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DNA repair is a critical factor in tumor progression as it impacts tumor mutational

burden, genome stability, PD-L1 expression, immunotherapy response, and

tumor-infiltrating lymphocytes (TILs). In this study, we present a prognostic

model for hepatocellular carcinoma (HCC) that utilizes genes related to the DNA

damage response (DDR). Patients were stratified based on their risk score, and

groups with lower risk scores demonstrated better survival rates compared to

those with higher risk scores. The prognostic model’s accuracy in predicting 1-, 3-,

and 5-year survival rates for HCC patients was analyzed using receiver operator

curve analysis (ROC). Results showed good accuracy in predicting survival rates.

Additionally, we evaluated the prognostic model’s potential as an independent

factor for HCC prognosis, along with tumor stage. Furthermore, nomogram was

employed to determine the overall survival year of patients with HCC based on this

independent factor. Gene set enrichment analysis (GSEA) revealed that in the high-

risk group, apoptosis, cell cycle, MAPK, mTOR, and WNT cascades were highly

enriched. We used training and validation datasets to identify potential molecular

subtypes of HCC based on the expression of DDR genes. The two subtypes

differed in terms of checkpoint receptors for immunity and immune cell filtration

capacity.Collectively, our study identified potential biomarkers of HCC prognosis,

providing novel insights into the molecular mechanisms underlying HCC.
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1 Introduction

According to the 2018 Global Cancer Statistics report,

Hepatocellular Carcinoma (HCC) ranks 6th among malignancies

and is the 4th leading cause of cancer-related mortality (1, 2).

Despitesignificant advancements in HCC treatment, the outcomes

are still unsatisfactory (3, 4). Therefore,identifying novel therapeutic

targets and diagnostic biomarkers for HCC is crucial to improve

patientprognosis. The DNA damage response (DDR) pathway is

considered a potential source of therapeutictargets as damaged DNA

is a hallmark of cancerous cells (5).

Research studies have reported that genes involved in DDR

pathways, such as nucleotide and base excision and mismatch repair,

are aberrantly expressed during cancer development and progression

(6–10). Dysregulated DDR is associated with increased genome

instability in HCC cells and has asignificant impact on patient

prognosis (11).

The use of high-throughput sequencing technology has become

increasingly prevalent in recentyears, and sequencing data and

clinical follow-up information can be downloaded from many

cancerdatabases. In this study, we downloaded the hepatocellular

carcinoma dataset from TCGA and GEOdatabases to explore the

prognostic potential of DNA damage response (DDR)-linked genes

inhepatocellular carcinoma (HCC) and develop a risk model.

We identified 150DDR-related genes from theMSigDBdatabase

and constructed an 11-gene HCC prognostic signature using

univariate Cox regression and random forest analyses. The

robustness ofthe model was validated through internal and

external validation. Additionally, we used Gene SetEnrichment

Analysis (GSEA) to identify potential pathways associated with the

risk model in HCCand analyzed the correlation between clinical

traits and the risk score. Finally, we identified andvalidated two

molecular subtypes of HCC using DDR gene expression. Our

findings provide novelinsights into the molecular mechanisms of

HCC and establish an independent DDR gene-basedprognostic

signature. The use of this signature could aid in personalized

therapy and improve clinicaldecision-making for HCC patients.

With the increasing availability of sequencing data, this

studyprovides a useful example of how these data can be utilized to

better understand the underlyingbiology of cancer and improve

patient outcomes.
2 Methods

2.1 Data collection

We obtained clinical data and gene expression information for

HCC samples from the ICGC-LIRI (https://dcc.icgc.org/) and

TCGA-LIHC (https://portal.gdc.cancer.gov/) datasets. Genes

linked toDNA damage response (DDR) were collected from

MSigDB, V7.1 (https://www.gseamsigdb.org/gsea/msigdb), and

only those genes present in both datasets were retained

for furtheranalysis.
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2.2 Risk signature construction

We utilized univariate and multivariate Cox regression analyses

to identify DDR-linked genes in the

LIRI-JP and LIHC datasets. To calculate the risk score for each

patient, we used the equation: (Exp i * b i), where Expi represents

the expression level of prognostic genes and b i represents the

coefficient of cox regression for each prognostic gene. The median

score was used to classify patients into high and low-risk groups,

and survival differences were calculated using the “survival” and

“survminer” packages. To determine the accuracy of the risk model

for 1-, 3-, and 5-year survival, we utilized the “SurvivalROC”

package (https://cran.rproject.org/web/packages/survivalROC/

index.html). We also employed univariate and multivariate cox

regression analyses to determine the prognostic independence of

clinical features and the risk score. Potential pathways linked to low

and high-risk groups were identified by GSEA, using

c2.cgp.v7.1.symbols.gmt as the reference gene set.
2.3 Nomogram and DCA
curve construction

We constructed a nomogram utilizing independent prognostic

factors, and analyzed the benefit of the prognostic factor using

decision curve analysis. The discriminative ability of the nomogram

was assessed using a calibration plot with the bootstrap approach

and 1,000 replications (12). Furthermore, we evaluated the benefit

of the prognostic factor using decision curve analysis (13).
2.4 Consensus clustering

We utilized the “ConsensusClusterPlus” R package (with 50

iterations and 80% resampling samples) to group patients into

distinct clusters based on DDR-related genes, with the aim of

determining molecular subtypes of HCC (14). Principal

components analysis (PCA) was employed to distinguish between

various LIHC subgroups, and all analyses were validated using the

LIRI-JP dataset.
2.5 Immune infiltration analysis

We evaluated the enrich score of immune cells and infiltration

levels of 28 immune cells for each sample in both high- and low-risk

groups using the ssGSEA algorithm, which was implemented using

the “GSVA” R package (15–17). Furthermore, we analyzed the

expression of immune checkpoint genes in both groups.
2.6 Cell culture and transfection

Human HCC cell lines Hep G2 and MHCC-97H were

purchased from (National collection of authenticated cell culture,
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Shanghai, CN), and incubated at 37 °C C with 5% CO2 in a

humidity saturated environment. Cells were cultured in DMED

(Hyclone, LA, USA) and supplied with 10% fetal bovine serum (BI,

Israel), anti biotics (0.1 U/l penicillin and 100 g/l streptomycin).

DGUOK siRNA were obtained from RiboBio Co., Ltd. (Guangzhou,

China). The siRNA was dissolved in DEPC-treated water.

Lipofectamine 2000 reagent (Invitrogen, CA, USA) were used for

transfection according to the manufacturer’s protocol. The

solutions were mixed together and incubated at room

temperature for 30 minutes. 30 nM siRNA was added into each

well andincubated at 37 °C
2.7 Hoechst staining

Cell apoptosis was observed by the morphological changes of

the cell nucleus (chromatin agglutination or DNA fragmentation).

Cells were treated with si-NC or si-DGUOK, and washed with

PBS twice, Hoechst 33258 (1 mg/ml) was added for 20 min at

room temperature avoiding light.Images were gathered by

fluorescence microscope (Nikon, Japan)
2.8 Cell viability assays

Cells were seeded in 96-well plates at 10,000 cells per well, and

cultured for 24h. They were treated with si-NC or si-DGUOK. Then

CCK-8 were added to each plate, absorbance was measured at 450

nm using a FLUOstar Omega microplate reader (BMG Labtech).

Cell viability of samples wascalculated according to the

manufacturer’s instructions
2.9 Statistical analyses

The statistical analysis was performed using R (https://www.r-

project.org/). Kaplan-Meier (KM)method was employed to analyze

the surviva l data and a p-value less than 0.05 was

consideredstatistically significant.
3 Results

3.1 Identification of survival-related DDR
risk model

150 DDR-related genes data were obtained from the TCGA

dataset, which consisted of 343 HCCsamples. Using univariate Cox

regression analysis, 37 prognostic genes that affect the survival

ofpatients with HCC were identified. For developing a risk model,

stepwise multivariate Coxregression analysis was conducted and 11

genes (AAAS, CANT1, CLP1, DGUOK, GTF2B,GTF2H1, NCBP2,

POLA1, POLE4, POLR2D, and POLR2E) were selected. The risk

score for eachpatient was calculated using the following method and

computation: AAAS * -0.022 + CANT1 *0.016 + CLP1 * -0.098 +

DGUOK * -0.016 + GTF2B*0.018 + GTF2H1 * 0.034 + NCBP2 *
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0.042 +POLA1 * 0.089 + POLE4 * 0.015 + POLR2D * 0.047 +

POLR2E * 0.007.

The patients were then divided into low and high-risk groups

based on the median risk score. Asshown in Figure 1A, patients in

the low-risk group had a longer expected survival rate compared

tothose in the high-risk group. Furthermore, KM analysis

confirmed better prognosis in the low-riskgroup than in the high-

risk group (p<0.001) (Figure 1B). The predictive performance of the

riskmodel was assessed using ROC analysis, and the area under

curve (AUC) values for 1- and 3-yearsurvival were 0.76 and 0.66,

respectively (Figure 1C), indicating good accuracy.
3.2 External validation of the DDR-gene
prognostic signature

To evaluate the reliability and robustness of the 11-gene

signature, we obtained a dataset of 231 HCC samples from ICGC

(https://dcc.icgc.org/). Risk scores were computed for each patient,

and thecohort was divided into high- and low-risk groups.

Consistent with the previous findings, themajority of surviving

cases were classified into the low-risk group, while a smaller

proportion ofsurviving patients were classified into the high-risk

group with higher mortality rate (Figure 2A).KM analysis

confirmed better survival outcomes for individuals in the low-risk

group compared totheir high-risk counterparts (Figure 2B). The

AUC values for 1- and 3-year survival were 0.77 and0.73,

respectively, indicating a good prognostic performance of the risk

model in HCC (Figure 2C).
3.3 The risk model is an independent
prognostic predictor of HCC

Univariate and multivariate Cox regression analyses showed

that the risk model and tumor stagewere independent risk factors

for HCC, as reported in Figures 3A, B. Furthermore, ROC

analysisdemonstrated that the risk model performed better than

tumor stage in predicting 1-year prognosis,with AUC values of

0.746 and 0.700, respectively (Figure 4A). Subsequently, we

constructed anomogram that integrated the risk model and tumor

stage to predict overall survival (OS) at 1-, 3-,and 5-year timepoints

(Figure 5A). The nomogram exhibited good prognostic

performance, asindicated by AUC values at 1-, 3-, and 5-year

timepoints (Figures 4B, C). The stability of thenomogram was

further validated by calibration curve plots (Figures 5B–D).

Overall, the DDR genebased risk score and tumor stage-based

nomogram can robustly predict the prognosis of HCCpatients

and thus, can be useful in clinical decision-making.
3.4 Gene set enrichment analysis

To identify enriched pathways in HCC, GSEA was conducted

for both high- and low-risk groups.
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A B

C

FIGURE 2

Survival analysis of DDR genes in ICGC dataset. (A) Risk score plot for the DDR signature. Upper panel is demonstrating the risk score distribution.
Lower panel shows the level of expression of the 11 DDR genes and middle is for case distribution (B) KM survival curves for both groups. (C) ROC
curve for risk gene signature.
A B

C

FIGURE 1

Survival analysis of DDR genes in TCGA dataset. (A) Risk score plot for the DDR signature. Upper panel is demonstrating the risk score distribution,
middle panel is for case distribution, and the lower panel indicates the level of expression of 11 DDR genes. (B) KM survival curves of bothgroups.
(C) ROC curve analysis of the risk gene signature.
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Results showed that pathways associated with apoptosis, cell

cycle, and MAPK, mTOR, NOCTH, UBIQUITIN, and WNT

signaling were enriched in the high-risk group, while the low-risk

groupexhibited enrichment of pathways related to metabolism of

fatty acid and retinol (Figures 6A, B).These findings suggest that

favorable prognosis and low-risk scores are correlated with

metabolismlinked pathways, whereas cancer-related pathways

coincide with high-risk scores and poor prognosis.
3.5 Identification of molecular subtypes
of HCC

Consensus clustering algorithm based on the DDR genes was

employed to identify the molecularsubtypes of HCC. The optimal

cluster was determined to be K=2 using the cumulative
Frontiers in Oncology 05
distributionfunction curve and the consensus heatmap

(Figures 7A–C). PCA further differentiated patients intotwo

distinct subgroups (Figure 7D), with subgroup 1 exhibiting better

overall survival compared tosubgroup 2 (Figure 7E). To validate the

robustness of the classification, we also evaluated thesubgroups in

the ICGC dataset (Figure 8). Further analysis of the correlation and

clinicalcharacteristics in both TCGA and ICGC datasets for the two

subgroups showed that the group withbetter survival outcomes

included more early-stage cases (Figures 9A, B).
3.6 Correlation of the immune infiltration
with HCC subclasses

The ssGSEA algorithm was used to analyze the infiltration of 24

immune cells in both the high- and low-risk groups. The high-risk
A

B

FIGURE 3

(A) Univariate and (B) multivariate cox regression analyses used to get prognostic value of the gene biosignature and clinical traits.
A B C

FIGURE 4

The gene signature, ROC curve analysis of the nomogram, and disease stage for 1- (A), 3- (B), and 5-year (C) survival.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1180722
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bai et al. 10.3389/fonc.2023.1180722
group showed high levels of infiltration of activated CD4+ T cells,

CD4+ T (central memory) CD8+ T cells (central memory), CD4+ T

cells (effector memory), B cells(memory), regulatory T cells, T

follicular helper cells, Th17 cells, Th2 cells, activated CD8+ T

cells,immature dendritic cells (DCs), and plasmacytoid DCs,
Frontiers in Oncology 06
whereas the low-risk group had greaterinfiltration of activated

CD8+ T cells and eosinophils (Figure 10A). Additionally, the

high-risk group exhibited comparatively higher expression of all

inhibitory immune receptors compared to the low-risk group

(Figure 10B). These findings suggest that the anti-tumor
A

B DC

FIGURE 5

Construction and validation of a nomogram(prognostic). (A) A nomogram based on the risk model and tumor stage to estimate overall survival of
HCC patients. The estimating of 1- (B), 3- (C)and 5-year (D) survival of HCC patients using calibration curve plot of the nomogram.
A B

FIGURE 6

Gene set enrichment analysis results showing enriched pathways in (A) high-risk and (B) low-risk groups.
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properties of high T cell infiltration were offset by a strong

immunosuppressive tumor microenvironment due to the

overexpression of immune checkpoint proteins (18).
3.7 Cell assays

In vitro validation on DGUOK. HepG2 and MHCC-97H cells

were treated with CCK8 and were performed to detect the cell

viability. Hoechst 33258 fluorescent dye staining was used to show

nuclear morphological changes and to assess apoptosis. Data in A

are presented as means ± SD. **, p< 0.01. magnification: 200×. The

results showed the proliferation ability is higher in the si-NC group

compared by the si-DGUOK group (Figure 11).
3.8 MiRNA-mRNA Network

Based on the targetscan database data, we performed a relevant

microRNA analysis of DNA repair genes in Siganture using the
Frontiers in Oncology 07
Cytoscape software. and conducted DNA repair related miRNA-

mRNA Network (Figure 12).
4 Discussion

HCC is a highly heterogeneous cancer with multiple risk

factors, including alcohol consumption, hepatitis B/C infection,

and obesity (19). The initiation of HCC is associated with DNA

damage and chromosomal abnormalities, which triggers a DNA

damage response (DDR) in affected cells. DNA lesions can be

repaired through various mechanisms, including homologous

recombination, mismatch repair, and double-strand break repair.

Dysfunctional DDR pathways can result in genomic instability,

mutations, and eventually lead to HCC development and

progression (20). Many DNA repair proteins, such as

sphingolipid signaling, TP53, hOGG1, XRCC1, PARP-1, MRE11-

Rad50NBS1 (MRN) complex, and ataxia-telangiectasia mutant

(ATM) kinase, are frequently mutated in HCC (21). Furthermore,

ionizing radiation (IR)-induced DDR pathways can create an
A B

D E

C

FIGURE 7

Consensus clustering for DDR genes in HCC patients from TCGA dataset. (A) Thecumulative distribution function (CDF) curve plot for k = 2 to k = 9
(B). The change in the areaunder the CDF curve when k = 2 to k = 9. (C) Consensus heatmap at k =2. (D) Principal componentsanalysis for the DDR
gene expression. (E) For the 2 subgroups, KM survival curve analysis.
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immunosuppressive tumor microenvironment, thereby weakening

the anti-tumor effect of radioimmunotherapy. DDR inhibitors can

reverse the immunosuppressive state of HCC and inhibit tumor

progression, providing a potential therapeutic strategy (22).

There is a substantial body of evidence suggesting that DNA

damage response (DDR) genes play a crucial role in the

development of cancer (23). DDR genes are often expressed

abnormally in mucosal or tumor tissues and are closely associated

with patient prognosis (24, 25). However, the ability of individual

genes to serve as prognostic markers is limited (26, 27), and multi-

gene signatures may be better suited for predicting the prognosis of

hepatocellular carcinoma (HCC). Despite this, no study has yet

investigated the prognostic value of DDR genes in HCC. To address

this gap, we developed an 11-gene signature based on DDR gene

expression data and clinical data obtained from the ICGC and

TCGA databases. The risk score generated by the 11-gene signature

enabled the classification of patients into low- and high-risk groups,

with the latter group exhibiting poorer survival outcomes. The risk

model demonstrated good predictive performance in both TCGA

and ICGC datasets. Additionally, the risk model was found to be an

independent prognostic factor for HCC. A nomogram constructed

using the risk score and tumor stage allowed the clear differentiation

of two prognostic groups, which may be helpful in guiding

preoperative management of HCC patients. The DDR gene
Frontiers in Oncology 08
signature identified in this study was found to be linked with

several cancer related pathways including cell cycle, WNT

signaling, mTOR signaling and apoptosis in the high risk group,

which may be indicative of the potential mechanisms underlying

HCC progression. On the other hand, the low-risk group was

enriched in metabolism-related pathways. Most of the genes in

the DDR-based risk signature have been implicated in

tumorigenesis. For instance, CANT1 is known to regulate

pyrimidine metabolism in melanoma cells and is associated with

tumor progression (28). High expression of CANT1 in prostate

cancer cells has been associated with better prognosis, while its

silencing significantly suppressed cell proliferation and DNA

synthesis (29). CLP1, on the other hand, plays an important role

in motor neuron function (30). Mitochondrial deoxyguanosine

kinase (DGUOK) is an enzyme that controls the rate of deoxy

nucleoside salvage pathway in the mitochondria. Overexpression of

DGUOK has been associated with worse prognosis in lung cancer,

and its depletion suppressed lung adenocarcinoma growth, CSC

self-renewal and metastasis (31). GTF2B has been identified as a

prognostic marker for colorectal cancer and neuroblastoma, while

GTF2H1 is a p62 subunit of complex transcription factor IIH

(TFIIH) that regulates nucleotide excision repair and

transcription (32, 33). Certain polymorphisms/haplotypes of

GTF2H1 have been associated with increased susceptibility to
A B

D E

C

FIGURE 8

Consensus clustering for DDR genes in HCC patients from the ICGC cohort. (A) At k = 2 to k = 9, the cumulative distribution function (CDF) curve
plot. (B). The change in area under CDFcurve at two different values of k viz: k = 2 to k = 9. (C) At k =2, the consensus heatmap (D) Principal
components analysis for the expression of DDR gene (E) KM survival curve analysis forthe 2 subgroups.
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A B

FIGURE 9

Heatmap analysis of the relationship between subgroup and clinical traits in (A) TCGA and (B) ICGC cohorts.
A

B

FIGURE 10

Immune infiltration. (A) The increased number of tumor infiltrating immune cells in high-and low-risk groups. (B) Boxplot showing the immune-
checkpoint genes expression in low- andhigh-risk groups. * p<0.05, ** p <0.01, *** p<0.001.
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lung cancer (34). Additionally, the budding yeast orthologs of

POLE4 have been shown to enhance Polϵ processivity in vitro,

but have the opposite effect in vivo, leading to accelerated

tumorigenesis (35).
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Moreover, the POLR2E rs3787016 polymorphism may enhance

the risk of developing the prostatecancer, liver cancer esophageal

cancer, papillary thyroid carcinoma, and breast cancer (36–38).

However, the role of AAAS, NCBP2, POLA1 and POLR2D in HCC
A

B

FIGURE 11

In vitro validation on DGUOK. HepG2 and MHCC-97H cells were treated with siDGUOK for indicated time. (A): CCK8 was performed to detect the
cell viability. (B): Hoechst 33258 fluorescent dye staining was used to show nuclear morphological changes and to assess apoptosis. Data in (A) are
presented as means ± SD. **p< 0.01. magnification: 200×.
FIGURE 12

DNA Repair Gene miRNA-mRNA Network.
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is unknown, and will have to beexperimentally verified.

Immunotherapy has achieved encouraging results in various

malignancies (39), including HCC. For instance, the “T+A”

scheme is increasingly becoming the first-line optionfor advanced

HCC (40). Despite achieving good outcomes in multiple cancers, a

significantpercentage of the patients do not benefit from

immunotherapy. Hence it is necessary to recognize thebiomarkers

that can reveal the outcomes of immunotherapy, and screen for

patients that can respondto immunotherapeutic regimens. Galon

et al. (41) had proposed the concept of “cold” and “hot” tumors to

evaluate their sensitivity to immunotherapies. In this study, we

detected increased infiltration of immunosuppressive cells and

overexpression of receptors responsible for immune checkpoint in

the high-risk group, which indicates that the high-risk group

patients are likely unresponsive to immunotherapy.

In summary, we identified biomarkers of HCC based on

computational biology in oncologymethods (42, 43), and

constructed prognostic models using machine learning methods

(44–46). Wehave established an 11-DDR gene signature that can

accurately forecast the prognosis ofhepatocellular carcinoma

(HCC). The utilization of this prognostic signature not only

advances our comprehension of the underlying molecular

mechanisms that contribute to HCC progression but also

provides a practical guide for clinical decision-making.
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