. Moreover,
such vector bundle is constructed as a quotient of a direct sum of very ample
line bundles.

The upshot is that if we want to show that a weighted homogeneous
polynomial is positive it suffices to show that it is a numerically positive
polynomial for ample vector bundles over smooth projective manifolds. This
will be useful later during the proof of Theorem 4.8.

Now, recall that given a Hermitian holomorphic vector bundle (E, h) →
X, it is said to be Griffiths semipositive (resp. Griffiths positive) if for every
x ∈ X, v ∈ Ex, τ ∈ TX,x we have

〈Θ(E, h)x · v, v〉h(τ, τ̄) ≥ 0

(resp. > 0 and = 0 if and only if v or τ is the zero vector). If we compute
the Chern curvature at the given point x with respect to a unitary frame
for Ex, say

Θ(E, h)x =

r∑
α,β=1

n∑
p,q=1

cpqαβ(x) dzp ∧ dz̄q ⊗ e∨α ⊗ eβ,

then this is equivalent to ask the same inequalities for the quantity∑
α,β

∑
p,q

cpqαβ(x) τpτ̄qvαv̄β,

where the vα’s and τp’s are the coordinate of the chosen vector with respect
to the given bases.

A Griffiths positive vector bundle on a compact complex manifold is ample
(the converse is not known in general, but it is a conjecture), and a globally
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generated vector bundle can be endowed with a Hermitian metric which
makes it Griffiths semipositive.

It is then natural to ask whether in this Hermitian setting the Fulton–
Lazarsfeld–Demailly–Peternell–Schneider theorem holds pointwise for Chern
forms, and this is also a question raised by Griffiths in the same paper.
Recall that a (k, k)-form u is positive if and only if its restriction to ev-
ery k-dimensional complex submanifold is a non negative volume form (cf.
[Dem12, Chapter III, §1.A, (1.6) Criterion]).

Question 4.3 ([Gri69]). Given a Griffiths (semi)positive Hermitian holo-
morphic vector bundle (E, h), is it true that the positive polynomials evalu-
ated on the Chern forms of E give rise to positive forms?

Remark 4.4. Coming back to Remark 4.2, we see that given P a weighted
homogeneous polynomial of degree 2n which is not positive, there exists a
rank r holomorphic Hermitian vector bundle (E, h) over a smooth projective
manifold X of dimension n whose Chern curvature is Griffiths (as well as
dual Nakano) positive and such that the corresponding characteristic form
obtained by computing P in the Chern forms of (E, h) is not a positive
(volume) form.

This is because one can endow E with the quotient metric of a posi-
tively curved direct sum metric on the direct sum of the very ample line
bundles in question. Such a metric, begin a quotient of a positively curved
(in any sense) metric, is both Griffiths and dual Nakano positive (but not
Nakano positive, in general). The corresponding volume form P

(
c•(E, h)

)
has negative total mass, and hence must be negative somewhere.

This means that, even in the pointwise Hermitianized case considered by
Griffiths, the cone of positive polynomials is the largest possible for which
one can hope such a result.

Griffiths, in loc. cit., answered in the affirmative to this question in the
special case of the second Chern form of a rank 2 Griffiths positive holo-
morphic vector bundle (for the first Chern form the answer is trivially yes).
Remark that this question gives, under the stronger hypothesis of Griffiths
positivity, a stronger answer than its cohomological version stated earlier,
since —as observed— a positive polynomial in the Chern form is a special
representative in cohomology of the corresponding positive polynomial in
the Chern classes.

In the last recent years there have been several partial results towards
a fully affirmative answer to Griffiths’ question. First, [Gul12] (see also
[Div16] for a more direct proof of the main technical result needed, as well
as [Mou04] for similar, and somehow more general, computations) proved
that the answer is affirmative in the special case of singed Segre classes.

Then, [Li20] proved the full statement but under the stronger assumption
of Bott–Chern (semi)positivity for (E, h). We refer to ibid. for the definition
of this variant of Hermitian positivity, which has been observed to be indeed
equivalent to dual Nakano (semi)positivity by Finski [Fin20].

Other related interesting results about finding positive representatives
(not necessarily coming from the given positively curved metric) of the Schur
polynomials in the Chern classes are obtained in [Pin18, Xia20].
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For an even more recent result in the case of (dual) Nakano positive vector
bundles, see [Fin20] and Remark 1.1.

Here, we are concerned with the original Question 4.3, which is still very
much open: one can construct indeed (local, say over a ball) examples of
Hermitian holomorphic vector bundles which are Griffiths positive but not
Nakano nor dual Nakano positive, see for instance [Fin20, Proposition 2.9].
Our Theorem 3.5 allows us indeed to confirm the strong positivity of quite
a few new positive combinations of Schur polynomials in the Chern forms,
as follows.

Let (E, h) be a Griffiths semipositive vector bundle over the complex man-
ifold X. Consider the flag bundle π : Fρ(E)→ X and, for a ∈ Nr satisfying
Condition (2), let Qa

ρ → Fρ(E) be the natural line bundle introduced before.
The first observation is contained in the following.

Proposition 4.5 ([Dem88a, Lemma 3.7 (a), and Formula (4.9)]). If a =
(a1, . . . , ar) ∈ Nr is non increasing, then Qa

ρ → Fρ(E) endowed with the
natural induced Hermitian metric is a semipositive line bundle.

This means precisely that the Chern curvature Ξa
ρ is a closed positive

(1, 1)-form.
Let us recall that a (k, k)-form is strongly positive if and only if all of its

wedge products against a positive form of complementary bi-degree give a
non negative volume form (cf. [Dem12, Chapter III, (1.1) Definition] for
the definition of strongly positive form, the one just given being usually a
characterization). Now, strongly positive forms are positive but the converse
is not true in general. However, strongly positive (k, k)-forms and positive
(k, k)-forms do coincide for k = 0, 1, n − 1, n, [Dem12, Chapter III, (1.9)
Corollary]. Thus, Ξa

ρ is also a strongly positive (1, 1)-form.
Since the wedge product of strongly positive forms is again strongly pos-

itive [Dem12, Chapter III, (1.11) Proposition], then all wedge powers of
Ξa
ρ are again strongly positive. Now, it is straightforward to see that the

push-forward of a closed strongly positive form under a proper holomorphic
submersion is again a closed strongly positive form [Dem12, Chapter III,
(1.17) Proposition]. Thus, we obtain immediately the next proposition.

Proposition 4.6. If (E, h) → X is a Griffiths semipositive vector bundle,
then the closed forms

π∗(Ξ
a
ρ)dρ+k, a1 ≥ a2 ≥ · · · ≥ ar ≥ 0,

where dρ is the relative dimension and k is a non negative integer, are closed
strongly positive (k, k)-forms.

Remark 4.7. If it happens that the chain of inequalities in the above state-
ment is not strictly decreasing where prescribed by Condition (?), then the
push-forward is identically zero. This is because in this case the curvature
Ξa
ρ has some vertical zero eigenvalue in each fiber, thanks to Formula (4).

Therefore, the vertical top form against which we integrate to obtain the
push-forward is identically zero being, modulo a factor, the determinant of
the vertical part of the curvature. So, in what follows, we can consider with-
out loss of generality only weights a ∈ Nr satisfying Condition (2) and such
that as1 > as2 > · · · > asm .
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Now, we come to the main result of this section. Denote by Φk
a(E, h) the

push-forward

π∗(Ξ
a
ρ)dρ+k = Φk

a(E, h).

It is a closed (k, k)-form representing the cohomology class [π∗(Ξ
a
ρ)dρ+k] ∈

H2k(X).

Theorem 4.8. Let (E, h) → X be a rank r Griffiths semipositive vector
bundle. For every a ∈ Nr satisfying Conditions (2) and (?), and for every
k = 0, . . . , n = dimX, the differential form Φk

a(E, h) is a closed strongly
positive (k, k)-form on X belonging to the positive convex cone Π(r) spanned
by the Schur forms of (E, h).

Moreover, the explicit expression of Φk
a(E, h) can be obtained by formally

evaluating in the Segre forms sj(E, h)’s of (E, h) the right hand side of
Formula (12), with

F̃ (t1, . . . , tr) =

− m∑
j=1

sj∑
λ=sj−1+1

asj tλ

dρ+k

.

This theorem covers in particular Guler’s work [Gul12], which concerned
push-forwards from the projectivized bundle.

Remark 4.9. Observe that it is in some sense more natural to obtain that
these forms are strongly positive rather than merely positive. This is be-
cause, as said earlier, positive polynomials are stable under products and so
do strongly positive forms, while a product of positive forms is not neces-
sarily still positive.

Proof. By Remark 3.2, there exists a unique homogeneous polynomial Γka of
weighted degree 2k such that

Φk
a(E, h) = Γka

(
s1(E, h), . . . , sn(E, h)

)
.

By definition, we have that

(Ξa
ρ)dρ+k = (as1Ξρ,1 + · · ·+ asmΞρ,m)dρ+k ,

and thanks to Theorem 3.5 we get the explicit expression claimed at the end
of the statement. The closedness and strong positivity of Φk

a(E, h) are the
content of Proposition 4.6.

We now want to show that Φk
a(E, h) can be written as a positive linear

combination of Schur forms. To do this, let Γ̃ka be the unique polynomial
such that

Φk
a(E, h) = Γka

(
s1(E, h), . . . , sn(E, h)

)
= Γ̃ka

(
c1(E, h), . . . , cr(E, h)

)
.

Observe that obviously the polynomial Γ̃ka does not depend on the particular
vector bundle considered, nor on the particular given base manifold, as usual.
What we want to show will then follow from the Fulton–Lazarsfeld theorem
[FL83] if we can prove that Γ̃ka is a numerically positive polynomial for ample
vector bundles of rank r over smooth projective manifolds, see Remark 4.2.

So, take any rank r ample vector bundle V over a k-dimensional projective
manifold Z. By [Dem88b, Lemma 4.1], the corresponding line bundle Qa

ρ
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over Fρ(V) is ample, and it can be therefore endowed with a smooth Hermit-
ian metric hV,a whose Chern curvature iΘ(Qa

ρ, hV,a) is strictly positive, i.e.

a Kähler form. But then, π∗c1(Qa
ρ, hV,a)dρ+k, is a closed positive nowhere

zero (k, k)-form representing the cohomology class Γ̃ka
(
c1(V), . . . , cr(V)

)
. In

particular, being represented by a non zero positive (k, k)-form, we have
that ∫

Z
Γ̃ka
(
c1(V), . . . , cr(V)

)
> 0,

as desired. �

As a byproduct of the proof above one immediately obtains the following
statement for ample vector bundles in the same spirit of [Pin18, Xia20].

Theorem 4.10. Let E → X be an ample vector bundle of rank r over a
projective manifold. For every a ∈ Nr satisfying Conditions (2) and (?), and
for every k = 0, . . . , n = dimX, the (k, k)-cohomology classes π∗c1(Qa

ρ)dρ+k

contain a closed strongly positive form and belong to Π(r) .

Remark 4.11. One can also carry out some variant of the approach presented
here, in order to obtain positivity of some positive combination of Schur
forms which is not covered by what we do here.

More specifically, one can show for instance the positivity of Schur forms
such as c2 in every rank and c1c2 − c3 for a rank 3 Griffiths (semi)positive
holomorphic Hermitian vector bundle. See [Fag22] for more details.

We obtain thus a partial affirmative answer to Griffiths’ question for the
polynomials in the Chern forms of (E, h) belonging to the positive convex
sub-cone F(r) ⊂ Π(r) spanned by all possible wedge products of all possible
push-forwards π∗c1(Qa

ρ)dρ+k, for k = 0, . . . , n, as the weights a ∈ Nr vary
in the appropriate range prescribed by Conditions (2) and (?). This sub-
cone contains in particular the signed Segre forms, which arise in the case
of projectivized bundle.

Remark 4.12. Even if it is possible to obtain every Schur form as a push-
forward, as observed in Remark 3.6, unfortunately this is not enough to
get here that every Schur form of a Griffiths semipositive vector bundle is
positive. This is because the curvature computations for the tautological
bundles over the compete flag bundle do not permit to conclude that the
relevant monomials whose push-forward give the desired Schur forms are
positive.

The next examples are intended to give some flavor of which kind of new
positive forms, in particular besides signed Segre forms, we are able to obtain
with our methods.

4.1. Examples. In this section we give several examples of differential forms
whose (strong) positivity is due to Theorem 4.8 and was not previously
known in general. The explicit forms of some of them are obtained by im-
plementing Formula (12) in PARI/GP.

As we have seen, for (E, h) a rank r Griffiths (semi)positive vector bundle,
the forms π∗c1(Qa

ρ, h)dρ+k are strongly positive. We want to highlight here
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some among them that cannot be shown to be positive only using results in
the literature preceding the present work, at the best of our knowledge.

To this aim, observe that we already knew that the signed Segre forms
(−1)ksk(E, h) are (strongly) positive for Griffiths (semi)positive vector bun-
dles thanks to [Gul12, Theorem 1.1] (even though the strong positivity was
not explicitly observed there). Also, as already noted, the product of pos-
itive forms, all of them strongly positive (resp. all except possibly one) is
strongly positive (resp. positive).

This understood, in order to check for which forms we get new information
about their positivity, we shall express π∗c1(Qa

ρ, h)dρ+k as a polynomial in
the (signed) Segre forms of E.

In what follows, in order to simplify the notation, we denote by c1, . . . , cr
the Chern forms of (E, h) and by s1, . . . , sn the Segre forms of (E, h). The
symbol Sσ stands for the Schur form of (E, h) associated to the partition σ.
Moreover, we omit the symbol ∧ for the wedge product of forms.

4.1.1. Push-forwards from Grassmannian bundles. Denote by ρ the sequence
(0, r − d, r). Then, Fρ(E) is the Grassmannian bundle Gr−d(E) of (r − d)-
planes in E. Let π : Gr−d(E) → X be the projection, and denote by Q the
universal quotient bundle of rank d on Gr−d(E) equipped with the quotient
metric. In our notation, the class c1(Q) equals c1(Qρ,1).

Therefore, for N ≥ d(r − d) the metric counterpart of the Darondeau–
Pragacz push-forward formula reads

(14) π∗c1(Q, h)N =
∑

|λ|=N−d(r−d)

fλ+ε det
(

(−1)λi+j−isλi+j−i

)
1≤i,j≤d

where λ = (λ1, . . . , λd) is a partition and |λ| is its total weight, ε stands for
the d-uple (r − d)d = (r − d, . . . , r − d) and fλ+ε is the number of standard
Young tableaux with shape λ + ε (we have used here the more explicit
version computed in the particular case of Grassmannian bundles in [KT15,
Theorem 0.1]). Now, as explained for instance in [KT15], we have that

fλ+ε =
N !
∏

1≤i<j≤d(λi − λj − i+ j)∏
1≤i≤d(r + λi − i)!

.

Note that when d = 1 the bundle Gr−1(E) can be identified with P(E∨),
consequently Q ∼= OE∨(1), and Formula (14) becomes

π∗c1(OE∨(1), h)N = (−1)N−r+1sN−r+1,

which is the push-forward formula by [Mou04, Gul12, Div16] giving the
positivity of signed Segre forms.

It is noteworthy (see Example 2.1) to observe that already for the pro-
jectivized bundle of lines P(E) corresponding to the partition (0, 1, r), if we
push-forward powers of c1(Q, h), where Q = π∗E/OE(−1), we are now able
to get forms whose positivity was not previously known.

In rank 3 (if r = 2 we have that P(E) ∼= P(E∨) and there is nothing more
to add) we see for instance, by using Formula (14), that π∗c1(Q, h)5 equals
the form

4c3
1 − 3c1c2 − c3 = s3 − 5s1s2,
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and the positivity of s3 − 5s1s2 was not previously known given that s3 is
negative.

Analogously, for the same reasons, if r = 4, the positivity of

π∗c1(Q, h)6 = 10c3
1 − 4c1c2 − c3 = s3 − 6s1s2 − 5s3

1

was not previously known.

The simplest example of a Grassmannian bundle which is not a projec-
tivized bundle is G2(E) for E of rank 4. Also in this case we get something
new, as follows. By Formula (14), the push-forward via π of c1(Q, h)N is
given by 

2 for N = 4,

5c1 for N = 5,

9c2
1 − 4c2 for N = 6,

14(c3
1 − c1c2) for N = 7,

2(10c4
1 − 16c2

1c2 − c1c3 + 3c2
2 + 4c4) for N = 8.

When rewritten in terms of signed Segre forms, we obtain

2 for N = 4,

5(−s1) for N = 5,

5s2
1 + 4s2 for N = 6,

14(−s1)s2 for N = 7,

2(7s1s3 + 7s2
2 − 4s4) for N = 8,

so that the positivity of the last form could not be previously deduced, since
−s4 is negative.

4.1.2. Push-forwards from complete flag bundles: the case of rank 3. The
general formulæ for the push-forwards of c1(Q(a,b,c), h)3+k in terms of the
Schur forms, up to degree 3, are:

k = 0  3(a2b− ab2 − a2c+ ac2 + b2c− bc2),

k = 1  4(a3b− ab3 − a3c+ ac3 + cb3 − bc3)S(1),

k = 2  10(a3b2 − a2b3 − a3c2 + a2c3 + b3c2 − b2c3)S(2,0)

+ 5(a4b− ab4 − a4c+ ac4 + b4c− bc4)S(1,1),

k = 3  60(a3b2c− a2b3c− a3bc2 + a2bc3 + ab3c2 − ab2c3)S(3,0,0)

+ 15(a4b2 − a2b4 − a4c2 + a2c4 + b4c2 − b2c4)S(2,1,0)

+ 6(a5b− ab5 − a5c+ ac5 + b5c− bc5)S(1,1,1).

Clearly, our method produces positive forms until k reaches n, but already
from these first cases we see how the complexity rapidly increases. Thanks
to our Theorem 4.8 we can say that all of the above listed forms belong to
the positive cone for every a ≥ b ≥ c ≥ 0.
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For a concrete example, if (a, b, c) = (3, 2, 0) we obtain in terms of Segre
forms:

π∗c1(Q(3,2,0), h)6 = 2700S(2,1,0) + 2340S(1,1,1)

= 180(−15s1s2 + 2s3),

and the positivity of this form was not already known since s3 < 0.
On the negative side, note that, for instance, the positivity of

π∗c1(Q(2,1,0), h)6 = −180s1s2

was instead previously known since −s1s2 is the wedge product of strongly
positive forms.

4.1.3. Push-forwards from complete flag bundles: the case of rank 4. Here,
we prefer to emphasize the different behavior in two special cases instead of
giving the general formulæ for a ≥ b ≥ c ≥ d ≥ 0.

For (a, b, c, d) = (3, 2, 1, 0), we have

π∗c1(Q(3,2,1,0), h)9 = 90720(−s3
1 − 2s1s2),

π∗c1(Q(3,2,1,0), h)10 = 5040(216s2
1s2 + 7s1s3 + 39s2

2 − 4s4),

and note that the positivity of the last form was not previously known since
−s4 is negative, while we already knew that −s3

1 − 2s1s2 is positive.
If we want an example of a push-forward that gives not previously known

positive forms in degree 3 and 4, consider the case (a, b, c, d) = (4, 3, 2, 0)
where we have

π∗c1(Q(4,3,2,0), h)9 = 181440(−8s3
1 − 12s1s2 + s3),

π∗c1(Q(4,3,2,0), h)10 = 40320(648s2
1s2 − 124s1s3 + 42s2

2 + 13s4)

and the positivity of both of these forms was not already known again be-
cause s3 is negative.
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