
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Angel Adrián Cataldi,
Instituto Nacional de Tecnologı́a
Agropecuaria, Argentina

REVIEWED BY

Ariel Fernando Amadio,
National Agricultural Technology Institute,
Argentina
Yingwang Ye,
Hefei University of Technology, China
Wanderson Marques Da Silva,
National Scientific and Technical Research
Council (CONICET), Argentina

*CORRESPONDENCE

Maryoris Elisa Soto Lopez

mesoto@correo.unicordoba.edu.co

RECEIVED 02 March 2023

ACCEPTED 27 April 2023

PUBLISHED 16 May 2023

CITATION

Lopez MES, Gontijo MTP, Cardoso RR,
Batalha LS, Eller MR, Bazzolli DMS,
Vidigal PMP and Mendonça RCS (2023)
Complete genome analysis of
Tequatrovirus ufvareg1, a Tequatrovirus
species inhibiting Escherichia coli O157:H7.
Front. Cell. Infect. Microbiol. 13:1178248.
doi: 10.3389/fcimb.2023.1178248

COPYRIGHT

© 2023 Lopez, Gontijo, Cardoso, Batalha,
Eller, Bazzolli, Vidigal and Mendonça. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 16 May 2023

DOI 10.3389/fcimb.2023.1178248
Complete genome analysis of
Tequatrovirus ufvareg1, a
Tequatrovirus species inhibiting
Escherichia coli O157:H7

Maryoris Elisa Soto Lopez1,2*, Marco Tulio Pardini Gontijo1,3,
Rodrigo Rezende Cardoso1, Laı́s Silva Batalha1,
Monique Renon Eller1, Denise Mara Soares Bazzolli4,
Pedro Marcus Pereira Vidigal5
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Introduction: Bacteriophages infecting human pathogens have been considered

potential biocontrol agents, and studying their genetic content is essential to

their safe use in the food industry. Tequatrovirus ufvareg1 is a bacteriophage

named UFV-AREG1, isolated from cowshed wastewater and previously tested for

its ability to inhibit Escherichia coli O157:H7.

Methods: T. ufvareg1 was previously isolated using E. coliO157:H7 (ATCC 43895)

as a bacterial host. The same strain was used for bacteriophage propagation and

the one-step growth curve. The genome of the T. ufvareg1 was sequenced using

305 Illumina HiSeq, and the genome comparison was calculated by VIRIDIC and

VIPTree.

Results: Here, we characterize its genome and compare it to other Tequatrovirus.

T. ufvareg1 virions have an icosahedral head (114 x 86 nm) and a contracted tail

(117 x 23 nm), with a latent period of 25 min, and an average burst size was 18

phage particles per infected E. coli cell. The genome of the bacteriophage T.

ufvareg1 contains 268 coding DNA sequences (CDS) and ten tRNA genes

distributed in both negative and positive strains. T. ufvareg1 genome also

contains 40 promoters on its regulatory regions and two rho-independent

terminators. T. ufvareg1 shares an average intergenomic similarity (VIRIDC) of

88.77% and an average genomic similarity score (VipTree) of 88.91% with eight

four reference genomes for Tequatrovirus available in the NCBI RefSeq database.

The pan-genomic analysis confirmed the high conservation of Tequatrovirus

genomes. Among all CDS annotated in the T. ufvareg1 genome, there are 123 core

genes, 38 softcore genes, 94 shell genes, and 13 cloud genes. None of 268 CDS

was classified as being exclusive of T. ufvareg1.
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Conclusion: The results in this paper, combined with other previously published

findings, indicate that T. ufvareg1 bacteriophage is a potential candidate for food

protection against E. coli O157:H7 in foods.
KEYWORDS

whole genome sequencing (WGS), pan-genome, taxonomy, biocontrol, Enterohemorrhagic
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Introduction

Enterohemorrhagic Escherichia coli (EHEC), a subgroup of

Shiga toxin-producing E. coli (STEC), has emerged as one of the

primary foodborne pathogens (Cooley et al., 2013). The infections’

symptoms vary from watery diarrhea to hemorrhagic colitis (HC)

and, in more severe cases, hemolytic-uremic syndrome (HUS)

(Gambushe et al., 2022). STEC pathogens belong to a wide range

of serotypes, and E. coli O157:H7 is the most prevalent outbreak-

associated serotype. Human infections are linked to consuming

contaminated foods and water (Rani et al., 2021; Gambushe et al.,

2022). E. coli O157:H7 has a low infectious dose (10 to 100

CFU.mL-1) due to its stress resistance mechanisms (Rahal et al.,

2012), surviving in low-pH environments such as acidic foods. Acid

resistance is crucial for the pathogen’s survival in the stomach’s

acidic condition before reaching and colonizing the small intestines

and/or colon (Leyer et al., 1995; Price et al., 2004). According to the

Centers for Disease Control and Prevention (CDC), as of 2022,

STEC was responsible for three outbreaks in the US. The number of

cases reached 136, accounting for 63 hospitalizations. Similar

outbreaks were reported yearly since 2006.

Classical preservation methods, including pasteurization,

radiation, food preservatives (Lopez et al., 2018b; Enciso-Martıńez

et al., 2022), or lactic acid bacteria (Ren et al., 2019; Gontijo et al.,

2020), have been used to control pathogenic bacteria in foods, such

as E. coli O157:H7. Alternative methods are proposed to control

biological contaminants in foods. For example, recent studies have

suggested using bacteriophages to control bacteria for food

production and processing, showing promising results (Moye

et al., 2018; Endersen and Coffey, 2020).

Viruses are the most abundant entities on the planet, present in

all living organisms’ ecosystems (Krishnamurthy et al., 2016;

Koskella et al., 2022). Bacteriophage application as antibacterial

agents in the food industry has some advantages over traditional

methods: (i) phages are highly host-specific, infecting closely related

species, species or even strains within a species (Peng and Yuan,

2018); (ii) selective toxicity, infection of humans and other

eukaryotes by phages has been reported only in rare occasions

(Lehti et al., 2017; Naureen et al., 2020); (iii) little or no influence on

the gut microbiota (Galtier et al., 2016); (iv) phages do not alter the

sensory properties of foods, once their genomes do not code

substances that may change the color, flavor or texture of the

foods (Moye et al., 2018); (v) phages are self-replicating and self-
02
limiting if their bacterial host is present (Sillankorva et al., 2012);

and (vi) the frequency of phage mutation is higher than that of

bacteria, which diminishes the chances of bacterial resistance

(Sabouri Ghannad and Mohammadi, 2012).

Bacteriophages have been evaluated for clinical use (Morello

et al., 2011; Merabishvili et al., 2017; Zaki et al., 2023), agriculture

(Czajkowski et al., 2017; Zaczek-Moczydłowska et al., 2020; Liu

et al., 2022), and the food industry (Soffer et al., 2017). A few phage-

based products have been approved by the Food and Drug

Administration (FDA), ListShield (used in salami, sausage,

basterami, seafood, food contact surfaces, and environments),

EcoShield (applied to red meat parts and trim intended to be

grounded) and SalmoFresh (applied to poultry, fish and shellfish,

fresh and processed fruits, and vegetables), all produced by

Intralytix, Inc. in the USA. LISTEX, produced by Food Safety in

the Netherlands for use in ready-to-eat meat, fish, and cheese, and

Agriphage, made by Omnilytics in the USA, for use in agriculture

on fruits and vegetables (Jamal et al., 2019). However, more studies

are being conducted for further approval and regulation. Phage vB-

LmoM-SH3-3 was effective in reducing the Listeria spp. count in

salmon meat, reducing by approximately 2.67 log CFU.mL-1 after

24 h of phage addition at 4°C and 4.14 log CFU.mL-1 after 48 h.

Similar results were found for orange juice (Zhou et al., 2020).

Encapsulated phages specific for Salmonella reduced the count of

Salmonella Enteritidis and S. Typhimurium in 0.57 and 1.78 log

CFU.cm-2 in meat and 0.86 and 1.2 log CFU.g-1, respectively, in

sprout (Petsong et al., 2019). Tequatrovirus ufvareg1, in particular,

has already been evaluated against E. coli O157:H7 in the

biosanitization of cherry tomatoes (Lopez et al., 2018a). The

treatment of cherry tomatoes inoculated with E. coli O157:H7 was

reduced by 0.95 log CFU.g-1 after adding a cocktail of

bacteriophages (T. ufvareg1 included). This value was statistically

similar to the decontamination treatment of tomatoes with the

sodium dichloroisocyanurate (0.57 log CFU.g-1), hydrogen peroxide

(0.98 log CFU.g-1), and peracetic acid (0.9 log CFU.g-1). T. ufvareg1

encapsulated in alginate via microfluidics and applied in a

propylene glycol gel showed efficiency in the reduction of E. coli

O157:H7 count (reducing from 4 log CFU.g-1 to an undetectable

count on the surface) at a similar level to alcohol 70% (Boggione

et al., 2017). In addition, the bacteriophage UFV-AREG1 was

encapsulated in several food hydrocolloids and remained viable

when submitted to pH 2.5. Phage-loaded beads incubated in

simulated intestinal fluid (pH 6.8) resulted in a 50% release of the
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phages in the first 5 min. These results also highlight the potential of

phage UFV-AREG1 to control pathogens in livestock (Silva Batalha

et al., 2021). Such reductions in foods or food-related environments

could substantially decrease the potential risk of foodborne

infections caused by E. coli O157:H7.

Phages specific to E. coli O157:H7 have previously been isolated

in several niches (Lu and Breidt, 2015; Shahin et al., 2022). To

expand our understanding of the E. coli O157:H7-specific

Tequatrovirus ufvareg1, we present the analysis of its morphology,

growth parameters, host range, and genomic features in detail. In

addition, information about T. ufvareg1 will be helpful in the

development of phage control of multiple foodborne pathogens.
Materials and methods

Bacterial strains and culture conditions

The strain Escherichia coli O157:H7 (ATCC 43895) was used as

the host for bacteriophage propagation and characterization. The

strain was cultivated in Brain Heart Infusion Broth (HiMedia,

Brazil) growth medium and incubated at 37°C. Bacteriophage

UFV-AREG1 from Tequatrovirus ufvareg1 specie was previously

isolated and sequenced (Lopez et al., 2016). Bacteriophages were

stocked and diluted in SM buffer (gelatin 0,01% [m/v] [Vetec,

Brazil], Tris-HCl 50 mM [pH 7,5] [Sigma Aldrich, Brazil], NaCl 100

mM [Vetec, Brazil], MgSO4.7H2O 8 mM [Vetec, Brazil]).
Electron microscopy

A bacteriophage suspension at 109 PFU.mL-1 was centrifuged at

26,000 ×g for 60 min. The pellet was washed with an ammonium

acetate solution (0.1 M) [Sigma Aldrich, Brazil] and centrifuged at

26,000 ×g for 60 min. The pellet was resuspended in distilled water

and filtered through a cellulose acetate membrane (0.22 µm pore). A

droplet of the suspension was deposited on the surface of an

electron microscopy screen coated with formvar resin. Virions

were negatively stained with uranyl acetate (2% w/v) [Sigma

Aldrich, Brazil], and micrographs were taken under 80 kV

transmission electron microscope Zeiss EM 109 at the Nućleo de

Microscopia e Microanaĺise (NMM/UFV).
One-step growth curve

The one-step growth experiment was performed following the

procedure described previously (Lu and Breidt, 2015). The E. coli

O157:H7 (ATCC 43895) culture was activated in BHI broth until

the exponential growth phase. The cells were centrifuged at 10,000

×g for 5 min, and a suspension was prepared in saline solution

(0.85% w/v NaCl) [Vetec, Brazil] with turbidity equivalent to 0.5 in

the McFarland scale (108 CFU.mL-1). The bacterial suspension was

10-fold diluted, and 0.1 mL was added in 0.8 mL of BHI broth
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preheated to 37°C. A phage suspension was prepared in SM buffer

(105 PFU.mL-1), and 0.1 mL was added to the tube with the bacterial

culture (MOI: 0.01), followed by incubation at 37°C for 10 min at

100 rpm. After incubation, the suspension was centrifuged at 13,000

×g for 30 s, and the supernatant was removed to determine the titer

of non-adsorbed bacteriophages. The precipitate with absorbed

bacteria and bacteriophages was resuspended in 20 mL of BHI

broth preheated to 37°C. Subsequently, 1 mL samples were filtered

(0.22 mm) and collected every 5 min for 60 min. Phage count was

made by the double layer plating technique, and the T. ufvareg1

phage titer was determined on plaque forming units (PFU) plating

ten-fold serial dilutions in SM buffer (Green et al., 2012). The latent

period was defined as the time interval between the end of the

adsorption and the beginning of the lysis, as indicated by the

beginning of the period of increase in the bacteriophage titer.

Burst size was calculated by dividing the final number of released

bacteriophages by the number of infected bacteria. The number of

infected bacteria was estimated through the difference between the

initial number of bacteriophages and non-adsorbed bacteriophages.
Sequencing of the Tequatrovirus ufvareg1
genome

The DNA of the T. ufvareg1 bacteriophage was extracted

according to a previously described procedure (Green et al.,

2012). A bacteriophage suspension of 1 mL was added to 20 µL

of chloroform [Vetec, Brazil] and stirred for 10 min. After stirring,

the suspension was centrifuged at 22,000 rpm for 20 min. The

aqueous phase was added of DNAse [Thermo Scientific, Brazil] and

RNAse [Thermo Scientific, Brazil] to a final concentration of 1

µg.mL-1 for 10 min at room temperature. Subsequently, 25 µL of

proteinase K [Thermo Scientific, Brazil] was added to a final

concentration of 1 mg.mL-1 and 0.9 µL of SDS [Sigma Aldrich,

Brazil] for 10 min at room temperature. A first extraction was made

using phenol-chloroform (1:1) [Vetec, Brazil] for 5 min. It

proceeded to centrifuge at 12,000 rpm for 10 min, recovering the

aqueous phase. In the second extraction, chloroform was added in

the proportion (1:1). Afterwards, the samples were centrifuged at

12,000 rpm for 10 min at 4°C. The aqueous phase was recovered.

Ammonium acetate was added at a final concentration of 3.5 M for

DNA precipitation and isopropanol in the ratio (1:1), storing the

samples at -20°C for approximately 4 h. After this procedure, the

samples were centrifuged at 12,000 rpm for 30 min, discarded the

supernatant, and dried at room temperature. To remove excess salt

from the samples, 200 µL of 70% ethanol [Vetec, Brazil] was added

by centrifuging at 12,000 rpm for 10 min, discarding the ethanol,

and placing the pellet to dry at 37°C for 10 min. The pellet was

reconstituted with 40 µL of ice-cold ultrapure water [Sigma Aldrich,

Brazil] and homogenizing. Finally, the DNA extraction process was

evaluated on 0.8% agarose gel [Vetec, Brazil] with a 50 ng.mL-1

lambda marker. The genome of the T. ufvareg1 was sequenced using

Illumina HiSeq by the company Macrogen (Seoul, Korea).
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De novo assembly and annotation of the T.
ufvareg1 genome

The quality of sequencing data was assessed using FASTQC

version 0.11.9 (https://github.com/s-andrews/FastQC). Adapter

sequences were detected and removed from sequencing data

using the “auto-detection” setting of TrimGalore version 0.6.7

(Krueger et al., 2021). Then, paired reads were trimmed for

quality and filtered for length using Trimmomatic version 0.39

(Bolger et al., 2014) by selecting the following parameters:

HEADCROP:10, CROP:90, SLIDINGWINDOW:4:20, and

MINLEN:50. The de novo assembly of the genome was performed

using the method “careful” of SPAdes version 3.15.3 (Bankevich

et al., 2012) and testing all odd k-mers between 21 and 89. Then, the

paired reads were mapped in the scaffolds using the BWA-MEM

algorithm of BWA version 0.7.17 (Li and Durbin, 2009), and the

Sequence Alignment Map (SAM) files were converted to ordered

Binary Alignment Map (BAM) format using Picard toolkit version

2.26.2 (https://github.com/broadinstitute/picard). The BAM files

were processed by SSPACE version 3.0 (Boetzer et al., 2011),

which merged the scaffolds into a single circular sequence

(Figure S1).

Eighty-four genomes from species of the Tequatrovirus genus

(taxonomy ID: 10663) were downloaded from NCBI Reference

Sequence (RefSeq) database (https://www.ncbi.nlm.nih.gov/refseq/,

accessed on August 29th, 2022) (Table S1) and used as references to

predict the genes of the T. ufvareg1 genome. The genes were

predicted using Prokka version 1.14.6 (Seemann, 2014) by

selecting the following parameters: compliant, kingdom: viruses,

gcode: 11, cdsrnaolap, E-value: 1e−10, proteins: Tequatrovirus

Refseq GenBank file. The genome was also inspected to identify

putative promoters using the PhagePromoter (https://

galaxy.bio.di.uminho.pt/) (Sampaio et al., 2019) by selecting the

following parameters: threshold: 0.5, phage family: Podoviridae,

host bacteria genus: Escherichia coli, and phage type: virulent. The

Rho-independent terminators were identified using ARNold

(Naville et al., 2011) (http://rssf.i2bc.paris-saclay.fr/toolbox/

arnold/) and FinTerm (Solovyev and Salamov, 2011) by

considering a free energy threshold value of -11 kcal/mol for

stem-loop regions. The phage host range was previously assessed

(Lopez et al., 2018a) and expanded using HostPhinder(Villarroel

et al., 2016), and the results were compared to previously published

data for T. ufvareg1 bacteriophage(Lopez et al., 2018a). Antibiotic

resistance genes were predicted using CARD (Alcock et al., 2023).
Endolysin and holin screening

Endolysins and holins were screened using HmmerWeb version

2.41.2 (Potter et al., 2018) and the protein family database (Pfam),

applying default parameters. Possible signal peptides and signal-

arrest-release domains in endolysins were characterized previously

(Gontijo et al., 2021b; Gontijo et al., 2022). Signal peptides were

predicted using SignalP version 5.0 (Petersen et al., 2011) and

PrediSi version 1.0 (Hiller et al., 2006) against the Gram-negative

database. Transmembrane regions were predicted using SOSUI
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version 1.1 (Hirokawa et al., 1998), TMHMM version 2.0 (Krogh

et al., 2001), Phobius version 1.01 (Käll et al., 2004), and Topcons

version 1.0 (Hennerdal and Elofsson, 2011).
Comparative genomics of Tequatrovirus

The Eighty-four Tequatrovirus genomes, downloaded from

NCBI Reference Sequence (RefSeq) database (Table S1), were

compared with the genome of T. ufvareg1. All the genomes were

opened in the rIIA gene, which is the same point as the

Tequatrovirus T4 genome (NCBI accession NC_000866). A

pairwise genomic similarity matrix was calculated by the

VIRIDIC web server (http://rhea.icbm.uni-oldenburg.de/

VIRIDIC/) (Moraru et al., 2020) as previously described

(Hungaro et al., 2022), considering a genomic similarity threshold

95% for species assignment and 70% for the genus as that

recommended by ICTV for virus taxonomy. In addition, a

proteomic tree was calculated by the Viral Proteomic Tree

(VIPTree) web server (https://www.genome.jp/viptree/)
A

B

FIGURE 1

Virions and one-step growth curve of Escherichia coli O157:H7 phage
Tequatrovirus ufvareg1. (A) the phage virion was negatively stained
with uranyl acetate and observed through transmission electron
microscopy (TEM) at × 140,000 magnification, scale bar = 100 nm.
(B) The results of one-step growth curves of T. ufvareg1 on E coli
O157:H7 (ATCC 43895) are presented as the mean values ± SD from
three independent experiments. L, latent period; B, burst size.
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(Nishimura et al., 2017), with default parameters. The synteny

shared among the Tequatrovirus genomes was evaluated by

Clinker version 0.0.23 (Gilchrist and Chooi, 2021), with default

parameters. The repertoire of genes shared among the

Tequatrovirus genomes was predicted by Roary version 3.13.0

(Page et al., 2015), considering a minimum identity threshold of

80% to cluster the protein sequences in the pangenome and setting

that the core genes are shared among all genomes.
Results and discussion

The Tequatrovirus ufvareg1 bacteriophage

T. ufvareg1 is a bacteriophage isolated from cowshed

wastewater using Escherichia coli ATCC 11229 as the bacterial

host (Lopez et al., 2016). A detailed characterization of this

bacteriophage is presented in the following topics. Transmission

Electron Microscopy analyses showed that T. ufvareg1 virions have

an icosahedral head (114 x 86 nm) and a contracted tail (117 x 23

nm) (Figure 1A). Therefore, T. ufvareg1 belongs to Caudoviricetes

class and shares a morphological similarity with the Tequatrovirus

phages, such as Tequatrovirus hy01(Lee et al., 2016).
Latent period and burst size of T. ufvareg1

To elucidate the ability of T. ufvareg1 bacteriophage to lyse E.

coliO157:H7 (ATCC 43895), the latent periods and burst size of the

bacteriophage were determined using a one-step growth curve

analysis (Figure 1B). The latent period of T. ufvareg1

bacteriophage was 25 minutes, the complete infectious lasted 50

minutes, and the burst size after lysis of the E. coli host was about 18

PFU per infected cell. These results are similar to the one observed

for Tequatrovirus hy01 (latent period of 25 minutes and burst size of

25 bacteriophages per infected cell) (Lee et al., 2016). The burst size

is an average of bacteriophages released by the bacterial cells in

culture, but the capacity of virion production varies from cell to cell

(Kannoly et al., 2022). Bacteriophages specific for E. coli O157:H7

have varying latent periods and burst sizes. Bacteriophage

vB_Eco4M-7 has a latent period of 10 min, with a burst size of

approximately 100 phages per cell (Necel et al., 2020).

Bacteriophage F241 has a latent period of 15 min and a burst

size of 53 phage particles per infected cell (Lu and Breidt, 2015), and

bacteriophage SFP10 has a latent period of 25 min and releases

about 100 new viral particles after the infectious cycle (Park et al.,

2012). The burst size of E. coli O157:H7 bacteriophages varies

substantially depending on the bacteriophage. From multiple

isolates using the same host strains, it was previously observed a

burst size ranging from 91 to 522 virion particles per infected cell

(Montso et al., 2019). Generally, a phage with both a short latent

period and a large burst size may have a selective advantage over

competing phages and might be more effective in phage therapy

(Park et al., 2012; Lu and Breidt, 2015; Amarillas et al., 2017). This

result might indicate a need for bacteriophage combinations. In the

case of T. ufvareg1 bacteriophage, an effective reduction in bacterial
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count in situ has been observed in a bacteriophage cocktail (Lopez

et al., 2018a).
T. ufvareg1 genome analysis

The complete nucleotide sequence of the genome of

Tequatrovirus ufvareg1 has been previously assembled using a

reference-based approach and deposited in the GenBank database

(https://www.ncbi.nlm.nih.gov/genbank/) under accession number

KX009778.4 (Lopez et al., 2016). To understand the genomic

organization of the new virus species, we updated this genome

using a de novo assembly and deposited it in Genbank under

accession KX009778.4. The T. ufvareg1 has a linear dsDNA

genome with 167,231 bp and a GC content of 35.35%, similar to

what was observed for the Tequatrovirus reference genomes

(average values: size = 167,831, GC content = 35.39%)

(Supplementary Material, Table S1). The T. ufvareg1 genome has

a bidirectional organization with 278 genes corresponding to a gene

density of 1.66 genes per 1,000 bp. Information about functional

annotation of the coding DNA sequences (CDS) and their

respective proteins is detailed in Table S2. Among the 268

predicted CDS, 113 encode hypothetical proteins (40.65%) that

share similarities with other Tequatrovirus bacteriophages proteins

and have no defined function in the replication and viral infection

of T. ufvareg1 (Table S2).

The search for consensus sequences of regulatory elements

revealed the presence of 18 phage-specific promoters (score

threshold = 0.5) and 325 host promoters (score threshold = 0.9)

(Table S3) in the T. ufvareg1 genome. In the positive strand, 13

promoters are found regulating mainly the late genes from the

structural gene module. The remaining five promoters are located

on the negative strand, including one regulating the gene that

encodes the ModB ADP-ribosylase involved in regulating the

replication cycle. The host promoters are distributed across the T.

ufvareg1 genome, with 108 in the positive strand and 217 in the

negative strand. The presence of promoters is a common feature of

viral genomes to start and control the gene transcription and

consequent protein expression during their infection cycle (Eller

et al., 2014; Sampaio et al., 2019). In addition, 20 rho-independent

terminator sequences were found by both predictors in the T.

ufvareg1 genome, seven located at the positive and 13 at the

negative strand (Table S4). As observed for the predicted

promoters, the rho-independent terminators are found mainly

immediately after the late genes from the structural gene module

and after the genes involved in the preparation of the viral genome

replication process (Bonocora et al., 2011; Pham et al., 2020). The

second terminator is located after the gene encoding DNA

polymerase, an essential enzyme for viral replication (Morcinek-

Orłowska et al., 2022). The low number of rho-independent

terminator sequences (20 terminators), concerning the large

number of genes identified in the T. ufvareg1 genome (278

genes), can be explained by the existence of another type of not

conserved terminators, the modular structure of the genome of the

phage or even the generation of polycistronic mRNAs (Wicke

et al., 2021).
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Furthermore, ten tRNA genes were found in the genome of the

T. ufvareg1 bacteriophage (Tables S1, S5), the same number

observed for 24 of 84 Tequatrovirus reference genomes. However,

the exact function of the tRNAs encoded by bacteriophages is

unclear. These elements of the genome may be involved in

adapting to the translation system of the bacterial host, to the

demand for codon use pattern by the bacteriophage, or the rapid

extinction of the specific translation of the host proteins after phage

infection (Miller et al., 2003; Delesalle et al., 2016). A possible

function of tRNAs in the phage genome may be to allow greater

efficiency in translating specific unessential genes with different

codon uses (Yang et al., 2021) or the ability of phages to growth in

the host or to infect more hosts (Delesalle et al., 2016).

The 268 CDS predicted in the T. ufvareg1 genome were

classified into eight functional categories (“gene expression related

proteins,” “metabolism-related proteins,” “cell wall lysis,”

“structural proteins,” “direct lysis, host defense, and resistance-

genes acquisition proteins,” “hypothetical proteins,” “homing

endonucleases,” and “superinfection immunity protein”)

(Table S2).

Thirty-four CDS distributed in the positive strand of the UFV-

AREG1 bacteriophage genome (CDS numbers 153 to 178, 192 to 197,

and 249 to 251) encode “structural proteins” of the virion, such as

capsid, tail, and head proteins (Table S2). These CDS can be considered

late genes and directly relate to the lysis processes after assembling the

virus, DNA maturation, and viral particle release. Other 11 CDS that

encode “structural proteins” are in the negative strand of the UFV-

AREG1 genome (CDS numbers 27, 35, 39, 146, 148, 150, 152, 182, 183,

190, and 191), and they are probably expressed in parallel to the viral

metabolism and replication (Table S2).

Seven CDS encode “direct lysis, host defense, and resistance-genes

acquisition proteins,” and four ORFs encode “cell wall lysis” proteins

(CDS 103, 120, 154, and 254), including one lysozyme encoded by CDS

120. The lysozyme encoded by CDS 120 is related to the bacteriophage

infection process and the degradation of peptidoglycan to allow the

entry of viral genetic material into the host. The lysozyme encoded by

CDS 154 is an endolysin with the activity that degrades the

peptidoglycan and acts together with holin (CDS 254) in the

sequential events that lead to the programmed lysis of the host for

the release of mature viral particles (Lu et al., 2019). Holin is

responsible for permeabilizing the host cell membrane and signaling

the exit of lysine to the periplasmic space for peptidoglycan cleavage,

facilitating the release of the viral progeny (Wang et al., 2000; Saier and

Reddy, 2015). Holin is strongly regulated by antiholin (Guo et al., 2018)

encoded by CDS 103, located on the negative strand of the genome of

the T. ufvareg1 bacteriophage. The CDS classified as “direct lysis, host

defense, and resistance-genes acquisition proteins” are related to the

protection of replication processes, in general, to prevent the action by

the host from interrupting the viral genome replication process, the

assembly of the virus itself and the cell lysis.

In the negative strand of the T. ufvareg1 genome, 102 CDS encode

proteins responsible for bacteriophage replication classified as “gene

expression-related proteins” or “metabolism-related proteins.” The T.

ufvareg1 bacteriophage genome opens with the CDS that encodes the

protein rIIA, typical of bacteriophages with lytic activity. The genome

of Tequatrovirus bacteriophages has its opening of the genome with the
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protein rIIA, and the evidence suggests that proteins of type rII are not

directly related to the processes of inhibition of cell lysis.When they are

absent, an alternative route for the cell lysis process depends on the

presence of genes from some possible prophages (Miller et al., 2003;

Abedon, 2019). The rIIA protein can be crucial in viral replication if it

is found in clusters carrying different enzymes that synthesize

deoxyribonucleotides and are associated with both the DNA and

membrane of the host, as seen in the representative scheme of the T.

ufvareg1 bacteriophage genome. In addition, it might be required to

maintain the integrity of the host membrane during infection and

replication (Ennis and Kievitt, 1973). Other essential proteins in the

DNA replication processes of T. ufvareg1 are the exonuclease (encoded

by CDS 13), ModA RNA polymerase ADP-ribosylase (CDS 19), UvsX

RecA-like recombination protein (CDS 40), DNA polymerase (CDS

47), UvsW helicase (CDS 184 and 186), DNA ligase (CDS 202) and

DNA topoisomerase II (CDS 265). Regarding DNA helicases (CDS 184

and 186), it is interesting to note that they are found on the positive

strand of the phage genome. In contrast, the other CDS related to viral

replication is in the negative strand.

Three CDS encode proteins related to “superinfection

immunity protein” (CDS 37, 44, and 78). CDS 44 encodes an

“immunity to a superinfection membrane protein,” which prevents

the phage genome from being ejected from the cell cytoplasm

(Berngruber et al., 2010; Egido et al., 2022). Likewise, this protein

is responsible for preventing infection of the bacterium by other

phages of the same family and recognizing the cell receptors on the

bacterial surface (Abedon, 2015). In addition, one CDS encodes a

“homing endonucleases” in the UFV-AREG1 bacteriophage

genome (CDS 244), which might suggest the presence of introns

in the genome of this phage, which will be confirmed in the future.

The T. ufvareg1 phage contains five CDS classified as “metabolism-

related proteins” that encode recombination endonucleases (CDS

55, 58, 77, 229, and 276). These proteins have specific functions in

the replication of the viral genome and degradation of the DNA of

the bacterial host, and the suppression of the host’s genetic

expression by the action of the virus (Murphy, 1998; Sharples

et al., 1998). The genome does not contain any conserved

antibiotic-resistance genes.
Lysis module

The Holin sequence (CDS 254) belonged to the bacteriophage T

holin family (PF11031), and both lytic proteins (CDS 120 and 154)

belonged to the glycoside hydrolase family 24 (PF00959). CDS 154

contained one additional Gp5 N-terminal OB domain (PF06714) and

three Gp5 C-terminal repeat domains (PF06715), suggesting a

cytoplasmatic lysozyme. SignalP and PrediSi did not identify

canonical signal peptides within the lytic protein sequences, and

transmembrane-predicting software did not identify transmembrane

regions at the N-terminal region of putative endolysins. This analysis

shows that the lysozymes encoded in the phage genomes must follow

the holin-endolysin theory. Lysozyme hydrolyzes the b-(1,4) linkages
between N-acetylglucosamine (NAG) and N-acetylmuramic (NAM)

acid monomers of peptidoglycan. Holins control lysis timing by

forming non-specific pores in the cytoplasmatic membrane. Finally,
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the pores allow endolysins to reach the peptidoglycan (Gontijo

et al., 2021a).
Genomic comparisons and pan-genome
analysis of Tequatrovirus

The genomic distance matrix (VIRIDIC) and the viral

proteomic tree (ViPTree) confirmed high conservation among 83
Frontiers in Cellular and Infection Microbiology 07
of the 85 reference genomes of Tequatovirus and the genome of T.

ufvareg1 (Figure 2, Table S1). These genomes showed an average

genomic similarity score (VIRIDIC) of 88.77% and a genomic

distance score (ViPTree) of 88.91% (Table S1). None of the

genomes showed similarity scores above 95%, attributing different

isolates to the same species, confirming the isolate UFV-AREG1 as a

reference for the Tequatrovirus ufvareg1 specie. Curiously, the

genomes of Tequatrovirus efftwo (GenBank accession:

NC_054913.1) and Tequatrovirus jaykay (GenBank accession:
FIGURE 2

Viral proteomic tree of RefSeq genomes for Tequatrovirus genus. The proteomic tree includes T. ufvareg1 and 84 reference genomes for the
Tequatrovirus genus. The genomes were aligned all against all by ViPTree, and the genomic similarity scores (SG) were computed. The genomes
were also clustered by VIRIDIC using the genomic similarity (SIM) threshold of 70% for genus assignment (Genus) and 95% for species assignment
(Species). The pangenomes were predicted by clustering the protein sequences with an identity threshold of 80%.
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NC_054940.1) are divergent from other Tequatrovirus. Their

genomes showed scores below the 75% recommended by ICTV to

cluster species into the same genus. The pangenome analysis

confirmed these observations when the number of genes of the

core genome of Tequatrovirus increased from 41 to 123 genes after

removing the genomes of T. efftwo and T. jaykay from the analysis.

Therefore, these two phages represent a distinct genus that is very

close evolutionary to the Tequatrovirus genus.

The ViPTree included the T. ufvareg1 into a cluster with eight

other Tequatrovirus genomes (Figure 2). In this cluster, the most

similar genomes to T. ufvareg1 are those from T. hy01 (Escherichia

phage HY01) (GenBank accession: NC_027349; VIRIDC score:

91.97%; ViPTree score: 91.87%), T. sh7 (Shigella phage SH7)

(GenBank accession: NC_0054942; VIRIDC score: 91.18%;
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ViPTree score: 91.58%), and Shigella phage psSs-1 (GenBank

accession: NC_025829; VIRIDC score: 90.56%; ViPTree score:

90.79%). All the eight Tequatrovirus genomes clustered with T.

ufvareg1 are colinear (Figure 3), and the pangenome analysis

confirmed the high conservation by identifying 177 core genes,

160 shell genes, and 56 cloud genes. Core genes are found in >95%

of the genomes; shell genes are found in 15–95%, while cloud genes

are present in less than 15% of genomes (Page et al., 2015). None of

the 268 CDS predicted in T. ufvareg1 are exclusive genes in pan-

genomic analysis, and 13 CDS are cloud genes showing

conservation less or equal to 15% among the genomes (Table 1).

The CDS 93 encodes the ModB ADP-rybosilase, involved in the

regulation of the replication cycle; the CDS 24 encodes the Mrh

transcription modulator, which modulates the host’s heat shock
FIGURE 3

Synteny shared among Tequatrovirus genomes clustered with T. ufvareg1. The genomes have a bidirectional organization with 267 coding DNA
sequences on average (represented by arrows). The arrow’s colors represent the gene clusters identified by Clinker, which encode similar proteins.
The lines connecting the arrows represent gene-encoding proteins that share a significant sequence identity of more than 40%. The pangenome
was predicted by clustering the protein sequences with an identity threshold of 80%.
TABLE 1 Genes of Tequatrovirus ufvareg1 genome classified among cloud genes in pangenome analysis.

Gene ID [locus] (strand) Annotation N1 N2

AREG1_00024 [13730:14216] (-) Mrh transcription modulator under heat shock 12 3

AREG1_00075 [40227:41067] (-) hypothetical protein 3 1

AREG1_00093 [51717:52203] (-) ModB ADP-ribosylase 4 2

AREG1_00108 [57796:58009] (-) hypothetical protein 1 1

AREG1_00129 [67122:67677] (-) hypothetical protein 2 1

AREG1_00143 [69662:69887] (-) hypothetical protein 3 1

AREG1_00144 [69955:70264] (-) hypothetical protein 6 2

AREG1_00145 [70324:70597] (-) hypothetical protein 4 2

AREG1_00185 [109345:110038] (+) hypothetical protein 11 3

AREG1_00232 [138074:138785] (-) hypothetical protein 6 2

AREG1_00242 [143834:144062] (-) Frd.3 hypothetical protein 5 3

AREG1_00266 [163056:163209] (-) hypothetical protein 7 1

AREG1_00267 [163289:163463] (-) hypothetical protein 4 1
N1: Frequency among all Tequatrovirus. N2: Frequency among the T. ufvareg1 cluster.
Cloud genes are those that showed conservation less or equal to 15% among the eight four reference genomes for Tequatrovirus, considering an identity threshold of 80%.
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sigma factor (s32) (Mosig et al., 1998); the CDS 242 encode the

Frd.3 hypothetical protein, and the other 9 CDS encode

hypothetical proteins with unknown functions.
Host range of T. ufvareg1

The host range of T. ufvareg1 bacteriophage using HostPhinder

(Villarroel et al., 2016) revealed that it might be able to infect four

bacterial genera: Escherichia (E-value: 5.7e-01), Yersinia (E-value: 5.5e-

01), Shigella (E-value: 5.7e-01) and Salmonella (E-value: 1.1e-02), all

belonging to the Enterobacteriaceae family. At the species level, T.

ufvareg1 is predicted to infect Escherichia coli (E-value: 5.7e-01),

Shigella flexneri (E-value: 5.7e-01), Yersinia pestis (E-value: 5.5e-01),

Shigella sonnei (E-value: 1.9e-02) and Salmonella enterica (E-value:

1.0e-02). Tequatrovirus ecomufv133 isolated and propagated using

Escherichia coli 30 showed similar results after HostPhinder

prediction(da Silva Duarte et al., 2018). In vitro determination of

host, the range was evaluated against Salmonella Enteritidis,

Salmonella Typhi, Salmonella Cholerasius, Escherichia coli,

Pseudomonas aeruginosa, Pseudomonas fluorescens, Enterococcus

faecium, Enterobacter aerogenes. Lysis was observed only for E. coli

strains (Lopez et al., 2018a).
Conclusion

The de novo assembled genome of the Tequatrovirus ufvareg1

bacteriophage isolate has 167,231 bp, a GC content of 35.35%, and

278 predicted genes. The genome annotation is detailed in this

study, and 268 CDS encode proteins attributed to eight functional

categories. Genomic comparisons confirmed that the UFV-AREG1

isolate only represents the T. ufvareg1 specie. The analysis of

Tequatrovirus species revealed high conservation among their

genomes and pangenome. The Tequatrovirus ufvareg1 causes

rapid cell lysis liberating about 18 viral particles per infected,

indicating the bacteriophage has a high potential as an effective

biocontrol agent of E. coli O157:H7 in foods.
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