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Bulk sequencing is commonly used to characterize the genetic diversity of cancer
cell populations in tumors and the evolutionary relationships of cancer clones.
However, bulk sequencing produces aggregate information on nucleotide
variants and their sample frequencies, necessitating computational methods to
predict distinct clone sequences and their frequencies within a sample.
Interestingly, no methods are available to measure the statistical confidence in
the variants assigned to inferred clones. We introduce a bootstrap resampling
approach that combines clone prediction and statistical confidence calculation
for every variant assignment. Analysis of computer-simulated datasets showed the
bootstrap approach to work well in assessing the reliability of predicted clones as
well downstream inferences using the predicted clones (e.g., mapping metastatic
migration paths). We found that only a fraction of inferences have good bootstrap
support, which means that many inferences are tentative for real data. Using the
bootstrap approach, we analyzed empirical datasets from metastatic cancers and
placed bootstrap confidence on the estimated number of mutations involved in
cell migration events. We found that the numbers of driver mutations involved in
metastatic cell migration events sourced from primary tumors are similar to those
where metastatic tumors are the source of new metastases. So, mutations with
driver potential seem to keep arising during metastasis. The bootstrap approach
developed in this study is implemented in software available at https://github.
com/SayakaMiura/CloneFinderPlus.
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1 Introduction

Tumors are characterized by a mixture of cell populations in which many distinct clones
arise due to somatic mutations (Gerlinger et al., 2012; Nik-Zainal et al., 2012; de Bruin et al.,
2014; Zhao et al., 2016). These clones may increase in frequency during tumor progression,
and they may spread to other locations resulting in metastasis (Gerlinger et al., 2012; Nik-
Zainal et al., 2012; de Bruin et al., 2014; Zhao et al., 2016). Genetic variation in tumors is
commonly profiled by bulk sequencing of tumor samples. In bulk sequencing, many cells in
the sample are sequenced together to produce somatic variants and their population
frequencies. This information informs the degree of genetic heterogeneity in tumors, but
not the number of distinct clones present or the sequences of these clones. Knowledge of
individual clone sequences is necessary to reconstruct the evolutionary relationship of tumor
cells, the dynamics of mutational processes, and the history of metastatic cell migrations
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(Gundem et al., 2015; Wei et al., 2017; Turajlic et al., 2018; Alves
et al., 2019; Kumar et al., 2020; Chen et al., 2022; Chroni et al., 2022;
Miura et al., 2022).

For this reason, several methods for analyzing bulk sequencing
data are available (Beerenwinkel et al., 2015; Miura et al., 2020).
Some methods are designed to identify clusters of genetic variants
with similar variant allele frequencies (VAFs) indicative of their co-
presence in the same genotype (Roth et al., 2014; Malikic et al., 2015;
Popic et al., 2015; El-Kebir et al., 2018; Xiao et al., 2020). This
strategy is commonly used when bulk sequencing data from only a
single sample is available. More accurate clone predictions can be
achieved when multiple tumor samples are sequenced from a
patient, which enables the inference of clone genotypes and their
evolutionary relationships (Murugaesu et al., 2015; Hao et al., 2016;
Harbst et al., 2016; Reiter et al., 2017; Martinez et al., 2018; Miura
et al., 2018; Hu et al., 2019).

Inferred clone sequences from bulk sequencing data are
estimates. However, none of the current clone prediction
methods provide an assessment of the uncertainty associated
with these estimates. Uncertainty in clone inferences should
occur because they are based on the similarities of VAFs that are
calculated from observed sequencing reads with and without
variants. Especially when the number of reads is small, the
variance of VAF can be large (Figure 1). Thus, single nucleotide
variants (SNVs) with small read counts are expected to affect the
accuracy of clone prediction more strongly than those with large
read counts. Unfortunately, all current methods comparing VAFs
ignore this variance and simply present inferred clones and variation
assignments without presenting the assignment variance. Here, we
suggest using a bootstrap resampling approach to overcome this
shortcoming. We have implemented this idea for use with the
CloneFinder method (Miura et al., 2018) to demonstrate the
usefulness of the bootstrap resampling in assessing the
uncertainty of clone inference and embracing it in the

downstream analysis such as the mapping of metastatic
migration histories. We apply the bootstrap approach to analyze
an empirical dataset, which yields insights into driver mutations and
metastasis migrations.

2 Materials and methods

2.1 Bootstrap approach for tumor evolution
estimates

Our bootstrap approach samples sequencing reads with and
without variants at genomic positions (Figures 2A, B). The total
number of reads sampled at a given position remains the same as in
the original dataset, but reads are sampled with replacement. Since
the same read can be sampled multiple times, some reads and even
variants will be missing at that position in the bootstrap replicate
dataset. Reads are resampled for each position, and a bootstrap
replicate data is generated for each tumor sample. A pseudo-multi-
tumor dataset is then generated by combining bootstrap replicates of
tumor samples, and this pseudo-multi-tumor dataset is analyzed
using the desired clone prediction method (e.g., CloneFinder) to
infer clones (Figure 2C). Similarly, more pseudo-multi-tumor
datasets are generated, and clones are inferred in many bootstrap
replicates.

The bootstrap approach can be used to build consensus clone
sequences. Predicted clones from all replicates are pooled together
and (nearly) identical clone genotypes (for a user-supplied SNV
count cutoff) are grouped (Figure 2D). Each clone group is then
represented by a consensus clone and the proportion of bootstrap
replicates in which a clone appears is the bootstrap support for
detecting that consensus clone. To construct a consensus clone
sequence, a base reconstructed in a greater proportion of bootstrap
clones than the desired threshold is selected for each variant

FIGURE 1
The impact of sequencing read counts on the variance of variant allele frequencies (VAFs). A variant with 20% VAF was simulated with 20 and
100 total reads. Reads were randomly sampled to generate 30 bootstrap replicates for each dataset.
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position. The base assignment is marked ambiguous when none of
the bases have received the minimum desired bootstrap support.

We lastly describe an application of the bootstrap approach to
infer consensus tumor evolution estimates of metastatic migration
history using predicted clones. As described above, a pseudo-multi-
tumor dataset is first generated by sampling reads, and a set of
bootstrap clones is inferred (Figures 2A–C). These bootstrap clones
are subsequently analyzed (Figure 2E). For example, we infer
bootstrap cell migration history using the bootstrap clones from
every bootstrap replicate dataset. Then, each migration history is
expressed as a collection of individual migration paths. All the
migration paths are pooled to build a consensus migration

history, where paths with the highest frequency are connected
with each other first, followed by others with lower frequencies
until the minimum desired bootstrap support requirement is met
(Figure 2F).

2.2 Advanced CloneFinder (CloneFinder+)

We implemented and tested the bootstrap approach in our
CloneFinder method which is known to perform well for inferring
clones using bulk-sequencing datasets from multi-tumor samples
(Miura et al., 2018; Miura et al., 2020). We also took this
opportunity to advance CloneFinder by adding a step to
preprocess the sequencing datasets by FastClone (Xiao et al., 2020)
software that clusters SNVs based on VAFs. This allows CloneFinder
to start with a larger collection of tumor genotypes than the original
approach. Thus, the advanced CloneFinder, CloneFinder+, begins
with the analysis of VAFs using FastClone (Figure 3A). For a tumor
sample, FastClone clusters SNVs based on their VAF similarities and
predicts relationships of SNV clusters, i.e., ancestor-descendant,
sibling, or monoclonal (Figure 3B). CloneFinder+ constructs
candidate clone sequences by accumulating all predicted SNVs
from the root cluster to a target cluster. These clones are the
candidate clones for a given tumor sample. This analysis is done
for every tumor sample individually, and candidate clones are inferred
for each tumor sample. All candidate clones from all the tumor
samples are then pooled and duplicate clones are removed. Also,
potentially spurious candidate clone sequences are filtered, e.g., those
with many ambiguous base assignments (Supplementary Note for
details). Lastly, a candidate clone sequence matrix, M, is constructed
(Figure 3C). This is a binary matrix, where Mij = 0/1 represents the
absence/presence of a SNV at the jth variant in the ith candidate clone.

Next, we apply CloneFinder to infer clone genotypes (Miura et al.,
2018) (Figures 3C–G). A phylogeny of candidate clones is first built
using thematrixM. This phylogeny is used to identify missing ancestral
clones that have persisted without being replaced by their descendant
clones. Ancestral clone sequences are inferred at internal nodes of the
phylogeny, and all unique ancestral clones are added to the collection of
candidate clones, M (Figure 3E). Then, the presence of these candidate
clones in the bulk-sequencing dataset is assessed using VAFs. A matrix
of VAFs, V, is constructed, where the number of rows is equal to the
number of tumor samples and the number of columns is equal to the
number of SNVs (Figure 3D). Next, tumor frequencies of all candidate
clones are estimated through regression analysis. Here, V, M, and f, a
two-dimensional matrix of estimated clone frequencies of the tumor
samples, have the following relationship,

1/2f × M � V. (1)
This relationship is valid only when variants are not affected by

copy number alterations (CNAs). Thus, variants that are affected by
CNAs need to be excluded from the dataset; or VAFs should be
adjusted before the analysis using estimated cancer cell fraction
(CCF), i.e., VAF is CCF divided by two. When an estimated clone
frequency within a given tumor sample is lower than the desired
threshold, that clone is assumed to be absent from the tumor sample.
Candidate clones predicted to be absent from all tumor samples are
removed.

FIGURE 2
Overview of the bootstrap approach for tumor bulk sequencing
data analysis. A bootstrap replicate dataset is generated by sampling
reads (A,B). Using a clone inference method, clones are generated
from this bootstrap replicate dataset (C). The presence and
absence of variants are indicated with “1” and “0,” respectively. The
procedure is repeated by generating many bootstrap replicates, each
producing clones. All the clones from all the bootstrap replicate
datasets are pooled together and consensus clones can be produced
(D). If a study intends to use the bootstrap approach for downstream
analysis (e.g., mapping metastatic migration histories), we infer the
migration history for every bootstrap replicate dataset using the
phylogeny of clones inferred in that replicate (E). All the migration
paths inferred using bootstrap datasets are pooled and consensus
migration history with bootstrap support can be generated (F). The
tumor sampling site is written inside the box, and the arrows indicate
cell migration events. The blue boxes and blue arrows are the primary
tumor sites and migration events from the primary tumor,
respectively. The metastatic tumor sites andmigrations from them are
shown in red. A number next to an arrow is the bootstrap support (%).
The dotted arrows are those with <60% bootstrap support.
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Next, CloneFinder + decomposes potential hybrid sequences
using the strategy in CloneFinder (Miura et al., 2018) (Figure 3F).
Briefly, SNVs with the same expected VAF are subclassified into two
groups based on their similarity to observed VAFs. Alternate
candidate clone sequences are constructed by combining SNV
groups. All possible combinations of SNV groups are added to
the M and are evaluated using the regression analysis (Eq. 1). All
combinations estimated to be present in appreciable frequency are
retained. Accordingly, M is updated, and this process of searching
ancestral and hybrid clones is repeated until no new clone sequences
are added. Lastly, CloneFinder+ finalizes the predicted clone
sequences, where variants not assigned to any clone sequences
are added to a clone based on their VAF similarities (Figure 3G).

2.3 Assembly of computer-simulated data

We obtained previously simulated datasets from https://github.
com/raphael-group/machina. These datasets were generated by
modeling the evolution of primary and metastatic tumors (El-
Kebir et al., 2018). In this simulation, metastatic tumors were

founded by one or more than one cancer cells that migrated
from another tumor site (primary or another metastatic tumor).
Clones were defined as a group of cells with the same sequences.
Thus, a new clone could arise even from a single mutation. Each
clone phylogeny was unique, and the number of clones was 6–26.
Each dataset contained 9–99 SNVs. We excluded five datasets that
contained tumor samples with only one variant because this is
unrealistic in empirical data. In total, we analyzed 75 datasets.

2.4 Assembly of empirical data

We obtained metastatic cancer datasets from Zhao et al. (2016),
who performed bulk sequencing (exome sequencing) and identified
SNVs. For each SNV, these datasets contained total sequencing read
counts and counts of reads with altered bases (SNVs). In total, we
obtained 40 datasets with three to eight tumors.

For each SNV, we predicted if it was a driver mutation using the
Cancer Genome Interpreter (CGI) web tool (http://www.
cancergenomeinterpreter.org), which uses the OncodriveMUT
method (Tamborero et al., 2018). We also used the CRAVAT

FIGURE 3
Overview of CloneFinder+. CloneFinder+ first clusters genetic variants by their VAF similarities using FastClone and then identifies candidate clones
for each tumor sample (A,B). Next, all candidate clones are pooled and missing clones are searched using the CloneFinder method (C–G).
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web tool (http://www.cravat.us), which performs the CHASM
prediction (Carter et al., 2009; Douville et al., 2013). Driver
mutations were predicted without specifying a cancer type.

To map mutations at branches of the phylogeny, we
analyzed predicted clone sequences and reconstructed
ancestral clone sequences using MEGA (Kumar et al., 2012;
Tamura et al., 2021).

2.5 Data analysis with the bootstrap
approach

Each simulated and empirical dataset was analyzed using
CloneFinder+, and the reliability of the inferences was assessed
using the bootstrap approach. In the bootstrap analysis, we
generated 30 replicates because using more (100) replicates
essentially produced the same result (Supplementary Figure S1).
In the CloneFinder + analysis, we clustered variants without giving
the tumor purity (the step of FastClone analysis) and used variants
with at least 50 reference read counts and two mutant read counts to
assess the quality of candidate clones. Note that CloneFinder+ does
not require the value of tumor purity and the maximum number of
clones to be inferred. During the analysis, candidate clone genotypes
with <1% clone frequencies for all tumor samples were discarded.
We grouped identical bootstrap clones to derive consensus clone
sequences while allowing at most one base assignment difference.

We selected a base in >90% of bootstrap clones for each variant
position.

We inferred cell migration history using the PathFinder method
(Kumar et al., 2020), and the reliability was assessed using the
bootstrap approach. PathFinder was performed by providing the
correct primary tumor sites, sequences of CloneFinder+ clones that
were predicted with >5% clone frequencies, and tumor sites that
contained each clone. Note that PathFinder does not require the
value of tumor purity.

2.6 Accuracy measurements

To evaluate the accuracy in inferring correct clones, we paired
each simulated clone sequence with its most similar inferred clone
sequence. We allowed an inferred clone to be paired with more than
one simulated clone. We counted the number of sequence
differences between inferred and simulated clones paired. We
calculated the average when more than one inferred clone was
paired with a given simulated clone, which was divided by the
sequence length to estimate genotype error (GE) for a given
simulated clone.

To evaluate the accuracy of inferred migration history, we
counted the number of migration paths that were correctly
inferred, those not identified, and incorrect paths following a
previous study (Kumar et al., 2020).

FIGURE 4
Genotype error (GE) and bootstrap supports. CloneFinder+ was used to infer clones, and the bootstrap confidence limit was calculated using the
bootstrap approach. GE was computed for each clone. All datasets (A), datasets with polyclonal seeding (B), those with monoclonal seeding (C), those
with five tumors (D), and thosewith eight tumors (E)were used. The number at the top of a box plot is the number of inferred clones, and the proportion of
clones with >5% GE was shown at the bottom. T-test was performed, and the p-values were given, i.e., * for p < 0.05 and ** for p << 0.01. The
bootstrap confidence was the proportion of replicates that produced the clone. All the simulated datasets were used.
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3 Results

3.1 Bootstrap confidence for predicted
clones

The bootstrap approach is widely employed in molecular
evolutionary and phylogenetic analyses to estimate variances
and confidence limits (Efron and Tibshirani, 1994; Nei and
Kumar, 2000). Our bootstrap approach samples sequencing
reads. So, VAFs will be perturbed, with greater perturbations
experienced by VAFs computed from a small number of reads
(Figure 1). Since the number of reads is often highly variable

among SNVs in empirical data [e.g., 8–1,436 for ATP401 from
Zhao et al. (2016)], the variances of their VAFs are also variable.
We first show the GEs of inferred clones and their bootstrap
supports.

We found that the median GE of the clones with higher
bootstrap supports (>50%) was zero (Figure 4A). Therefore,
clones with >50% bootstrap support can be considered to be
reliably inferred. We also found that many bootstrap consensus
clones (77%) received low bootstrap supports (≤10%), and
these clones contained many genotype errors (GE >5%;
Figure 4A). Interestingly, these clones had a wide range of
GEs, even overlapping with those from higher bootstrap

FIGURE 5
Empirical data analysis. The 40 empirical datasets from various cancer types were analyzed with the bootstrap approach. (A) Bootstrap support of
consensus clones. All consensus clones from each dataset were pooled. The number in the parenthesis is the number of clones with ≤10% bootstrap
support. (B) Bootstrap supports of clones for each cancer type. The cancer type is the primary tumor site. Eight datasets do not have information on the
primary tumor site, so the cancer type is “unknown.” The number at the top of each box plot is the number of patients, and the total number of
bootstrap consensus clones with >10% bootstrap support is shown in parenthesis. (C–F) The relationship between tumormutation burden and bootstrap
support of a clone for lung (C), pancreas (D), and other cancerwith low (E) and high (F) tumormutation burden. The tumormutation burden is the number
of total variants in a dataset. The trend line was (C) y = 0.0049x + 66.03 (R2 = 0.0026), (D) y = 0.097x + 48.035 (R2 = 0.018), (E) y = 0.092x + 59.50 (R2 =
0.024), and (F) y = 54.17 (R2 = 0). Clones with ≤10% bootstrap support were excluded (B–F).
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supports. In an extreme case, a few consensus clones with <10%
bootstrap support had correct clone sequences, i.e., GE = 0.
Therefore, some simulated (correct) clones were not repeatedly
detected among bootstrap replicates, reducing bootstrap
support.

We next tested if different scenarios of the cell migration
history affected the performance of the bootstrap approach.
These simulated datasets were generated by modeling the
evolution of primary and metastatic tumors, where metastatic
tumors were seeded by clones that migrated from either a
primary or a metastatic tumor. We classified the datasets
into (1) those with metastatic tumors that received a single
seeding clone from another tumor site, i.e., monoclonal seeding,
and (2) those with more than one seeding event, i.e., polyclonal
seeding. Thus, intra-tumor heterogeneity of tumors from
polyclonal seeding is higher, while inter-tumor heterogeneity
among tumor sites is smaller than those with monoclonal
seeding.

We found that the bootstrap approach performed well on
both types of datasets, as inferred clones with greater bootstrap
confidence tended to have more accurately inferred clone
sequences (lower GE) (Figures 4B, C). We also found that GE
tended to be slightly better for datasets with monoclonal seeding,
indicating that inferred clone sequences were slightly more
accurate for data with monoclonal seeding, i.e., lower intra-
tumor heterogeneity with higher-inter tumor heterogeneity.
This pattern was consistent with previous studies (Miura
et al., 2020).

We also tested the impact of the number of tumors on the
performance of the bootstrap approach. These simulated datasets
were composed of five or eight tumors, i.e., four or seven metastatic
tumors with a primary tumor per dataset. For both datasets with five
and eight tumors, we similarly found that clones with greater
bootstrap confidence tended to have more accurate clone
sequences, i.e., a lower GE (Figures 4D, E). Therefore, the
number of tumors in a dataset did not affect the performance of
the bootstrap approach to place the reliability, while inferred clone

sequences were more accurate for datasets with a larger number of
tumors (lower GE). This was consistent with previous studies
(Miura et al., 2020). Overall, these results suggested that the
bootstrap approach is useful for assessing the reliability of
inferred clone sequences.

3.2 Analysis of empirical data

Next, we tested the performance of the bootstrap approach
using 40 empirical datasets from various cancer types. As
observed for the simulation study, most of the bootstrap
consensus clones had low bootstrap supports (<10%), and few
clones were identified with good (>50%) bootstrap supports
(Figure 5A). We did not find a clear association between
cancer types and bootstrap support values, as the distribution
of bootstrap values was similar among different cancer types
(Figure 5B). We also did not observe an association between
tumor mutation burden (number of mutations) and bootstrap
values for any cancer types (Figures 5C–F). Therefore, the
performance of the bootstrap approach was not affected by
either cancer type or tumor mutation burden.

3.3 Bootstrap confidence for inferred cell
migration histories

Since the bootstrap approach performed well to place a
confidence limit on inferred clones, we next tested if the
bootstrap approach is also useful to assess the reliability of a
downstream inference of predicted clones. As an example of a
downstream analysis of predicted clones, we inferred metastatic
cell migration histories using the same simulated datasets.

We found that correct paths often had a high bootstrap support
(a median bootstrap support = 86.5%), while incorrect paths tended
to have low bootstrap supports (a median of 10%) (Figure 6).
However, as observed in the analysis of inferred clone sequences,
a few correct paths were not well supported. Actually, bootstrap
support for correct paths varied considerably, indicating that these
paths were not repeatedly found in many bootstrap replicate
datasets. Thus, some migration paths are difficult to reconstruct,
which is consistent with previous findings (Kumar et al., 2020).
Overall, these results indicated that the reliability of inferred
migration path from predicted clones could be assessed using the
bootstrap approach.

3.4 Patterns of metastatic cell migrations
and driver mutation occurrences

Since point estimates of clones and cell migration paths have
limited accuracy, placing bootstrap confidence on inferences is
essential in real empirical data analysis. As an example, we
illustrate empirical data analysis for revealing the patterns of
metastatic cell migrations and driver mutation occurrences. In
this analysis, we excluded eight datasets without primary tumors
because the information on the primary tumor site was necessary for
the inference of migration history.

FIGURE 6
Performance of bootstrap approach to infer metastatic cell
migration history. Inferred migration paths were classified into true-
positive (TP; correct path) and false-positive (FP; incorrect path). All
the simulated datasets were used.
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First, we show the result of a lung cancer patient with three
metastatic tumors in the heart, liver, and GEJ (ATP401 patient).
The inferred clone phylogeny using CloneFinder+ (without
bootstrap reliability assessment) indicated that clone
C1 originated from the root clone (the most recent common
ancestor of all clones), and a metastatic tumor in the liver
contained this clone (Figure 7A). The PathFinder analysis
(without bootstrap reliability assessment) using these
predicted clones and phylogeny produced by CloneFinder+
predicted that clone C1 migrated from the primary tumor site
(lung) to the liver. While 128 mutations were mapped on the
branch leading to the C1 (B1 branch in Figure 7A), the phylogeny
does not tell us whether C1 acquired all, any, or a subset of new
mutations in the lung. Nevertheless, seven B1 mutations were
predicted to be drivers according to CGI (Tamborero et al., 2018),
which may be important for metastasis. On the other hand, we
also found that some migration events were not associated with

any detected mutations as no mutations were mapped at
corresponding branches (Figures 7A, B). For example, clone
C2.1 from metastasis GEJ seeded a heart metastasis without
associated mutations, as the same clone is found in both
locations. Overall, we found a greater average number of
driver mutations in clones that moved from the primary
tumor than those from metastatic tumors for this patient
(Figure 7B).

We next demonstrate how this observed pattern could be
validated using the bootstrap approach. We found that all of the
predicted cell migration paths in the single point PathFinder
inference (Figure 7B) were supported with high bootstrap
confidences (>60%), validating the PathFinder inference
(Figure 7C). In the bootstrap analysis, we mapped mutations on
each bootstrap migration path and calculated the average driver
mutation count per path for each replicate. We found that the
number of driver mutations per path was significantly greater for

FIGURE 7
Clone phylogeny and metastatic cell migration history of a lung cancer patient. (A) Inferred clone phylogeny using CloneFinder+ without the
bootstrap assessment. Grey circles represent tumor clones, and their predicted tumor sites (>0% clone frequency) are shown within boxes below the
clone IDs. Tumor sites shown at internal nodes are predicted sites by PathFinder. Letters along branches are the branch ID, and branches are colored
based on predicted tumor sites. All mutations are mapped at branches of the phylogeny through ancestral sequence reconstruction. When a cell
migration event is inferred at a branch, the number of drivers and total mutations are shown. (B) Inferred cell migration history by PathFinder using
CloneFinder+ clones without the bootstrap assessment. The numbers of drivers and total mutations are shown for each migration path. The primary and
metastatic tumors are shown in blue and red boxes, respectively. (C) Bootstrap consensus migration history. The number along a path is bootstrap
support (%). Dotted arrows indicate paths with <40% bootstrap support. (D)Driver mutation count and (E) driver mutation rates were compared between
the paths originating from primary and metastatic tumors. The p values were computed using t-test. ATP401 patient was used. CGI was used for driver
mutation prediction.
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those from the primary tumor than those from a metastatic tumor
(p < 0.01; t-test) (Figure 7D). Since migration paths with a larger
number of associated mutations may simply result in a larger

number of driver mutations, we normalized the count of driver
mutation, i.e., we computed the driver mutation rate by dividing it
by the total number of mutations for a path. We excluded paths
without any associated mutations. Similarly, the driver mutation
rate was significantly greater for those from the primary tumor than
those from a metastatic tumor (p < 0.01 by t-test) (Figure 7E).
Therefore, driver mutations occurred more frequently at migrations
from the primary tumor than those from metastatic tumors for this
patient.

To test if most of the patients similarly had higher driver
mutation rates for migration paths from the primary tumor than
metastatic tumors, we analyzed 32 datasets of metastatic cancer
patients. Similar to the ATP401 patient, many paths were from
metastatic tumors (Figure 8A), indicating that migration events
from metastatic tumors were not rare, consistent with previous
studies (Kumar et al., 2020; Chroni et al., 2022). We found that
only six patients showed significant differences in driver
mutation rates between those from primary tumors and from
metastatic tumors (p < 0.01 by t-test for both driver prediction
methods), and all of them had higher driver mutation rates for
paths from the primary tumors, which was similar to the
ATP401 patient (Figure 8B). However, most of the patients
(26) did not show a significant difference in driver mutation
rates between migration paths from primary and metastatic
tumors (p > 0.01 by t-test for at least one driver prediction
method). Therefore, the numbers of driver mutations were often
not significantly different between metastatic cell migration
events sourced from primary tumors and those from
metastatic tumors.

FIGURE 8
The number of cell migration paths and driver mutation rate. (A) The number of migration paths originating from the primary and the metastatic
tumor sites. The average number among bootstrap replicates was calculated. An Error bar is the standard deviation. (B) The driver mutation rate of
migration paths originating from the primary versus the metastatic tumor sites. The average rate among bootstrap replicates was calculated. An Error bar
is the standard deviation. t-test was performed for each patient to test if the driver mutation rate was significantly different between those from the
primary tumor and from metastatic tumors. Patients were sorted by the number of migration paths.

FIGURE 9
The accuracy of inferred clones by CloneFinder and single-point
and bootstrap consensus inferences (ConsenGeno) by CloneFinder+.
For the consensus clones, clones with <10% bootstrap support were
removed. The genotype error (GE) was computed for each
simulated dataset, i.e., the average over the pairs of inferred and
simulated clones for a dataset. The number at the top of a box plot is
the proportion of datasets with >5% GE. t-test was performed, and the
p-values were given, i.e., * for p < 0.05 and ** for p << 0.01. See
Supplementary Note for the parameter settings for CloneFinder. All
simulated datasets were used.
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4 Discussion

In this study, we showed the potential of bootstrap resampling
procedures to place confidence limits on estimates obtained from
tumor sequencing data. We found that incorrect inferences tended
to receive low bootstrap support. Overall, the bootstrap approach
performed well to distinguish spurious inferences.

Although the primary usage of the bootstrap approach is to place
a confidence limit on inferred clones and downstream analysis (e.g.,
cell migration inferences), consensus clone sequences and consensus
cell migration history can be also built by aggregating all bootstrap
inferences. It is important to note that consensus inferences are not
expected to be extensively more accurate than the point estimates,
because the analysis of bootstrap replicates should not repeatedly
produce correct inferences that are not found in the point estimate
(Figure 9; Supplementary Figure S2).

In this study, we also developed CloneFinder+ by advancing
CloneFinder, which now additionally analyzes the similarity of
VAFs to cluster SNVs. The accuracy of CloneFinder+ was
slightly better than the original version of CloneFinder
(Figure 9). In conclusion, we showed that the bootstrap approach
performed well to place a confidence limit on tumor evolution
inference. The bootstrap approach can be coupled with any clone
prediction method. Therefore, it will be useful for method
developers to add a bootstrapping option.
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