

Expressions of the cytochrome P450 monooxygenase gene Cyp4g1 and its homolog in the prothoracic glands of the fruit fly Drosophila melanogaster (Diptera: Drosophilidae) and the silkworm Bombyx mori (Lepidoptera: Bombycidae)

著者	Niwa Ryusuke, Sakudoh Takashi, Matsuya
	Takeshi, Namiki Toshiki, Kasai Shinji, Tomita
	Takashi, Kataoka Hiroshi
journal or	Applied entomology and zoology
publication title	
volume	46
number	4
page range	533-543
year	2011-11
権利	(C) The Japanese Society of Applied Entomology
	and Zoology 2011.The original publication is
	available at www.springerlink.com
URL	http://hdl.handle.net/2241/114738

doi: 10.1007/s13355-011-0074-6

1	Expressions of the cytochrome P450 monooxygenase gene Cyp4g1 and its homolog
2	in the prothoracic glands of the fruit fly Drosophila melanogaster (Diptera:
3	Drosophilidae) and the silkworm <i>Bombyx mori</i> (Lepidoptera: Bombycidae)
4	
5	Ryusuke Niwa • Takashi Sakudoh • Takeshi Matsuya • Toshiki Namiki • Shinji
6	Kasai · Takashi Tomita · Hiroshi Kataoka
7	
8	R. Niwa (corresponding author)
9	Initiative for the Promotion of Young Scientists' Independent Research, Graduate
10	School of Life and Environmental Sciences, University of Tsukuba, Seinou-tou B411,
11	Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
12	TEL: +81-29-853-6652, FAX: +81-29-853-6614
13	Email: ryusuke-niwa@umin.ac.jp
14	
15	T. Sakudoh
16	Division of Radiological Protection and Biology, National Institute of Infectious
17	Diseases, 1-23-1 Toyama, Shinjuku-ku Tokyo 162-8640, Japan
18	
19	T. Matsuya, T. Namiki, H. Kataoka
20	Department of Integrated Biosciences, Graduate School of Frontier Sciences, The
21	University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
22	
23	S. Kasai, T. Tomita
24	Department of Medical Entomology, National Institute of Infectious Diseases, Toyama
25	1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
26	

26 Abstract

28	Here we describe the expression profiles of the cytochromoe P450 monooxygease gene
29	Cyp4g1 in the fruit fly, Drosophila melanogaster Meigen and its homolog in the
30	silkworm <i>Bombyx mori</i> L. We identified <i>Cyp4g1</i> by a microarray analysis to examine
31	the expression levels of 86 predicted D. melanogaster P450 genes in the ring gland that
32	contains the prothoracic gland (PG), an endocrine organ responsible for synthesizing
33	ecdysteroids. B. mori Cyp4g25 is a closely-related homolog of D. melanogaster Cyp4g1
34	and is also expressed in the PG. A developmental expression pattern of $Cyp4g25$ in the
35	PG is positively correlated with a fluctuation in hemolymph ecdysteroid titer in the late
36	stage of the final instar. Moreover, the expression of Cyp4g25 in cultured PGs is
37	significantly induced by the addition of prothoracicotropic hormone (PTTH), a
38	neuropeptide hormone that stimulates the synthesis and release of ecdysone. We
39	propose that Cyp4g1 and Cyp4g25 are the candidates that play a role in regulating PG
40	function and control ecdysteroid production and/or metabolism during insect
41	development.
42	
43	Keywords
44	cytochrome P450 monooxygenase, prothoracic gland, Bombyx mori, Drosophila
45	melanogaster
46	

47 Introduction

48	In arthropods, steroid hormones designated as ecdysteroids, such as ecdysone and its
49	derivative 20-hydroxyecdysone (20E), are essential for precise progression through
50	development (Thummel, 2001; Gilbert et al., 2002; Spindler et al., 2009). Ecdysone is
51	synthesized from dietary cholesterol via a series of hydroxylation and oxidation steps in
52	the prothoracic gland (PG) during postembryonic development (Gilbert et al., 2002).
53	Ecdysone is subsequently converted to 20E by the 20-hydroxylase present in the
54	peripheral tissues (Gilbert et al., 2002).
55	Recently, molecular genetic studies using the fruit fly Drosophila
56	melanogaster Meigen and the silkworm Bombyx mori L. have successfully identified
57	several genes crucial for intermediate steps in ecdysone biosynthesis. The
58	dehydrogenation of cholesterol to 7-hydrocholesterol (7dC), the first step in
59	synthesizing ecdysone, is catalyzed by the Rieske-domain enzyme Neverland (Nvd)
60	(Yoshiyama et al., 2006; Niwa and Niwa, 2011; Yoshiyama-Yanagawa et al., 2011). The
61	conversion of 7dC to 5 β -ketodiol is commonly referred to as a "Black Box" since no
62	stable intermediate has been identified (Gilbert et al., 2002). Recent studies have
63	demonstrated that the cytochrome P450 monooxygenases, CYP307A1/Spook (Spo) and
64	CYP307A2/Spookier (Spok), and the short-chain dehydrogenase/reductase Non-molting
65	glossy/Shroud are involved in the Black Box reaction (Namiki et al., 2005; Ono et al.,
66	2006; Niwa et al., 2010). The terminal hydroxylation steps from 5 β -ketodiol to
67	ecdysone in the PG are catalyzed by three cytochrome P450 monooxygenases:
68	CYP306A1/Phantom (Phm), CYP302A1/Disembodied (Dib) and CYP315A1/Shadow
69	(Sad) (Chávez et al., 2000; Warren et al., 2002; Niwa et al., 2004; Warren et al., 2004;
70	Niwa et al., 2005). The conversion of ecdysone to 20E is also mediated by a P450
71	monooxygenase, CYP314A1/Shade (Shd), in the peripheral tissues (Petryk et al., 2003).

72 Shroud and the P450 enzymes described above were identified from embryonic lethal 73 mutants, known as the Halloween mutants, that exhibit embryonic ecdysone deficiency 74 (Chávez et al., 2000). The recent discovery of these ecdysteroidogenic enzymes greatly 75 advances our knowledge of ecdysone biosynthesis at the molecular level. However, it 76 has not yet been proven whether the enzymes identified thus far are sufficient for the 77 conversion of cholesterol to 20-hydroxyecdysone. Therefore, it is unclear whether there 78 are still unidentified enzyme(s) that are responsible for ecdysone biosynthesis. 79 Here, we report that another P450 gene, *Cyp4g1*, is highly expressed in the 80 PG in D. melanogaster. A closely-related homolog of Cyp4g1 from B. mori, Cyp4g25, 81 is also expressed in the PG, and its expression profile is positively correlated with a 82 change in ecdysteroid titer in the hemolymph during the late stage of the last larval 83 instar. Furthermore, we show that in cultured PGs, the expression of Cyp4g25 is 84 significantly induced by the addition of the prothoracicotropic hormone (PTTH), which 85 is a crucial neuropeptide that stimulates the synthesis and release of ecdysone (Gilbert et 86 al., 2002). These results suggest that Cyp4g1 and Cyp4g25 play a role in regulating the 87 PG function during insect development.

88

89 Materials and Methods

90

91 Insects

92 Silkworms, *B. mori* (KINSYU x SHOWA F1 hybrid), were reared on an artificial diet

93 (Silkmate, Nihon-Nosan-Kogyo, Japan) at 25 °C under a 16 h light/8 h dark cycle. The

- 94 first days corresponding to the developmental stages of the 4th to 5th larval ecdysis,
- 95 wandering and pupation were designated as V0, W0 and P0, respectively. D.

- *melanogaster* flies were reared on standard agar-cornmeal medium at 25°C under a 12 h
 light/12 h dark cycle. Oregon R was used as the wild-type fly.
- 98

99 Microarray analysis

100 We created a customized cDNA microarray, which contained DNA fragments

101 corresponding to 86 predicted *D. melanogaster* P450 gene that were chose in our

102 previous study (Kasai and Tomita, 2003). A DNA fragment corresponding to each of the

103 86 P450 genes was amplified by PCR as previously described (Kasai and Tomita, 2003).

104 Gene specific primers used for PCR are listed in Table 1. The DNA fragments of the 86

105 P450 genes were approximately 500-600 bp in length (Table 1). PCR products were

106 purified by agarose gel electrophoresis and then subcloned to pCR2.1 (Invitrogen).

107 After DNA sequences of each of the PCR products were verified, we re-performed PCR

108 using pCR2.1 plasmids containing sequence-verified P450 fragments with the gene

109 specific primers (Table 1). These PCR products were spotted onto microarrays. Total

110 RNA from the ring glands and the brain-ventral nerve cord complex of the wandering

111 3rd instar *D. melanogaster* larvae were prepared using TRIzol reagent (Invitrogen).

112 Spotting, cRNA amplification, fluorescent labeling, hybridization, detection and

analysis were conducted by Bio Matrix Research, Inc., Kashiwa, Japan. One customized

114 microarray contained 4 spots for each of the P450 genes. Spot intensities were

normalized using a summation of total spot intensities in the hybridization experiments.

116

117 RNA in situ hybridization

118 Synthesis of DIG-labeled RNA probes and RNA *in situ* hybridizations were performed

as previously described (Lehmann and Tautz, 1994). To synthesize sense and antisense

120 RNA probes for *Cyp4g1* and *Cyp310a1*, EST cDNA clones of the Berkeley *Drosophila*

- 121 genome project GH05567 and LD44491, respectively (Stapleton et al., 2002), were used
- 122 as templates. To generate a template for synthesizing sense and antisense Cyp12e1 RNA
- 123 probes, the ORF region of *Cyp12e1* was amplified by PCR with primers
- 124 (5'-ATGTTGTCAACGCAGTGGAACGCAAATAAA-3' and
- 125 5'-AAACCCGATCTTAAAGTTTCTTACCAACCG-3') using wild-type genomic
- 126 DNA as template and subcloned into pBluescript.
- 127
- 128 Quantitative reverse-transcription PCR (qRT-PCR)
- 129 Single-stranded cDNA synthesis was performed as previously described (Niwa et al.,
- 130 2004). qRT-PCR was performed using a real-time thermal Smart Cycler System
- 131 (Cepheid) with the SYBR Premix ExTaq (TaKaRa). Specific primers used in this study
- 132 were the following: Cyp4g1-forward (5'-CGGTCCTGGGATTCAGTCCTATG-3'),
- 133 Cyp4g1-reverse (5'-CATCACCGAACCAGGGCTTGAAG-3'), Cyp4g25-forward
- 134 (5'-TCGTCGGTGGATCTGCTGACATCTTC-3'), Cyp4g25-reverse
- 135 (5'-CGATGAGACCTCCATTTTTGACCAGTACTG-3'), rp49-forward
- 136 (5'-CGGATCGATATGCTAAGCTGT-3'), rp49-reverse
- 137 (5'-GCGCTTGTTCGATCCGTA-3'), rpL3-forward
- 138 (5'-CGTCGTCATCGTGGTAAGGTCAAG-3') and rpL3-reverse
- 139 (5'-GGTCTCAATGTATCCAACAACACCGACAC-3'). Serial dilutions of plasmids
- 140 containing cDNAs of *Cyp4g1*, *Cyp4g25*, *rp49* and *rpL3* were used as standards. The
- 141 plasmid containing *Cyp4g25* cDNA was *B. mori* EST clone prgv0895 (Mita et al.,
- 142 2003), which was a gift from Kazuei Mita. PCR was performed with 40 cycles of 94 °C
- 143 for 5 s and 60 °C for 20 s. The amount of each transcript was calculated based on
- 144 crossing point analysis, with standard curves generated from the standard plasmids.

- 145 Transcript levels of Cyp4g1 and Cyp4g25 were normalized to transcript levels of rp49146 and rpL3, respectively, in the same samples.
- 147

148 In vitro culture of PGs

149 The *in vitro* culture of PGs was performed as previously described (Niwa et al., 2005;

150 Yamanaka et al., 2007). Recombinant PTTH (rPTTH) was prepared as previously

151 described (Ishibashi et al., 1994). V4 silkworms were anaesthetized by water

submersion for 5 min. The PGs were dissected rapidly in sterile saline and

153 pre-incubated in 100 µl of Grace's Insect Medium (Sigma). After 20 min, each single

154 PG was transferred into 100 µl of medium in the presence or absence of 10 nM rPTTH,

because ecdysone release from the PGs is at its highest in 10 nM rPTTH (Yamanaka et

al., 2005). After incubation for 30 min, 2 h, 4 h or 6 h, each PG was removed, frozen at

157 -80 °C and analyzed by quantitative RT-PCR. For experiments in which transcription

158 was inhibited, the transcriptional inhibitor, α -amanitin (1 µg/ml) (Sigma) was used as

159 previously described (Niwa et al., 2005). The inhibitor was added to the pre-incubation

160 medium 15 min before incubation with rPTTH. The inhibitors were also included

161 during the incubation period (2 h). For experiments using ecdysteroids, the PG was

162 cultured in the presence or absence of 74 nM of ecdysone (Sigma), as the amount of

163 ecdysone released from a single cultured PG at 2 h post-PTTH stimulation was

164 estimated at 3.44 ng in 100 μl medium, i.e. 74 nM, as previously reported (Niwa et al.,

165 2005).

166

167 **Results**

168

169 Microarray analysis for P450 expression in the *D. melanogaster* ring gland

170 To examine which P450 genes are predominantly expressed in the PG of D. 171 melanogaster, we used our customized microarray on which non-redundant DNA 172 fragments corresponding to 86 predicted P450 genes (Kasai and Tomita, 2003) were 173 spotted. We compared gene expression levels of all the predicted P450 genes in the ring 174 glands containing the PG cells compared to the brain-ventral nerve cord (VNC) 175 complex. Both the ring glands and the brain-VNC complexes were isolated from 176 wandering 3rd instar larvae. The microarray data obtained from 2 independent 177 experiments yielded 7 cDNAs showing a more than a 2-fold increase in expression in 178 the ring gland when compared with expression in the brain-VNC complex. These 7 179 genes included all of the previously identified P450 genes known to be predominantly 180 expressed in the PG and corpora allata of the ring gland (Fig. 1 and Table 2), such as 181 sad (Warren et al., 2002), dib (Chávez et al., 2000), phm (Niwa et al., 2004; Warren et 182 al., 2004) and Cyp6g2 (Chung et al., 2009). Spok (Ono et al., 2006) was not identified 183 from our micorarray analysis simply because the *spok* probe was not included in our 184 customized microarray. These results demonstrate the reliability of the microarray 185 analysis.

186

187 D. melanogaster Cyp4g1 is strongly expressed in the prothoracic gland

188 In addition to *dib*, *sad*, *phm* and *Cyp6g2*, we found that 3 other P450 genes,

189 *Cyp4g1* (GenBank accession no. NM_080292), *Cyp12e1* (NM_141746) and *Cyp310a1*

190 (NM_136047), exhibited a more than 2-fold expression change in the ring gland when

- 191 compared to expression in the brain-VNC complex (Fig. 1 and Table 2). To confirm the
- 192 gene expression in the ring gland, we performed RNA *in situ* hybridization. Whereas

193 neither Cyp12e1 nor Cyp310a1 was strongly expressed in the ring gland (data not

shown), we found that *Cyp4g1* was predominantly expressed in the PG cells of the ring

195	gland in the wandering 3rd instar larva (Fig. 2a-e). The Cyp4g1 transcript was
196	exclusively observed in the PG, but not in other endocrine organs in the ring gland, such
197	as the corpus allatum or corpus cardiacum. Curiously, the expression of Cyp4g1 was
198	detected in a subset, but not all, of the PG cells (Fig. 2b-e). In addition, spatial
199	distributions of the Cyp4g1-expressing cells in the PGs were different among specimens
200	(Fig. 2b-e). Features of the spatial expression pattern of <i>Cyp4g1</i> were unique and unlike
201	the expression patterns of the previously identified ecdysteroidogenic genes (Chávez et
202	al., 2000; Warren et al., 2002; Niwa et al., 2004; Warren et al., 2004; Niwa et al., 2010).
203	While it has been reported that $Cyp4g1$ is the most highly expressed P450 gene in the
204	adult stage (Daborn et al., 2002; Kasai and Tomita, 2003) and is also expressed in larval
205	oenocytes (Gutierrez et al., 2007), our work is the first report that the expression of
206	Cyp4g1 in the PG cells.
207	We also examined the spatial expression profile of <i>Cyp4g1</i> using qRT-PCR.
208	In addition to high expression in the PG, Cyp4g1 was also highly expressed in the
209	epidermis (Fig. 2f). The epidermal expression of Cyp4g1 was thought to reflect the
210	expression in oenocytes because strong in situ signals were detected in seven pairs of
211	the oenocytes (Fig. 2g) as reported in previous studies (Simpson, 1997; Tarès et al.,

212 2000; Tomancak et al., 2002; Gutierrez et al., 2007; Chung et al., 2009).

213

214 B. mori Cyp4g25, the closely related genes to D. melanogaster Cyp4g1, is also

215 expressed in the prothoracic gland

We next examined whether a gene closely related to *D. melanogaster Cyp4g1* was also expressed in the PG in another model insect, the silkworm *B. mori*. A BLAST search revealed that *D. melanogaster Cyp4g1* is most similar to the *B. mori* gene

219 *Cyp4g25* (GenBank accession no. ABF51415) among all of the predicted genes in the *B*.

220	mori genome. The deduced amino acid sequence of B. mori CYP4G25 compared to that
221	of <i>D. melanogaster</i> CYP4G1 shows 49.6 % identity, with an additional 16.0 % of the
222	amino acids judged to be similar. The $Cyp4g25$ transcript was detected in the PG of B.
223	mori, as expected, as well as in other tissues including the salivary gland (Fig. 3a). We
224	also found that Cyp4g25 expression in the PG fluctuated in 5th instar larvae (Fig. 3b).
225	This fluctuation was especially prevalent in the wandering larvae in the late 5th instar
226	larval stage; this change in the Cyp4g25 PG expression level correlated well with the
227	change in the hemolymph ecdysteroid titer during development (Fig. 3b). Around the
228	wandering stage, the PTTH titer is elevated in the <i>B. mori</i> hemolymph (Mizoguchi et al.,
229	2001; Mizoguchi et al., 2002). We have previously reported that <i>B. mori dib</i> (<i>dib-Bm</i>)
230	expression also dramatically increases in the wandering stage and is transcriptionally
231	regulated by PTTH (Niwa et al., 2005), raising the possibility that Cyp4g25
232	transcription is also regulated by PTTH.
233	
234	The expression level of <i>B. mori Cyp4g25</i> is increased by the prothoracicotropic
235	hormone in the cultured prothoracic gland
236	To address the question of whether PTTH regulates the expression of $Cyp4g25$ in the
237	PG, we incubated PGs with 10 nM recombinant PTTH (rPTTH). In this study, we used
238	the PGs from V4 stage 5th instar larvae. PGs from V4 stage silkworms are highly
239	sensitive to treatment with PTTH, as shown by elevated glandular cAMP levels and
240	ecdysone secretion (Yamanaka et al., 2005). Under our culture conditions, there was a
241	significant induction of ecdysteroid production (Niwa et al., 2005). We found that
242	Cyp4g25 expression was significantly induced within 2 h in 4 independently isolated
243	PGs (Fig. 4a). After 2 h of treatment with rPTTH, Cyp4g25 mRNA levels showed more
244	than an eight-fold increase in expression over $Cyp4g25$ levels at the beginning of the

incubation. The elevation of *Cyp4g25* mRNA by rPTTH was significantly inhibited by the presence of α -amanitin, an inhibitor of RNA polymerase II-dependent transcription (Fig. 4b), suggesting that PTTH regulates *Cyp4g25* mRNA at the level of transcription.

Indeed, the elevation of *Cyp4g25* mRNA levels by rPTTH was more rapidly and

drastically induced compared to that of *dib-Bm* (Niwa et al., 2005).

250 It is possible that the *Cyp4g1* mRNA is induced by ecdysone, which is

251 produced in and secreted from the PG by the PTTH stimulation. In order to test this

252 hypothesis, we applied ecdysone at a concentration of 74 nM (see Materials and

253 methods) to cultured PGs in place of rPTTH. No significant increase of *Cyp4g25*

254 mRNA level was observed after 2 h of incubation with ecdysone as compared to rPTTH

255 (Fig. 4C). These data suggest that *Cyp4g25* is specifically transcriptionally regulated by

256 PTTH rather than ecdysone during ecdysteroid biosynthesis in the PG.

257

258 Discussion

In this study, we identified *D. melanogaster Cyp4g1* and showed that *Cyp4g1* is highly

260 expressed in the PG during embryonic and larval development. In addition, we

demonstrated that the expression of the *B. mori* homolog of *Cyp4g1*, designated

262 *Cyp4g25*, was in concert with the changes in ecdysone titer during the wandering stage

263 of 5th instar larvae. We also showed that the expression of *Cyp4g25* in cultured PGs is

dramatically induced by treatment with PTTH. It should be noted that the increase of

265 *Cyp4g25* mRNA level was more rapid and drastic when compared to that of *dib-Bm*,

which encodes a crucial enzyme for ecdysone biosynthesis (Niwa et al., 2005).

267 Considering that vertebrate neuropeptides that regulate steroidogenesis also affect the

transcriptional regulation of steroidogenic enzymes (Kagawa et al., 1999; Sewer and

269 Waterman, 2003), we propose that CYP4G1/CYP4G25 might play an important role in

ecdysone biosynthesis in the PG in insects. A previous study showed that another P450
enzyme gene belonging to the CYP4 family, *Cyp4c15*, is specifically expressed in the
steroidogenic gland in the crayfish, *Orconectes limosus* Rafinesque (Aragon et al.,
2002), suggesting that some of the CYP4 family members play a role in ecdysone
biosynthesis not only in insects but also in other arthropods.

275 It has not yet been elucidated whether CYP4G1/CYP4G25 contributes to 276 ecdysone biosynthesis in the PG during development. A recent study demonstrates that 277 *Cyp4g1* expression in oenocytes is crucial for regulating the lipid composition of the fat 278 body (Gutierrez et al., 2007). Complete loss-of-function mutants of Cyp4g1 develop 279 normally through larval and early pupal stages, but arrest during mid-to-late pupal 280 stages; many fail during adult eclosion due to abnormal lipid metabolism (Gutierrez et 281 al., 2007). Further analysis is needed to examine whether the pupal arrest phenotype of 282 the *Cyp4g1* mutants is partly due to a defect in ecdysone biosynthesis in the PG. 283 However, these data indicate that *Cyp4g1* is not necessary for embryonic and larval 284 ecdysis at least in *D. melanogaster*.

285 We have not identified a specific enzymatic activity or any substrate for 286 CYP4G1/CYP4G25. It is known that the mammalian CYP4 family includes a group of 287 over 60 members that ω -hydroxylate the terminal carbon of fatty acids (Hardwick, 288 2008). D. melanogaster Cyp4g1 is also thought to act as a fatty acid ω -hydroxylase 289 because flies with mutant Cyp4g1 exhibit abnormal lipid metabolism in oenocytes, as 290 described above (Gutierrez et al., 2007). Therefore, CYP4G1/CYP4G25 might be 291 involved in lipid metabolism in the PG and may indirectly regulate ecdysone 292 biosynthesis. It would be interesting to examine whether specific lipid and fat 293 depositions occur in the PG during development and whether lipid and fat contents 294 affect ecdysone biosynthesis. Alternatively, it is possible that CYP4G1/CYP4G25

295	catalyzes a specific intermediate of the ecdysone biosynthesis pathway. Recent studies
296	have revealed that the first and last 3 conversion steps of ecdysone biosynthesis are
297	mediated by specific ecdysteroidogenic enzymes, namely, Nvd, Phm, Dib and Sad
298	(Warren et al., 2002; Niwa et al., 2004; Warren et al., 2004; Yoshiyama-Yanagawa et al.,
299	2011). We also examined whether the CYP4G1/CYP4G25 protein can convert
300	substrates in these known steps (cholesterol, 5β -ketodiol, 5β -ketotoriol and
301	2-deoxyecdysone) using a S2 cell system that was previously utilized in biochemical
302	studies of ecdysteroidogenic enzymes (Niwa et al., 2004; Niwa et al., 2005;
303	Yoshiyama-Yanagawa et al., 2011). However, no metabolites have yet been detected
304	(data not shown). Thus, it is likely that CYP4G1/CYP4G25 is involved in the currently
305	uncharacterized, intervening conversion steps from 7dC to 5β -ketodiol, known as the
306	Black Box (Gilbert et al., 2002). Another possibility is that CYP4G1/CYP25G1
307	negatively regulates ecdysone biosynthesis or inactivates ecdysteroids in the PG. In fact,
308	the late pupal lethality, which occurs in Cyp4g1 null mutants (Gutierrez et al., 2007), is
309	also observed in loss-of-function mutants of Cyp18a1, which encodes a P450 gene that
310	inactivates ecdysteroids in peripheral tissues (Rewitz et al., 2010; Guittard et al., 2011).
311	It is also noteworthy that both <i>B. mori Cyp4g25</i> (Fig. 3A) and <i>D. melanogaster</i>
312	Cyp18a1 (Guittard et al., 2011) show strong expression in the salivary gland, one of
313	tissues that are thought to play a role in inactivating ecdysteroids. Further biochemical
314	studies on CYP4G1/CYP4G25 will shed light on the molecular mechanisms controlling
315	insect development.

317 Acknowledgements

We thank Kaoru Saigo, Kuniaki Takahashi and Ryu Ueda for their support in the initial
stages of this work. We also thank Kazuei Mita for providing us with the *B. mori* EST

320	clone; Ken Watanabe and Mariko Fujishita for technical assistance; and Takuji
321	Yoshiyama-Yanagawa and Yuko Shimada-Niwa for comments on the manuscript. We
322	are also grateful to Katsuo Furukubo-Tokunaga for allowing R.N. to use his space and
323	equipment. This work was supported in part by Special Coordination Funds for
324	Promoting Science and Technology from the Ministry of Education, Culture, Sports,
325	Science, and Technology of the Japanese Government and by grants to H.K. from
326	Grants-in-Aid for Scientific Research (19380034) from JSPS and the Program for
327	Promotion of Basic Research Activities for Innovative Biosciences.
328	
329	References
330	Aragon S, Claudinot S, Blais C, Maibeche M and Dauphin-Villemant C (2002) Molting
331	cycle-dependent expression of CYP4C15, a cytochrome P450 enzyme putatively
332	involved in ecdysteroidogenesis in the crayfish, Orconectes limosus. Insect
333	Biochem. Mol. Biol. 32: 153-159.
334	Chávez VM, Marques G, Delbecque JP, Kobayashi K, Hollingsworth M, Burr J, Natzle
335	JE and O'Connor MB (2000) The Drosophila disembodied gene controls late
336	embryonic morphogenesis and codes for a cytochrome P450 enzyme that
337	regulates embryonic ecdysone levels. Development 127: 4115-4126.
338	Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P and Daborn PJ (2009)
339	Characterization of Drosophila melanogaster cytochrome P450 genes. Proc.
340	Natl. Acad. Sci. USA 106: 5731-5736.
341	Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T, Heckel
342	D, Batterham P, Feyereisen R, Wilson TG and ffrench-Constant RH (2002) A
343	single p450 allele associated with insecticide resistance in Drosophila. Science
344	297: 2253-2256.

345	Gilbert LI, Rybczynski R and Warren JT (2002) Control and biochemical nature of the
346	ecdysteroidogenic pathway. Annu. Rev. Entomol. 47: 883-916.
347	Guittard E, Blais C, Maria A, Parvy JP, Pasricha S, Lumb C, Lafont R, Daborn PJ and
348	Dauphin-Villemant C (2011) CYP18A1, a key enzyme of Drosophila steroid
349	hormone inactivation, is essential for metamorphosis. Dev. Biol. 349: 35-45.
350	Gutierrez E, Wiggins D, Fielding B and Gould AP (2007) Specialized hepatocyte-like
351	cells regulate Drosophila lipid metabolism. Nature 445: 275-280.
352	Hardwick JP (2008) Cytochrome P450 omega hydroxylase (CYP4) function in fatty
353	acid metabolism and metabolic diseases. Biochem. Pharmacol. 75: 2263-2275.
354	Ishibashi J, Kataoka H, Isogai A, Kawakami A, Saegusa H, Yagi Y, Mizoguchi A,
355	Ishizaki H and Suzuki A (1994) Assignment of disulfide bond location in
356	prothoracicotropic hormone of the silkworm, Bombyx mori: A homodimeric
357	peptide. Biochemistry 33: 5912-5919.
358	Kagawa N, Bischof LJ, Cheng PY, Anwar A and Waterman MR (1999) Biochemical
359	diversity of peptide-hormone-dependent regulation of steroidogenic P450s.
360	Drug Metab. Rev. 31: 333-342.
361	Kasai S and Tomita T (2003) Male specific expression of a cytochrome P450
362	(Cyp312a1) in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 300:
363	894-900.
364	Kiguchi K and Agui N (1981) Ecdysteroid levels and developmental events during
365	larval moulting in the silkworm, Bombyx mori. J. Insect Physiol. 27: 805-812.
366	Kiguchi K, Agui N, Kawasaki H and Kobayashi H (1985) Developmental timetable for
367	the last larval and pharate pupal stages in the silkworm, Bombyx mori, with
368	special reference to the correlation between the developmental events and
369	haemolymph ecdysteroid levels. Bull. Sericult. Exp. Stn. 30: 83-100.

370	Lehmann R and Tautz D (1994) In situ hybridization to RNA. Methods Cell Biol. 44:
371	575-598.
372	Mita K, Morimyo M, Okano K, Koike Y, Nohata J, Kawasaki H, Kadono-Okuda K,
373	Yamamoto K, Suzuki MG, Shimada T, Goldsmith MR and Maeda S (2003) The
374	construction of an EST database for Bombyx mori and its application. Proc. Natl.
375	Acad. Sci. USA 100: 14121-14126.
376	Mizoguchi A, Dedos SG, Fugo H and Kataoka H (2002) Basic pattern of fluctuation in
377	hemolymph PTTH titers during larval-pupal and pupal-adult development of the
378	silkworm, Bombyx mori. Gen. Comp. Endocrinol. 127: 181-189.
379	Mizoguchi A, Ohashi Y, Hosoda K, Ishibashi J and Kataoka H (2001) Developmental
380	profile of the changes in the prothoracicotropic hormone titer in hemolymph of
381	the silkworm Bombyx mori: correlation with ecdysteroid secretion. Insect
382	Biochem. Mol. Biol. 31: 349-358.
383	Namiki T, Niwa R, Sakudoh T, Shirai K, Takeuchi H and Kataoka H (2005)
384	Cytochrome P450 CYP307A1/Spook: a regulator for ecdysone synthesis in
385	insects. Biochem. Biophys. Res. Comm. 337: 367-374.
386	Niwa R, Matsuda T, Yoshiyama T, Namiki T, Mita K, Fujimoto Y and Kataoka H (2004)
387	CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid
388	biosynthesis in the prothoracic glands of Bombyx and Drosophila. J. Biol. Chem.
389	279: 35942-35949.
390	Niwa R, Namiki T, Ito K, Shimada-Niwa Y, Kiuchi M, Kawaoka S, Kayukawa T, Banno
391	Y, Fujimoto Y, Shigenobu S, Kobayashi S, Shimada T, Katsuma S and Shinoda
392	T (2010) Non-molting glossy/shroud encodes a short-chain
393	dehydrogenase/reductase that functions in the 'Black Box' of the ecdysteroid
394	biosynthesis pathway. Development 137: 1991-1999.

395	Niwa R and Niwa YS (2011) The Fruit Fly Drosophila melanogaster as a Model
396	System to Study Cholesterol Metabolism and Homeostasis. Cholesterol 2011:
397	176802.
398	Niwa R, Sakudoh T, Namiki T, Saida K, Fujimoto Y and Kataoka H (2005) The
399	ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx
400	mori, is transcriptionally regulated by prothoracicotropic hormone. Insect Mol.
401	<i>Biol.</i> 14: 563-571.
402	Ono H, Rewitz KF, Shinoda T, Itoyama K, Petryk A, Rybczynski R, Jarcho M, Warren
403	JT, Marques G, Shimell MJ, Gilbert LI and O'Connor MB (2006) Spook and
404	Spookier code for stage-specific components of the ecdysone biosynthetic
405	pathway in Diptera. Dev. Biol. 298: 555-570.
406	Petryk A, Warren JT, Marques G, Jarcho MP, Gilbert LI, Kahler J, Parvy JP, Li Y,
407	Dauphin-Villemant C and O'Connor MB (2003) Shade is the Drosophila P450
408	enzyme that mediates the hydroxylation of ecdysone to the steroid insect
409	molting hormone 20-hydroxyecdysone. Proc. Natl. Acad. Sci. USA 100:
410	13773-13778.
411	Rewitz KF, Yamanaka N and O'Connor MB (2010) Steroid hormone inactivation is
412	required during the juvenile-adult transition in Drosophila. Dev. Cell 19:
413	895-902.
414	Sewer MB and Waterman MR (2003) ACTH modulation of transcription factors
415	responsible for steroid hydroxylase gene expression in the adrenal cortex.
416	Microsc. Res. Tech. 61: 300-307.
417	Simpson AE (1997) The cytochrome P450 4 (CYP4) family. Gen. Pharmacol. 28:
418	351-359.
419	Spindler KD, Honl C, Tremmel C, Braun S, Ruff H and Spindler-Barth M (2009)

420	Ecdysteroid hormone action. Cell. Mol. Life Sci. 66: 3837-3850.
421	Stapleton M, Carlson J, Brokstein P, Yu C, Champe M, George R, Guarin H, Kronmiller
422	B, Pacleb J, Park S, Wan K, Rubin GM and Celniker SE (2002) A Drosophila
423	full-length cDNA resource. Genome Biol. 3: RESEARCH0080.
424	Tarès S, Berge JB and Amichot M (2000) Cloning and expression of cytochrome P450
425	genes belonging to the CYP4 family and to a novel family, CYP48, in two
426	hymenopteran insects, Trichogramma cacoeciae and Apis mellifera. Biochem.
427	Biophys. Res. Commun. 268: 677-682.
428	Thummel CS (2001) Molecular mechanisms of developmental timing in C. elegans and
429	Drosophila. Dev. Cell 1: 453-465.
430	Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S,
431	Ashburner M, Hartenstein V, Celniker SE and Rubin GM (2002) Systematic
432	determination of patterns of gene expression during Drosophila embryogenesis.
433	Genome Biol 3: RESEARCH0088.
434	Warren JT, Petryk A, Marques G, Jarcho M, Parvy JP, Dauphin-Villemant C, O'Connor
435	MB and Gilbert LI (2002) Molecular and biochemical characterization of two
436	P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster.
437	Proc. Natl. Acad. Sci. USA 99: 11043-11048.
438	Warren JT, Petryk A, Marques G, Parvy JP, Shinoda T, Itoyama K, Kobayashi J, Jarcho
439	M, Li Y, O'Connor MB, Dauphin-Villemant C and Gilbert LI (2004) Phantom
440	encodes the 25-hydroxylase of Drosophila melanogaster and Bombyx mori: a
441	P450 enzyme critical in ecdysone biosynthesis. Insect Biochem. Mol. Biol. 34:
442	991-1010.
443	Yamanaka N, Honda N, Osato N, Niwa R, Mizoguchi A and Kataoka H (2007)
444	Differential regulation of ecdysteroidogenic P450 gene expression in the

445	silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 71: 2808-2814.
446	Yamanaka N, Hua YJ, Mizoguchi A, Watanabe K, Niwa R, Tanaka Y and Kataoka H
447	(2005) Identification of a novel prothoracicostatic hormone and its receptor in
448	the silkworm Bombyx mori. J. Biol. Chem. 280: 14684-14690.
449	Yoshiyama T, Namiki T, Mita K, Kataoka H and Niwa R (2006) Neverland is an
450	evolutionally conserved Rieske-domain protein that is essential for ecdysone
451	synthesis and insect growth. Development 133: 2565-2574.
452	Yoshiyama-Yanagawa T, Enya S, Shimada-Niwa Y, Yaguchi S, Haramoto Y, Matsuya T,
453	Shiomi K, Sasakura Y, Takahashi S, Asashima M, Kataoka H and Niwa R (2011)
454	The conserved Rieske oxygenase DAF-36/Neverland is a novel cholesterol
455	metabolizing enzyme. J. Biol. Chem. 286: 25756-25762.
456	
457	

459 Figure Legends

460

461 Fig. 1. Expression profile of *D. melanogaster*'s 86 P450 genes in the ring gland and the 462 brain-ventral nerve cord (VNC) complex in wandering 3rd instar larvae. X- and Y-axes 463 represent the intensity of the microarray spots hybridized with fluorescently-labeled 464 reverse-transcribed probes prepared from RNAs from the brain-VNC and the ring gland, 465 respectively, in logarithmic scales. Each dot indicates the spot intensity level of each 466 P450 gene. A solid line indicates the same gene expression level between the ring gland 467 and the brain-VNC complex. Genes represented by red spots above a dashed line are the 468 P450 genes showing more than a 2-fold increase in expression in the ring gland 469 compared to the expression in the brain-VNC complex.

470

471 Fig. 2. Cyp4g1 expression in D. melanogaster. (a-e) In situ expression of Cyp4g1 in the 472 ring gland and the brain-VNC complex of the wandering stage of D. melanogaster 3rd 473 instar larva. The ring glands are marked by arrowheads. (a) Signals from samples 474 hybridized with sense (control) RNA probe. (b-e) Four independent signals from 475 samples hybridized with antisense RNA probe. Note that expression of Cvp4g1 was 476 detected in a subset but not all of the PG cells. Moreover, the distribution of the 477 Cvp4gl-expressing cells in the ring gland was not uniform among specimens. (f) The 478 *Cyp4g1* transcript levels in several larval tissues from wandering third instar larvae of D. 479 melanogaster. RG, ring gland; BR, brain; ID, imaginal discs; IT, intestine; EP, 480 epidermis. The normalized Cyp4g1 mRNA level in the ring gland is set as 1. (g) In situ 481 expression of Cyp4g1 in a stage 16 embryo. Arrowheads and arrows indicate the ring 482 gland and oenocytes, respectively.

483

484 Fig. 3. The expression pattern of *B. mori Cyp4g25*. (a) qRT-PCR analysis of the 485 *Cvp4g25* transcript in several tissues from W1 wandering fifth instar larvae. BR, brain; 486 PG, prothoracic gland; SG, salivary gland; AS, anterior silk gland; MS, middle silk 487 gland; PS, posterior silk gland; MG, midgut; HG, hindgut; TR, trachea; MT, 488 Malpighian tubules; FB, fat body; MS, muscle; OV, ovary; TE, testis. The normalized 489 Cyp4g25 mRNA level in the salivary gland is set as 1. (b) The temporal expression 490 profile of *Cyp4g25* in the PG during the fifth larval (V) and pupal stages. The periods 491 (in days) corresponding to the developmental stages of the fourth to fifth larval ecdysis, 492 wandering, and pupation were designated as V0, W0, and P0, respectively. The dashed 493 line is a schematic representation of developmental changes in hemolymph ecdysteroid 494 titer based on the data previously described (Kiguchi and Agui, 1981; Kiguchi et al., 495 1985). Each error bar represents the standard deviation from three independent samples. 496 The normalized average Cyp4g25 mRNA level in W4 wandering B. mori larvae is set as 497 1.

498

499 Fig. 4. Cyp4g25 expression is induced by treatment with rPTTH in cultured PGs. (a) 500 Changes in mRNA expression levels of *Cyp4g25* in cultured PGs in the presence 501 (circular dots and solid lines) or absence (square dots and dashed lines) of 10 nM 502 rPTTH. Each horizontal axis represents the time of the incubation periods in the 503 presence or absence of rPTTH. Each vertical axis indicates the fold-increase in 504 transcript levels compared to each mRNA amount at the incubation time 0 hour (h). 505 Each value is an average of the fold increase \pm SE (N = 4). A long, dashed line 506 represents the changes of *dib-Bm* transcript levels in cultured PGs in the presence of 10 507 nM rPTTH based on the data described in our previous study (Niwa et al., 2005). (b) 508 Treatment with 1 µg/ml α -amanitin inhibits Cyp4g25 transcription after 2 h of

- 509 incubation with rPTTH. Each value on the vertical axis is an average of the fold
- 510 increase \pm SE (N = 4). The gene expression level of the sample in the absence of both
- 511 rPTTH and α -amanitin is represented as 1. Asterisk (*) indicates a statistical
- 512 significance of P < 0.05 using the Student's *t*-test. (c) Ecdysone (E) does not cause a
- 513 significant increase of *Cyp4g25* mRNA level. The grey and white bars represent the
- 514 Cyp4g25 mRNA amounts (±SE; N = 4) in the 2 h treatment with and without 74 nM
- 515 ecdysone, respectively. The expression level of *Cyp4g25* in the absence of the reagent is
- 516 represented as 1 on the vertical axis.
- 517
- 518

Fig. 1 Niwa et al.

Fig. 2 Niwa et al.

Fig. 3 Niwa et al.

Fig. 4 Niwa et al.

Table 1. Primers used to amplify DNA fragments corresponding to the 86 validated andpredicted *D. melanogaster* P450 genes that were spotted on our customized microarray.

Name	Forward (5' > 3')	Reverse $(5' > 3')$	Length
Cyp4c3	TGAATGTGGATCACGACGAG	CTCTGGTGGAGCTTGTACT	573
Cyp4d1	ATGTTTCTGGTCATCGG	GCAGATCGTGTCCATGGT	564
Cyp4d1alt	ATGTGGCTCCTACTATCG	GCAAATGGCGTCCAGAGC	537
Cyp4d2	TGGATTCTCCACCAGTTGG	GTTGTTAACCAGCGTTTCACG	571
Cyp4d8	AGCATCTGGTGAAGCATCC	AGTGGACATCAGCAGGACGT	581
Cyp4d14	GATATGCAGTTCCGACTGA	GTCGTGCATGTTCTTCACG	570
Cyp4d20	AAGGGTCAACTCTACGAGT	AGAGCCATCTGCGACTTGCT	560
Cyp4d21	AAAGCTCACCTCTACCGAT	GTCCAGCAAAGTCATCTTAGC	567
Cyp4e1	TCCACTGTTCTTGGTGACC	CTTGCACAACGGAGGAACTT	578
Cyp4e2	ACCACTGCTGCTGGTTGCA	TGCACAATGGAAGAGCTG	576
Cyp4e3	GCCACTGATCACATTGGTG	GGACAATGGAGGAGTCAC	575
Cyp4g1	TAGTTCAGGAGACGCTGCAA	AGGATGTCAACCGTGGTCT	598
Cyp4g15	ATGGAGGTGCTGAAGAAGG	AGAATCTCCACGGTTGCCT	575
Cyp4p1	ATCTTGTGGCTGATTCTGG	CGTGTAACGTTATGGTTACC	541
Cyp4p2	CCATACTTGTGGTCATCCAC	TCTCTGCCATTTCATCCAGT	593
Cyp4p3	GTGGATCTATAGGCTGAACAG	CCATCTCGTCCAGCTTCACA	572
Cyp4s3	GCAACGAATGGAAACCAGAAG	TAGCTTCTCAGGAGCATCG	601
Cyp4aa1	GCTATGCTCCATTCTGATCC	ATGGCCACATCCTGACCTC	594
Cyp4ac1	CGGTCCTAACGCTTCTTCTA	ATCCAGCTTCACACCCAGA	578
Cyp4ac2	TTCGCAAGTTATGGGCTCA	CCTCCGACAAGTCATCAAGT	585
Cyp4ac3	GCTCCTGCTGAGACAACT	CCTTTCTGTACTCGTTTCCT	599

Cyp4ad1	TTGGTGTTCAAGGGAGTGAG	AAGTCCTTGATGGCTCCATG	590
Cyp4ae1	GGCACGATGTACTTTGCCT	GCTTGTCAGTCAATGGTTGC	571
Cyp6a2	TACCTGTTGATCGCGATCTC	CAGCGTGTTACACTCAATGC	582
Сурба8	AGGGATTCCCTTCGTTGCAC	AGAGTCCCATGTCTCTTGTC	570
Сурба9	AGTGCAGACCAGTCGATCA	TTTCATGTGCAGTCTGCGTG	574
Cyp6a13	ACAGCTACTGGAGCAGAAG	CTCCTGGGTCACTGATCG	560
Cyp6a14	AGGTGTTCCACACGAGACA	TAGCGTGGAATGACGACGT	580
Сурба16	TTCACCTACTGGGAACTGC	GGATACTTCTGTTGCTGTTCC	577
Cyp6a17	AATGGATAAGGTCTTCAGAAG	TTCCCTCGTAGGTGAACTCT	587
Сурба18	ACTCCATCGCAAACTAACG	TACCATGACGAGAATCCAGC	599
Сурба19	ACATTGTCATCACGGACGTG	GTCCATGAAATCGTTCCGAG	575
Cyp6a20	GTACTTCAAGAGGATGGTAG	CCACGAAATCGTGTCTCTTC	587
Cyp6a21	TTAACGAGATCTGGACGAGC	GCATGAAGAACCTTTCGATGG	588
Cyp6a22	AGACCTGTGGTCTTGGTCAC	TCCTCCCTCTGCTTCACAG	496
Cyp6a23	CCGAATGCAGAGTTTGTGAC	AATCTGTCTGGGTCATTCG	544
Cyp6d2	TCAAGGATGTGATGACCACG	CCTCGTAGGTGAACCTATC	581
Cyp6d4	CTTCAAGGAGGTGGACAT	CATCTTGTTCAGGGAATCGT	601
Cyp6d5	GAGCTGGAACTCAAGAAGCT	CCTCCAGATACTTCATGTCC	601
Cyp6g1	GCTCTACACTTGGTTCCAG	ATGCAATCGTGGCTATGCTG	539
Cyp6g2	GAACTGGTACTGCTGATCCT	TGGTGTAGAGAGCACACAG	562
Cyp6t1	GAGACGCACAAGATCTTTGC	CTCGTACAGCGCAAACGTG	573
Cyp6t3	TGGCTAAGTACCATCACTGG	AGAGAGTGAATCCCATCAGG	576
Cyp6u1	CCTTGCAGGATATCTACACC	AAGCTGTAGCAGGTTCTGC	546
Сурбv1	GATAGTGACGATCCTGACG	CGGTGTTGTACAGATCACAC	555
Сурбw1	GTTGTTACTGCTTCTTCTCG	TTAGGTCAGTGGTGAACCG	548

Cyp9b1	TTGTTCAAGTGGAGTACTGG	CTCATTCTCTGGGTCATCGA	579
Cyp9b2	CTCATCTACAAATGGAGCACG	TTTCGGGTTGTCGTACGAG	573
Cyp9c1	CAGCACAAGGTCTATGGAG	CCTTTCGATACTTCATGGCAC	592
Cyp9f2	AACATGCTGATGGAGGCTC	GCTTCAAGTAGAGCGAATCG	572
Cyp9h1	ATGATCGGTGGAATGCCAG	GGAGAACCTTCATCAGTCG	578
Cyp12a4	AAAGTTCGCAGTGCTCTATC	ATCTCTCAGTTCGAGAATGC	576
Cyp12a5	CCATCGTCTTCTCTGCAAG	ACCTCCTGAGTGCTGGCAT	553
Cyp12b2	GAGCACTTCGCAACACAAAC	TGCACATCGAACTGGAAGC	569
Cyp12c1	CAGATGCATCATCGTACGTC	ACTGACTCGAAGGTCAGGTG	559
Cyp12d1	AGCACAAGACCTACGATGAG	GAAGAGGGTCAATGCATCG	593
Cyp12e1	GATCTCTAGGCAGATCTACC	AGTCATCTGGCATCTCTTGC	545
Cyp18a1	TCGTGATGAGCGACTACAAG	TTGTGGTCATCGATCACGTC	538
Cyp28a5	CGTGCTGGTATGGAACTATG	GACCATCTCTGTTGTGAAGC	517
Cyp28c1	TCTATGCCTTTCTGGTCTCG	AGTGGATTGTCGGTGAAGGT	568
Cyp28d1	TAGCTACTGGAAGAAGAGG	CTTGGTCATTCCCACCATG	571
Cyp28d2	AGATCATGCCAGCACTGTC	GACCTTATCTTGCTCCTCC	581
Cyp301a1	ATACACTCCACTTCCGAGTG	GCTTCAGATTCGATTCCAGG	604
Cyp302a1	TGGCTAAGATTGCACCAAGC	CGAAAGCTAGGTGTCTCCA	581
Cyp303a1	ACTTGAAGGACAAGGTGCTG	CTCCTTGATCTCCTGAAAGG	545
Cyp304a1	AATCAGGTGTTCGATGGACG	GTAGACATCCATGAAGTTGC	588
Cyp305a1	TTCCGTAAGGAAGCTAGTGC	GATGAGATTGTAGCCAGTGC	591
Cyp306a1	ACTATTGGCTGAGTTCTCC	CGACAATCACTTGTGGTGG	547
Cyp307a1	TGGTGAACAACTTGGAGCTG	GTAGAGCATCTGTGAAGTCC	600
Cyp308a1	CAGAGCATGTCAGTTGCTC	AGAGCCACTGGATCAATCAG	552
Cyp309a1	TGGTGGACAAGTTCAGTCAC	CTGCAGCTGAATGAGATGG	578

Cyp309a2	TGCTACAAGGACTCTCTGC	AAGCTGCAGCAGATGCGAAAG	558
Cyp310a1	ACTTCAGCGAACTGAAGTGG	GATGGACAACAGTTTGTCTGC	527
Cyp311a1	TGACCATTTGGATCCTGGT	ATGGAATGCCTGGATGATGG	566
Cyp312a1	GAACATCTACACGATCATCG	CCTCTGTGAATCCGTGAAG	556
Cyp313a1	CTGATTGCCACAACAAGAGC	ACATTCGCTCTTCACATCC	593
Cyp313a2	GCGAGTCAGAACTAAAGACTG	GGAATGAAGGCGTATGGATG	505
Cyp313a3	ATAGCTGTACAGGAGATGG	GTCACCAGTTGTCTCAAAGG	590
Cyp313a4	TGTTCCTGCTCTGGATCTAC	TCCAGGATGCATTGGTATCG	589
Cyp313a5	TTTCCTGGTGACCTTACTCG	AACTCGATCCAGCTTCACT	595
Cyp313b1	TCCTCTACATCAACGATCC	GGGTTCGAGAAGCTGTTCT	524
Cyp314a1	CTTGAGGACTTCTACCATGC	AAAGTGCACACAGCTTCCAG	578
Cyp315a1	AGTTGGGACACTTGTGGATC	CAATCTGCGTGAAGTAGTCC	563
Cyp316a1	AGCCTACAGTCTGCAAACAG	CGACAATCACTTGTGGTGG	478
Cyp317a1	TGGACATTCCACACGAGAGA	TTAGGTAGCCATGTTTGTGG	593
Cyp318a1	CACTAGTGATGCACCTGAAC	GAGTACAGCTCGACTAAGCA	553

Table 2. Ratio of gene expression levels in the ring gland as compared to expression inthe brain-ventral nerve cord complex. These ratios are averages of signal intensities of 8independent microarray spots in 2 independent experiments.

Name	Ratio
Cyp315a1/sad	26.204
Cyp302a1/dib	19.237
Cyp306a1/phm	14.266
Cyp4g1	10.035
Cyp6g2	6.225
Cyp12e1	2.497
Cyp310a1	2.030
Cyp9c1	1.434
Сур6v1	1.427
Cyp307a1/spo	1.404
Cyp303a1	1.388
Cyp313a3	1.384
Cyp4p2	1.341
Cyp6a17	1.328
Cyp4ad1	1.299
Cyp6g1	1.282
Cyp314a1	1.268
Cyp317a1	1.268
Сурбw1	1.259
Cyp4d2	1.257

Cyp4d1alt	1.253
Cyp316a1	1.251
Сурби1	1.250
Cyp309a1	1.242
Cyp301a1	1.239
Cyp4e1	1.238
Cyp6d2	1.217
Cyp28d2	1.210
Cyp308a1	1.209
Cyp6a21	1.199
Cyp4e2	1.195
Cyp6a14	1.179
Cyp12a5	1.173
Cyp4s3	1.171
Cyp9b2	1.169
Cyp6d4	1.161
Cyp28c1	1.160
Cyp313b1	1.160
Cyp6a23	1.156
Cyp18a1	1.153
Cyp313a4	1.150
Cyp305a1	1.147
Cyp6a16	1.146
Cyp4c3	1.145
Cyp4ac1	1.144

Сурба20	1.139
Сурба8	1.139
Cyp4d14	1.139
Cyp304a1	1.137
Cyp311a1	1.135
Cyp4e3	1.134
Cyp313a2	1.132
Сурба18	1.132
Cyp4d8	1.127
Cyp318a1	1.125
Сурба2	1.124
Cyp4p1	1.120
Cyp4d20	1.119
Сурба13	1.112
Cyp9b1	1.111
Cyp4d21	1.109
Cyp4p3	1.107
Cyp6t3	1.106
Cyp4aa1	1.105
Cyp309a2	1.096
Cyp9h1	1.086
Cyp12a4	1.081
Cyp4ac3	1.076
Сурба19	1.072
Cyp6a22	1.068

Cyp4g15	1.066
Cyp12c1	1.063
Cyp4ae1	1.059
Cyp313a5	1.058
Cyp312a1	1.056
Cyp28d1	1.040
Cyp28a5	1.039
Cyp313a1	1.037
Сурба9	1.031
Cyp4ac2	1.023
Cyp6d5	1.020
Cyp4d1	1.011
Cyp6t1	1.005
Cyp12d1	0.968
Cyp9f2	0.947
Cyp12b2	0.828