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Editorial on the Research Topic

Soil-microbial interactions

Recent perspectives from various panels of the Food and Agriculture Organization

(FAO) of the United Nations (UN), in particular the Intergovernmental Technical Panel

on Soils (ITPS) and the United Nations Environment Programme (UNEP), have reiterated

that soil, particularly arable soil, the covering that facilitates ecosystem services critical to

sustaining life, and the majority of soil resources are at best in only fair, poor or very

poor condition (FAO and ITPS, 2015; FAO and UNEP, 2021). These reports emphasize the

importance of regular soil function assessment to determine overall soil health at a regional

and global level.

Soil is a complex microhabitat that comprises mineral particles of different sizes,

shapes and chemical characteristics, together with soil biota and organic compounds in

various stages of decomposition (Daniel, 2005). The soil minerals present a biogeochemical

interface, where organic and inorganic constituents of the soil interact (Totsche et al., 2010).

Specifically, the surfaces of soil aggregates and the complex pore spaces between and inside

the aggregates provide microhabitats for soil microorganisms. The complex and variable soil

matrix harbors a consortium of organisms that strongly influence its biogeochemistry by

forming and decomposing soil organic matter, the planet’s largest terrestrial stock of organic

carbon and nitrogen, and a primary source of other crucial macro and micro-nutrients

(Crowther et al., 2019). Indeed, microorganisms inhabit diverse geological environments

and create environments conducive to themselves and other life forms. Thus, it is pertinent

to understand the relationship between microbial diversity and soil functionality, more

especially considering that 80–90% of the processes in soil are reactions mediated by the

microorganisms (Nannipieri et al., 2017). The subterranean microbiome is also linked to the

aboveground biomass via the rhizosphere and is critical for sustainability in both natural

(Coban et al., 2022; Hua et al., 2022; Vetterlein et al., 2022) and previously disturbed and/or

degraded but restored ecosystems (Sekhohola-Dlamini et al., 2022). Also, cover vegetation,

cultivated either as a single crop or as a mixed crop, provides several ecosystem services

that help achieve many of the UN’s sustainable development goals (SDGs) (Lamichhane

and Alletto, 2022). Needless-to-say, there is a need for thorough mechanistic understanding

of microbial interactions with each other and with soil properties, which can be achieved

through in-depth experimental and computational methodologies (Tang, 2019).
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Because of their significant contribution, microbial interactions

within the geosphere lie at the heart of the interdisciplinary field of

soil biogenesis, quality and chemical and physical characteristics.

Consequently, successful restoration of ecosystem functions, and

enhanced soil health and quality can only be possible through

thorough understanding of microbial interactions with each

other, the soil, their associated plant communities, and the

impacts these dynamics have on the underlying molecular and

biogeochemical functions (Sullivan and Gadd, 2018). Extensive

research demystifying plant-soil-microbe interactions highlights

insights into beneficial soil ecosystem functions, which are widely

explored in soil remediation and land rehabilitation as well as

improved food production. For instance, the functional dynamics

in the rhizosphere; a biologically active zone where complex

interactions among plant roots, soil and microbes occur, play a vital

role in driving vegetation cover and soil restoration (Liu et al., 2019;

Villarino et al., 2021). Studies have correlated microbial sequencing

datasets to physico-chemical parameters to infer and contextualize

soil community interactions. By developing theoretical frameworks

that elucidate the multi trophic interactions found in different soils,

conceptual models that seek to decipher soil microbial functional

guilds have emerged (Singh et al., 2014; Levy-Booth et al., 2019;

Hicks et al., 2022). While chemical and physical characteristics

change slowly from year to year, soil biology is dynamic, with

implications for soil physico-chemistry.

Extensive phylogenetic identification of microbial populations

and their potential environmental functioning has revealed

previously unrecognized ecological interactions between biological

entities and the geosphere. To this end, Zhang S. et al. highlight

potential ecological mechanisms underlying microbial population

structure-function associations in soil aggregates to emphasize

the assembly of aggregate microbes as an indicator of the

interactions between agricultural soils and microbial communities.

Bacterial quorum-sensing (QS) is a primary means of allowing

communication between cells or populations, is cell-density

dependent, and enables coordinated response mechanisms to

manifest. Using iTRAQ, a shotgun-based quantitation method,

which allows for concurrent identification and quantification of

proteins in different samples within a single experiment, Zhang

and Lyu demonstrated inhibition by quorum-quenching lactonase

(YtnP) from the consort species Bacillus pumilus of metabolic

signaling in Ketogulonicigenium vulgare in the fermentative

production of the ascorbic acid precursor, 2-keto-L-gluonic acid

(2-KLG). Continuous cropping of soils degrades both soil organic

matter and soil structure. Miao et al. confirmed that ginsenosides,

a group of Panax quinquefolius-derived steroid-like saponins,

significantly contribute to soil deterioration and increase the

abundance of pathogenic fungi in the continuous cropping of

this herb. The study by Sui et al. shows that along with soil

physicochemical parameters, the composition and diversity of

fungi in the rhizosphere of the Alpine grass Deyeuxia angustifolia

decreased with increasing altitude. Soil nitrate-nitrogen (NO3-N),

moisture content and pH were closely linked to species richness

and phylogenetic diversity, indicating the sensitivity of soil-

microbe interactions and as key in determining fungal community

diversity. Zhang Z. et al. also explored soil-microbe interaction

sensitivity by examining the effect of lead contamination on

microorganisms in tea gardens to determine how this contaminant

impacts essential soil microorganism function. The predicted main

function of the bacterial community was amino acid transport

and metabolism, while the fungal community’s trophic mode was

mainly pathotroph-saprotroph. They show that lead concentration

was the factor that most strongly affected soil bacterial and

fungal community structures, with the latter more affected than

the former.

Contributions to this Research Topic used cultivated and

natural ecosystems to explore soil-microbe interactions. Most

used a metagenomics approach to elucidate community structure

and species diversity. In one instance, the functional abundance

of soil bacteria and fungi was examined by high-throughput

sequencing. In another, iTRAQ-based proteomics analysis was

used. All highlight the intimate and sensitive association between

microbes and the soil. We hope this collection encourages further

research toward the applications of microbes to ensure sustainable

soil processes, including fundamental biotic responses to evolving

geosphere environments, such as bioremediation of disturbed

terrain and soil fertility restoration.
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