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Parkinson’s disease (PD) is characterized by a variety of motor and non-motor

symptoms. As disease progresses, fluctuations in the response to levodopa

treatment may develop, along with emergence of freezing of gait (FoG) and

levodopa induced dyskinesia (LiD). The optimal management of the motor

symptoms and their complications, depends, principally, on the consistent

detection of their course, leading to improved treatment decisions. During the

last few years, wearable devices have started to be used in the clinical practice

for monitoring patients’ PD-related motor symptoms, during their daily activities.

This work describes the results of 2 multi-site clinical studies (PDNST001 and

PDNST002) designed to validate the performance and the wearability of a new

wearable monitoring device, the PDMonitor®, in the detection of PD-related

motor symptoms. For the studies, 65 patients with Parkinson’s disease and 28

healthy individuals (controls) were recruited. Specifically, during the Phase I of

the first study, participants used the monitoring device for 2–6 h in a clinic

while neurologists assessed the exhibited parkinsonian symptoms every half hour

using the Unified Parkinson’s Disease Rating Scale (UPDRS) Part III, as well as the

Abnormal Involuntary Movement Scale (AIMS) for dyskinesia severity assessment.

The goal of Phase I was data gathering. On the other hand, during the Phase

II of the first study, as well as during the second study (PDNST002), day-to-day

variability was evaluated, with patients in the former and with control subjects in

the latter. In both cases, the devicewas used for a number of days, with the subjects

being unsupervised and free to perform any kind of daily activities. Themonitoring

device produced estimations of the severity of the majority of PD-related

motor symptoms and their fluctuations. Statistical analysis demonstrated that

the accuracy in the detection of symptoms and the correlation between their
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severity and the expert evaluations were high. As a result, the studies confirmed

the e�ectiveness of the system as a continuous telemonitoring solution, easy

to be used to facilitate decision-making for the treatment of patients with

Parkinson’s disease.

KEYWORDS

Parkinson’s disease, telemonitoring, wearable devices, digital health, automatic

ambulatory monitoring, inertial measurement unit sensors

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder with
a high prevalence among those aged ≥ 45 years (572 patients per
100, 000 people) (1). It is characterized by motor and non-motor
symptoms, with a progressively worsening course. The main motor
manifestations of the disease are bradykinesia, rigidity and resting
tremor, with accompanying gait impairment and reduced manual
dexterity (2). Non-motor symptoms include autonomic nervous
system disorders, dementia, as well as neuropsychiatric disorders
(3–5). To date, treatment is based on dopamine replacement drugs
but there are numerous biological strategies under development
including active and passive immunization aimed at testing disease
modification (2, 6). In the early stages, drug treatment results
in sustained benefits and improves quality of life throughout the
day. However, as disease progresses, levodopa effects shorten, and
patients experience motor and non-motor fluctuations, as well as,
in some occasions, levodopa induced dyskinesia (LiD) and freezing
of gait (FoG). To optimize and personalize the treatment strategy,
it is necessary to accurately monitor their symptoms, as they
vary widely from day-to-day, and also differ significantly between
different patients (7). Rating scales for clinical evaluation, internet-
based tools, completed by physicians, and diaries/questionnaires,
completed by patients and caregivers have been developed to
improve disease assessment of the clinical features of the disease
(8, 9). However, the information from the diaries is often unclear
and the limited time of the neurological assessment, during patient
encounters, does not provide sufficient information to accurately
determine the severity of symptoms that patients experience in
their daily living and their own environment. This often results in
underestimating or overestimating the symptoms of the disease and
could lead to sub-optimal therapeutic interventions (10).

To address this issue, sensor-based systems have been
developed for the quantitative evaluation of motor symptoms’
severity, and some of them have been specifically designed for
tracking PD symptoms (11–14). The idea of telemedicine is not
new (15), but during the last 20 years, technological advancements
and enhancement of telecommunication infrastructure, have made
the accurate remote monitoring of patients with diverse disorders,
such as PD, possible (16, 17). For neurodegenerative diseases,
affecting both motor and cognitive functions, technological health
services have emerged as useful tools for tackling the challenge
of patient-physician contact, in cases where patients’ visits to
medical centers are laborious (18). Especially during the COVID-
19 pandemic, a number of restrictions were imposed, forcing
patients, caregivers and healthcare professionals toward limiting

their interactions, thus encouraging the use of healthcare practices
supported by electronic processes (eHealth) (19). This practice
resulted in better healthcare technologies and related services,
and led to their widespread adoption (20–22). Apart from remote
delivery of health services to overcome barriers in communication
and transportation, telemedicine in PD also involves accurate
objective symptom detection, monitoring and improvement of
follow-up care (18, 23). Different telemedicinemodalities have been
successfully employed in patients’ care, including:

1. virtual visits via video conferencing (24),
2. non-motor symptom assessment/treatment via phone (25),
3. monitoring through wearable devices (23),
4. health applications on mobile phones (mHealth) (26),
5. virtual reality rehabilitation (27) and
6. online speech assessment and rehabilitation (28).

Telemedicine technology enables a patient-centric approach and
has been proven to be reliable in the management of specific disease
aspects, having comparable results with current medical practice
(29, 30). Furthermore, the cost-effectiveness of telemedicine in
PD has been analyzed in several studies that show considerable
resource savings stemming from technology enhanced and home-
based monitoring (31–34). Of course, disadvantages do exist, since
telemedicine may limit the diagnostic ability and the patient-
physician relationship, however, healthcare technology devices are
currently recommended for use in response to existing clinical
needs and have been integrated in the PD multidisciplinary care
(19, 35). Wearable devices are the spearhead of eHealth modalities
in PD. The reason for this lies mainly in the fact that symptoms’
fluctuations in patients with PD cannot be reliably addressed with
the current clinical limited assessment, while wearables can offer
prolonged objective measurements of motor symptoms (11, 23).

Most of these wearable systems are based on inertial sensors
that consist of accelerometers and gyroscopes. Griffiths et al. (36)
presented a wearable system composed of a single sensor in the
form of a wrist-worn watch and reported high accuracy in the
detection of bradykinesia and dyskinesia, compared to clinical
examination (37). The system was further validated in subsequent
studies for fluctuation detection (38, 39), impairment in activities
of daily living (40) and overall therapeutic management of patients
with PD (41). However, since this system is worn on a single wrist,
it can only measure a subset of PD symptoms, and specifically
those related to that limb. Thus, gait impairment, dyskinesia, as
well as freezing of gait, cannot be detected as they would require
additional sensors (42–44). As a result, the presented system lacked
the ability to extract information comparable with patient diaries,
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or more importantly, with a full neurological examination. Ferreira
et al. (37) introduced another system based on wearable sensors
and accompanied by a mobile app, for which they evaluated
its wearability and usability (45). The clinical validity of the
system was also evaluated and high accuracy was reported in
leg dyskinesia assessment and fluctuation detection, without any
report about the detection of other parkinsonian symptoms (13).
For the detection of specific symptoms, other sensors have been
developed as well (12, 46). A recent systematic review described
wearable solutions developed for PD and summarized their
advantages and disadvantages (47). Although the advancements in
telemonitoring solutions are significant, monitoring technologies
for PD haven’t yet gained wide acceptance among physicians,
patients and caregivers. The reason lies in the lack of adequate
evidence for validating their clinical utility in specific conditions,
including their use in the selection of suitable patients for invasive
therapies (48–50). During the last couple of years, a paradigm
shift in the monitoring of patients with PD is taking place. But,
in order to be successful, it needs further support that can only
be provided by the development of devices that can accurately
monitor parkinsonian symptoms and evaluate their fluctuations
in the long term. Perhaps the most important aspect of this
process is to prove that the output of the monitoring devices is
accurate, thus extensive validation is necessary (23). Preliminary
data on acceptability originating from patients of these systems are
encouraging and have helped define outcome measures for clinical
studies (51).

To that end, the PDMonitor R© system (PD Neurotechnology
Ltd.) was developed for the continuous monitoring of Parkinson’s
disease symptoms, designed to be used by patients in their own
environment. The PDMonitor R© is an innovative device consisting
of five wearable sensors, to be worn on the trunk and then limbs,
and is able to detect remotely most motor manifestations of PD,
including the daily activity of patients in their home. It is also
intended for long term follow-up monitoring of each patient with
the goal of objectively assessing the course of the disease. The aim of
this work was to use complementary data from 2 multi-site clinical
studies, described in Section 2.3, as a first systematic validation of
the usability and the performance detected of the PDMonitor R©

system in the identification, quantification and monitoring of PD
motor symptoms. More specifically, the main questions this works
aimed to answer, were:

• Is the device feasible to be used by patients and caregivers

without supervision?

• Is the device reliable when compared to expert assessment of

PD symptoms?

2. Materials and methods

Section 2.1 describes the body-worn system used for the
evaluation of PD motor symptoms. Section 2.2 briefly describes
the methods and algorithms used by the system. Section 2.3
briefly describes the data collection used for the initial algorithm
verification, as well as the studies performed for the validation of
the device.

2.1. The PDMonitor® system

The PDMonitor R© system developed by PDNeurotechnology R©

Ltd. is a class IIa CE-marked medical device, intended to be used
by patients diagnosed with PD, for continuous home monitoring.
The system is comprised of a base, a set of monitoring devices,
a set of mounting accessories, a mobile application, a physician
web dashboard and a cloud service. The PDMonitor R© provides
an ecosystem (Figure 1) enabling long term continuous remote
monitoring of patients with Parkinson’s disease (PwPs).

Physicians have full access to patients’ symptom reports at
any time, with comprehensive information about almost all PD-
related motor symptoms via the physicians’ web dashboard. Two
different patient cases from the study, with different symptoms,
as they appear in the web portal, are presented in Figure 2. The
PDMonitor R© report consists of a heatmap, illustrating the severity
of a symptom for a 30-minute interval and a chart with the average
symptom intensity for any time of day. The reports also provide the
medication schedule and the actual medication intake (as well as
nutrition information) reported by the patient via the PDMonitor R©

mobile application. Although the web dashboard is the default
way of accessing the outputs of the system, if there is a need for
direct access to the raw IMU data, then one would need to contact
PD Neurotechnology Ltd. beforehand, i.e., before the patient uses
the device. The components of the PDMonitor R© system are the
following (Figure 3A):

1. The PDMonitor R© SmartBox, used to collect, process and upload
data to the cloud. The SmartBox also acts as a docking station
for charging the wearable sensing devices (Monitoring Devices)
after they have been used. The SmartBox has a size of 170×80×
17 mm and a weight of≈ 280 g.

2. Five wearable sensing monitoring devices, used to collect
movement data. Eachmonitoring device has a size of 41×30.6×
12.85 mm, a weight of ≈ 16 g and contains a 9-degree inertial
measurement unit (IMU) sensor (accelerometer, gyroscope and
magnetometer), the LSM9DS1 from ST Microelectronics. The
monitoring devices record data with a sampling frequency of
59.5 Hz, which they store internally, until they are docked to the
SmartBox, at which point the data are transferred and uploaded
to the Cloud. The LSM9DS1 has a linear acceleration full scale
of±2/± 4/± 8/± 1 g, a magnetic field full scale of±4/± 8/±
12/±16 gauss and an angular rate of±245/±500/±2000 dps.

3. PDMonitor R© accessories (i.e., ClipFrame, StrapFrame,
Wristband and Velcro straps), used to attach the monitoring
devices to the patient’s body, and more specifically, near the
ankles, wrists and waist. Regarding the ankles, the monitoring
devices are attached to the lateral compartment of the leg,
slightly above the ankle, whereas the wrist monitoring devices
are attached to the posterior compartment of the forearm
around the wrist, much like a watch. The waist monitoring
device is placed near the anterior midline of the body at the
height of the waist. The waist sensor can bemounted, either with
a velcro band paired with a StrapFrame, or with a ClipFrame,
based on the patient’s preferences. The proper device placement
is presented in Figures 3B, C.

Each PDMonitor R© monitoring device produces raw
measurements from its embedded IMU sensor. Subsequently,

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2023.1080752
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Antonini et al. 10.3389/fneur.2023.1080752

FIGURE 1

The PDMonitor® ecosystem.

all 5 are synchronized and their data are uploaded to the Cloud
when docked to the SmartBox. Then, the symptom evaluation
process transforms the raw IMU signals from all monitoring
devices to a unique set of movement features, which are in turn
converted to symptom estimations for 30-minute windows,
correlated to UPDRS or other relevant scales’ items. The final
movement items estimations are the output of the PDMonitor R©

device to the cloud. The PDMonitor R© symptom evaluation
involves data analysis with digital signal processing techniques,
feature extraction algorithms, and machine learning. The final
outcome is the automated quantification of basic daily activities
(walking, resting/sitting, lying), main parkinsonian motor
symptoms (tremor, bradykinesia, gait and balance impairments),
and the most important motor complications associated with the
antiparkinsonian therapy (ON/OFF fluctuations, LiD and FoG).
Based on the system’s intended use, the 5 monitoring devices
must be worn by the patients during their waking hours, and then
docked for data transfer and recharging during the rest of the day.
However, the sensors have a battery duration of up to 50 h and thus
this is considered the maximum recording duration.

Although there are 5 monitoring devices to be attached to
a patient’s body, PDMonitor R© is easy to use, due to its ability
to automatically identify the placement of each sensing device
on the waist and limbs (52). As a result, the users (patients
and/or caregivers), do not need to match each sensor, individually,

to a corresponding body position, thus, reducing both the time
necessary for mounting the sensors and the probability of user
error. Moreover, PDMonitor’s R© sensor-mounting accessories (i.e.,
the Wristbands, StrapFrames and ClipFrames) act as active
measures against inappropriate use (i.e., placing them in a wrong
orientation). However, caution by the users remains a prerequisite
to place, both the wrist, and the ankle sensors facing outwards,
to prevent misidentification between the left and right limbs.
An inwards placement of the limb monitoring devices would be
improbable, given the awkward and uncomfortable nature of this
configuration, especially for the wrist sensors.

2.2. The PDMonitor® algorithms

The PDMonitor R© algorithms were initially designed, and
preliminary developed, during the PERFORM project (53–55).
Subsequently, they were further/mainly developed and verified in
a Pilot study performed at the University Hospital of Ioannina (see
Section 2.3.3).

The symptom evaluation process is similar for all PDMonitor R©

symptom assessment algorithms (Figure 4). More specifically, all
devices collect IMU sensor raw measurements (accelerometer,
gyroscope, magnetometer). Each sensor has three axes (X, Y, Z),

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2023.1080752
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Antonini et al. 10.3389/fneur.2023.1080752

FIGURE 2

(A) PDMonitor® OFF/Dyskinesia chart for a patient with clear fluctuations. (B) PDMonitor® OFF/Dyskinesia chart for a patient with significant

dyskinesia. In this report the di�erent areas of interest have been marked. Specifically, the area 1 illustrates the severity of a symptom for a 30-min

interval, including medication and nutrition information, the area 2 presents a chart with the average symptom intensity for any time of the day, while

the area 3 lists the medication the patient receives.
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FIGURE 3

(A) The PDMonitor® box, docking station, monitoring devices and accessories. (B) The PDMonitor® monitoring devices’ placement on the wrists,

torso and ankles. In the middle image, the waist sensor has been placed to the waist with a velcro band and a StrapFrame, but there is also the option

to be mounted on a belt using a ClipFrame accessory. (C) The placement of all monitoring devices on the appropriate body position at the same time.

FIGURE 4

General pipeline used by the PDMonitor® algorithms. The raw IMU signals are used for motion feature extraction, which are, in turn, utilized for

symptom evaluation. The evaluation is generated every 30 min and the symptoms are presented in relevant clinical scales.

therefore it is a 9-degree measurement system. The PDMonitor R©

symptom evaluation process transforms the raw IMU signals from
all monitoring devices to a unique set of movement features,
which are in turn converted to UPDRS, or other clinical scales’
items, estimated in 30-minute windows. The first step in the
overall PDMonitor R© symptom evaluation methodology is activity
detection as described in Section 2.2.1. After activity detection,
symptom-specific processing is used to address the challenging task

of detecting, quantifying and assessing each of the cardinal PD
motor symptoms. Machine learning is mainly applied in this step in
order to discriminate different types of body movement (walking,
normal activity, leg tremor and dyskinesia) and in every case a
different kind of symptom assessment takes place. In the following
sections, the methods and algorithms used in the PDMonitor R©

system will be briefly described, mainly focusing on activity
and posture detection, dyskinesia, bradykinesia, gait, tremor and
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ON/OFF fluctuations. Due to space limitations, algorithms are not
presented in detail. Nonetheless, the main features used by each
method are described.

2.2.1. Activity detection
The PDMonitor R© symptom evaluation process for symptom

detection and severity assessment follows a hierarchical approach.
The main idea is to first identify “regions of interest” based
on the activity, where each symptom can be evaluated with
high accuracy. For example, regions in the signal identified
as rest are used to detect resting tremor, while regions that
include climbing of stairs are used to detect gait impairment.
This requires accurate activity detection algorithms. The main
activities identified were:Walking, Resting, Tremor, Dyskinetic and
Other. Walking pertains to free walking (excluding stair climbing),
however the patients that took part in the generation of the
dataset, were free to move without restrictions. Hence, the dataset
itself, and as a result the symptom evaluation process, take into
account numerous other activities (i.e., rehabilitation activities),
which were not explicitly annotated. Those activities are included
in the “Other” category.

The PDMonitor R© activity detection is based on motion
features extracted from all body parts, as well as from both
time (signal energies, average values, standard deviations, jerk,
correlation of signals from different body parts etc.) and frequency
domain (energies of gyroscope signals within different frequency
bins). The objective of the activity detection is to evaluate
different activities based on the quantification of body movement,
movement coordination (walking is a coordinated body motion
whereas dyskinesia is not) and posture (by discriminating between
standing, sitting and lying). In total, over 140 features are extracted.
A wrapper feature selection method (56) is applied to identify
the best feature set for Bayes classification. The activity detection
method was developed and verified with data from the pilot
study. A Naive Bayes classifier is applied using a leave-one-out
technique, which minimizes the risk of overfitting and bias. With
this approach, PDMonitor R© managed to identify the different body
movements with high accuracy (> 90%). The identification of each
activity spawns further analysis for different symptoms and motor
characteristics. Gait disturbances are evaluated exclusively during
the “Walking” activity, dyskinesia severity is assessed during the
“Dyskinetic” activity, whereas (wrist) tremor and arm bradykinesia
are assessed during the “Resting” or “Other” activities. The general
pipeline used by the PDMonitor R© algorithms is presented in
Figure 4.

2.2.2. Dyskinesia
The dyskinesia evaluation algorithm requires activity detection

to be implemented first. Dyskinesia severity is better assessed
while resting, therefore walking regions are excluded. The first
step is to find dyskinetic regions in 5-minute window intervals.
In a 5-minute window, the initial detected activity is combined
with motion features from all body parts into a new feature
vector enabling the detection of dyskinesia and the assessment of
its severity.

2.2.3. Bradykinesia
The PDMonitor R© method for the detection and assessment of

bradykinesia is based on the evaluation of a patient’s movement
speed. However, to assess movement capacity, actual movement
must occur and be detected. Therefore, bradykinesia evaluation
starts with the detection of specific movements and the estimation
of their speed. Movements that are slower than those calculated
for the control group are considered as bradykinetic movements.
The percentage of the bradykinetic movements for a 30-minute
window is the so-called “PDMonitor R© bradykinesia score” which is
significantly correlated with the UPDRS score of arm bradykinesia
(items 23, 24 and 25).

2.2.4. Gait
The gait assessment requires the identification of walking

regions and the detection of individual steps. The main parts of
the method are: signal acquisition and filtering, activity detection,
consecutive candidate walking regions’ merging, steps detection,
gait features extraction and gait impairment score extraction based
on gait features. The detection of gait is based on the activity
detection method. The basic window used for activity detection
is 4 s. Consecutive windows classified as “Walking” are merged
into larger walking regions in order to improve the statistical
estimation of gait parameters. After walking region detection and
merging, a step detection procedure is applied. Three peaks are
identified for each step: Terminal Contact (TC), corresponding to
heel off, Max Rotational Speed (RS), corresponding to mid-stance
and Initial Contact (IC), corresponding to heel strike. Then, a
number of features are estimated based on the detected peaks for
each step. A number of gait features are extracted (shanks’ sagittal
range of movement, cadence, swing time, swing time variability
among others) and combined in order to build a linear model with
the purpose of translating gait features to the gait corresponding
item of the UPDRS scale. The feature that dominates the gait
impairment estimation is the shanks’ range of motion (RoM). This
feature is related to the step length, which has been demonstrated to
be levodopa responsive (57). Said property (i.e., responsiveness to
levodopa) is significant, given that themain purpose of devices such
as the PDMonitor R© is to equip physicians with the means to better
evaluate symptom response tomedication, and as a result have finer
control over medication dose adjustments and time intake.

2.2.5. Freezing of gait
Freezing of Gait (FoG) is a phenomenon described by PD

patients as a sensation of their feet being “glued to the ground.” FoG
is of episodic and unpredictable nature and as such, it is detected
as an event, potentially with a duration of just a few seconds,
rather than being considered a symptom. FoG is expressed when a
patient is either shuffling forward with tiny steps, or suddenly being
incapable of starting to walk, or failing to move forward. FoG can
also be expressed by the complete absence of movement.

Moore et al. (58) presented a method for the calculation of an
index of FoG, based on the principle that FoG is usually combined
with short hesitation steps that could be detected. However, this is
not always the case. A comprehensive definition of FoG such as the
one used by Djurić-Jovičić et al. (59), differentiating between FoG
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paired with trembling and FoG paired with complete motor blocks,
seems to address the problem by incorporating different types of
FoG events. Nonetheless, FoG events expressed with full motor
blocks are difficult to accurately detect in a home environment and
they wouldmost likely introduce a lot of false positives. Marcante et
al. (60) used a system based on a pair of pressure insoles equipped
with a 3D accelerometer in order to detect FoG episodes. Using it in
a controlled environment they were able to report a 90% accuracy
in FoG detection. The PDMonitor R© evaluates the presence of FoG
events before the initiation of walking, during pausing phases. FoG
is then detected based on the freezing index introduced by Moore
et al. (58), which is estimated using data from the ankle gyroscope,
as well as other features necessary for the discrimination between
FoG and other kinds of activity (i.e., tremor an/or dyskinesia).

2.2.6. Tremor
PDMonitor R© evaluates resting tremor occurring in a body

segment while maintained at rest. Action (or kinetic) tremor are
not evaluated by the current version of PDMonitor R©.

Leg tremor detection is based on the activity detection
method and specifically on the activities classified as “Tremor.”
The activity detector is a probabilistic classifier which provides
a posterior probability of a sample X belonging to a specific
class, that is P(Class|X). The posterior probability of the activity
detection classifier for the “Tremor” class, i.e., P(Class =

Tremor|X) represents mainly leg activity and is averaged over a
30-minute window.

Wrist tremor assessment is based on the method presented by
Cancela et al. (45), which mainly relies on the gyroscope’s signal.
The method consists of: signal preprocessing, tremor detection,
tremor amplitude estimation and rest/posture detection. Both
wrist tremor detection and amplitude estimation are based on 3-s
windows. Typically, tremor has a dominant frequency on the 3.5 to
8 Hz frequency band, whereas the voluntary movement frequency’s
range is below 2.5 − 3 Hz. A number of features are extracted,
including the energy of low-pass and high-pass gyroscope signals,
defined, as a reference, as following:

En =
∑

i

√

s2x(i)+ s2y(i)+ s2z(i) (1)

In Equation 1, sk(i) is the i-th sample of the k axis of the signal.
A C4.5 decision tree was employed for wrist tremor detection.

The wrist tremor amplitude estimation and consequently its
translation to UPDRS item scores follows the approach of Rigas et
al. (53) and uses a fuzzy linear function to correlate with the score
of the UPDRS item 20.

2.2.7. ON/OFF and fluctuations
Motor fluctuations refer to the transitions between the ON

and the OFF periods. During the ON periods, medication is in
effect and patients with a well-adjusted treatment plan should
not experience any motor symptoms. An exception is dyskinesia,
which occurs in more advanced stages of the disease. During the
OFF periods, medication is not alleviating the symptoms, although
is should. In advanced stages of the disease, most PD patients

TABLE 1 The features used by the PDMonitor® for the detection of OFF,

sorted into groups of interest.

Group name PDMonitor® UPDRS
items

Activity Lack of movement, Activity, Resting
time

-

Gait Gait, Gait with no dyskinesia 29

Tremor Tremor score for LL, RL, LW, RW 20, 21

FoG/PI Freezing of gait/Postural instability 14, 30

Rigidity - 22

Body Bradykinesia - 31, 27

Arm Bradykinesia Bradykinesia score for LW, RW 23, 24, 25

In the last column, there is a set of UPDRS items that correspond to the same groups. LL, RL,

LW, RW stand for Left/Right Leg and Left/Right Wrist, respectively.

will experience OFF periods, with increased symptom severity,
manifested unpredictably during the day.

The time during which a patient is in an OFF state is an
important parameter used to assess interventions. As a result,
obtaining precise information, such as the onset and the duration
of OFF states, on the long term evolution of ON/OFF fluctuations is
essential to optimize therapy. Currently, the only available method
to collect such information is self-reported diaries. A wearable
device capable of collecting PD motor fluctuations in an objective
and reliable way would help overcome the limitations of those
diaries and as a result would provide physicians with a valuable tool
for reducing OFF periods and dyskinesia.

PDMonitor R© estimates the probability of a patient being in the
OFF state based on a Naive Bayes classifier, taking as input the rest
of the PDMonitor outputs. A feature importance technique based
on the Relief method (61) is conducted in order to evaluate the
importance of each feature in the detection of OFF. The features
used, can be sorted into groups of interest as presented in Table 1.
For the purposes of this work, a similar analysis was performed
based on study data including patient diaries and UPDRS expert
evaluations, in order to estimate the importance of each feature.
The results for the accuracy of OFF detection are presented in
Section 3.2.1.

2.3. Study description

The data used in this work to validate PDMonitor R© originated
from two studies (Figure 5). Specifically:

1. A study with PD patients (PDNST001) for the evaluation of the
PDmotor symptom assessment algorithms of the PDMonitor R©,
as well as for the wearability and usability of the PDMonitor
device (Section 2.3.1).

2. A study with age-matched healthy subjects (PDNST002) for the
evaluation of the wearability/usability of the device, as well as for
collecting data in order to evaluate the sensitivity of the device’s
algorithms (Section 2.3.2).
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FIGURE 5

Clinical trials (Pilot, PDNST001, and PDNST002) that took place for the generation of datasets used for the development/verification and validation of

the algorithms of the PDMonitor® device. The PERFORM project, used for the initial development of the algorithms, is not related to the studies

described in the body of this manuscript.

Asmentioned in Section 2.2, the data for themain development and
verification of the PDMonitor R© algorithms were generated during
a Pilot study which is described in Section 2.3.3.

2.3.1. Clinical study with PD patients (PDNST001)
The PDMonitor R© system was used in the study PDNST001,

entitled “Assessment of Parkinson’s Disease’s Motor Symptoms
Using Inertial Measurement Devices”, in which sixty-five (65) PD
patients were recruited. The total duration of the study was 5
months and it included the following two phases:

1. Phase I: Data collection for inpatients, with a participation
duration not exceeding 6 h. During that time expert evaluations
based on clinical scales were also regularly conducted.

2. Phase II: Data collection from continuous monitoring of
outpatients at their home, or in care facilities, with a duration
not exceeding seven (7) days and at least 7 h per day.

Phase II participants were a subset of patients who already
participated in Phase I. The aim of the study was the assessment of
PDMonitor R©, as an integrated monitoring system for Parkinson’s
disease, ultimately intended to increase patients’ independence,
improve their quality of life and reduce the costs associated with
the disease.

Phase I. During the Phase I of the study, the patients wore
the system while staying at the hospital. At the beginning of the
recording with the PDMonitor R©, a clinical examination based
on the Unified Parkinson’s Disease Rating Scale (UPDRS) (62),
and the Abnormal Involuntary Movement Scale (AIMS) (63) took
place, preferably while patients were in an “OFF” state. If a patient
was in an “ON” state, the clinical examination was postponed
and rescheduled. Each patient was examined at regular intervals
(30 minutes) by a physician and the whole session was recorded
by a camera. The video obtained was used for the identification
and evaluation of symptoms by third-party physicians (expert
evaluations). The duration of the PDMonitor R© recording in Phase
I was between 3 and 6 h for each patient. For the proper
evaluation of the patients’ symptoms, a diary was kept by their

caregivers or nurses. Every half hour the specialized nurse or
the physician asked the patient to perform specific motor tests
and recorded their symptoms. During each session, patients were
instructed to perform random activities that could last several
minutes, for example, climbing up and down a set of stairs,
making turns, lying down, standing up, walking while carrying
a glass of water, carrying a heavy object, drinking a glass of
water, opening and closing a door, taking a walk outside. Also
there were more complex activities conducted, such as setting
a table for a meal, having a meal, or even using a computer,
tablet, or smartphone, etc. Normal daily activities were required
in order to reduce the possible bias in symptom assessment
introduced by the reduced range of patients’ activity in a hospital
environment.

Phase II. Data collected during Phase II were used to evaluate
usability, validate the outcomes of the PDMonitor R© system vs.
patient diaries as well as to evaluate day-to-day variability. The
overall recording run for 1–3 days and with at least 7 h per day,
whether a caregiver was present or not. Patients were trained
on how to wear and use the system during their participation
in Phase I.

Data from Phase I (i.e., gathered from inpatients wearing the
device) were used in order to compare PDMonitor R© outcomes with
both expert annotations (available only in Phase I) and diaries.

Sites and Participants. This study took place in three sites:

1. the Technische Universität Dresden (TU Dresden) in
Dresden, Germany,

2. the General University Hospital of Ioannina in Ioannina,
Greece and

3. the Ospedale San Camillo IRCCS, and the Padua University
Hospital in Italy.

In total, sixty-five (65) PD patients were recruited. The study
protocols were approved by the corresponding ethical committees
and all recruited individuals signed an informed consent form. The
patients’ demographics are shown in Table 2.

Scales and Questionnaires. For the purposes of the study, the
following scales and questionnaires were used:
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TABLE 2 Demographics of patients participating in the PDNST001 (top)

and PDNST002 (bottom) studies.

Patient population

Number of participants 65

Age (Mean± SD) 65.8± 9

Gender (Male/Female) 33/30

Years with PD (Mean± SD) 8.8± 4.9

Healthy population

Number of participants 28

Age (Mean± SD) 63.2± 9.9

Gender (Male/Female) 10/19

1. Unified Parkinson’s Disease Rating Scale (UPDRS) (62). A full
UPDRS evaluation was conducted in the start of the session,
while the Part III of the UPDRS was performed every 30
minutes.

2. Abnormal Involuntary Movement Scale (AIMS) (63). An AIMS
questionnaire was filled by physicians every 30 minutes to
evaluate dyskinesia exhibited by the study participants.

3. Patient/Nurse Symptom Diary (64). Diaries were filled every 30
minutes by patients, or nurses, in order to assess ON/OFF states,
Dyskinesia, Bradykinesia, Tremor, FoG and general activity.

4. Comfort Rating Scale (CRS) (45). A CRS questionnaire was filled
once at the end of the session in order to evaluate whether the
device was comfortable to use.

2.3.2. Clinical study with healthy individuals
(PDNST002)

This study only included a procedure similar to that of Phase
I of the PDNST001, and as such, during its course only healthy
individuals (controls) used the PDMonitor R© device.

Sites and Participants. This study took place in the Ospedale
San Camillo IRCCS, and the Padua University Hospital in
Italy. In total, 31 healthy individuals were recruited, with
data being available for 28 subjects. The healthy participants
used the device for up to 3 days in a hospital environment,
but they were free to move and perform any kind of daily
activity, mimicking home daily living scenarios. The data
resulting from this study were used mainly for evaluating the
robustness of the system’s algorithms in order to properly
discriminate normal activities andmovements from PD symptoms.
The study protocols were approved by the corresponding
ethical committee and all recruited individuals signed an
informed consent form. The participants’ demographics are shown
in Table 2.

2.3.3. Pilot study
The pilot study took place, chronologically, after the PERFORM

project and before the PDNST001 and PDNST002 studies
described herein with the purpose of data acquisition for
developing the algorithms used in the PDMonitor R© device. The

pilot study used the same protocol as the Phase I of the PDNST001
study, and it included 30 sessions performed by patients staying
in the hospital between 4 and 8 h. Each session was recorded
on video, and every 30 minutes a UPDRS examination (62) was
performed. Moreover, a trained nurse kept a symptom diary
for the entirety of each session. For monitoring the pilot study
participants, a Shimmer device1 with 5 sensing elements was used.
The sensing elements, were mounted on the ankles, wrists and
the torso, in the exact same configuration as the PDMonitor R©.
The Shimmer device was used for data collection given that
the PDMonitor R© hardware was still under development at that
time.

2.4. Statistical analysis

2.4.1. Assessment of wearability
The wearability of the device was evaluated based on the

Comfort Rating Scale (CRS), filled by patients after completing the
Phase II of the PDNST001 study, as well as by the control subjects of
the PDNST002. The questions of the CRS are provided in Table 3.
The average ratings, resulting from the responses of the patients
and the control subjects, were quantitatively and qualitatively
analyzed.

2.4.2. Assessment of accuracy
The validation of the PDMonitor R© system in the identification

and quantification of PD motor symptoms, as well as in the
complications stemming from PD, in a statistically significant
manner, is assessed based on measures of accuracy (for the
detection) and measures of correlation (for the severity).
Initially, the symptoms extracted through the PDMonitor R© were
compared against the UPDRS and the AIMS scores resulting
from physicians’ clinical examinations, conducted in 30-minute
intervals.

Agreement with Expert on the Detection of Specific

Symptoms. For the statistical analysis, a dataset was created
for each symptom, which included pairs of PDMonitor R© 30-
minute estimations, as well as the corresponding UPDRS/AIMS
items. The UPDRS/AIMS items were converted to a binary scale
based on the clinical thresholds for defining a mild (or more
severe) presence of a symptom. Cases with a slight symptom
presence were ignored for this analysis. Then, for each symptom,
an analysis based on a receiver operating characteristic (ROC)
curve (65) was used to evaluate the corresponding thresholds to
be set in the PDMonitor R©. Given the thresholds obtained from
the ROC analysis, a confusion matrix was computed. Accuracy,
specificity and sensitivity measures were estimated and reported
(Section 3.2.1).

For each symptom, specific groups of different symptoms’
intensity were defined. Group differences were evaluated
using the t-test method and box plots were generated using
the Seaborn Python library (66). The created box plots are

1 http://www.shimmersensing.com
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TABLE 3 All the questions included in the Comfort Rating Scale (CRS), a standardized questionnaire used in our work as a tool of assessing the

wearability of the PDMonitor® system.

Section Description Controls Patients

Emotion I feel worried and embarrassed. 0.8/20 1.9/20

I feel tense. 0.1/20 1.8/20

I would wear the device if it was invisible. 7.4/20 7.1/20

Attachment I feel the device on the body. 2.3/20 3.5/20

I feel the device moving. 1.8/20 3.0/20

I was not able to move as usual. 0.0/20 2.6/20

I have difficulty in putting on the device. 1.1/20 5.9/20

Harm The attached device causes me some kind of harm. 0.0/20 0.0/20

Perceived change I feel more bulky. 1.0/20 0.9/20

I feel change in the way people look at me. 2.0/20 3.0/20

Movement The device obstructs my movements. 0.3/20 2.6/20

Anxiety I do not feel secure with the device. 0.0/20 0.5/20

I feel that I do not have the device properly attached. 0.5/20 1.1/20

I feel that the device is not working properly. 0.0/20 0.8/20

In the “Controls” and “Patients” columns, we present the average ratings that resulted from the responses of the control subjects of the PDNST002 study, as well as the patients of the Phase II

of the PDNST001 study to the CRS questionnaire.

presented in Section 3. Group differences in some cases included
measurements from the same patient. Therefore, patients do
not belong to a specific group, neither have the same number
of measurements in the same group. As a result, given this
degree of variability and non-determinism, the assumption of
the samples being independent, as well as the use of the t-test is
justified.

Total time estimation. Subsequently, the thresholds indicating
a significant symptom presence were employed to extract, per
session, the total time of its presence, as measured by both the
experts and the PDMonitor R© (Section 3.2.2) respectively.

A Bland Altman analysis (67) was also performed and is
presented in Section 3. The intra-class correlation of PDMonitor R©

estimation of the total time of a symptom’s presence was also
evaluated. To that end, the data from Phase II of the PDNST001
study were employed. The total symptom presence was estimated,
for the same patient, over a number of different days, resulting in
a dataset containing those estimations in pairs, forming a dataset
of day-to-day symptom presence estimations. Both Pearson and
Spearman correlation were used as measures of correlation and a
Bland Altman analysis (67) is also reported for the bradykinesia
case. The Bland Altman analysis was performed using the Matlab
implementation (68). The Standard error (SSE), the Coefficient of
Variation (CV) and the RPC reproducibility coefficient (1.96 ∗ SD)
are included in the analysis.

Agreement on Day-To-Day Symptom Evaluation. For the
evaluation of the day-to-day agreement of PDMonitor R© measures,
two sets of data were used. The first, was patient data from the
Phase II of the PDNST001 study, while the second, was data of
healthy individuals from the PDNST002 study. The agreement
was evaluated for all those patients, and control subjects (healthy
individuals), having more than 1 day of monitoring activity. For

each symptom, the average severity was estimated per day, and
then pairs of different days were compared. Similar to the case of
the total time estimation, for the day-to-day symptom evaluation,
a Bland Altman analysis was performed, and both Pearson and
Spearman measures of correlation were employed to evaluate the
day-to-day agreement.

3. Results

3.1. Assessment of wearability

The results of the Comfort Rating Scale (CRS) for both patient
and control subjects are presented in Table 3. On top of the results
from the CRS questionnaire, some key findings regarding the
wearability of the system, acquired through the interaction with
the patients of the study, are presented below. First, it took patients
about 5minutes on average (5.3±2minutes ranging from 2 to 10.25
minutes evaluated on 39 patients), to put on all five monitoring
devices (monitoring device). The procedure was recorded on video
and the reported time durations were estimated based on those
recordings. The wide spread in the time necessary to put on the
device, was expected, and it is attributed to some patients exhibiting
significant movement impairment or being in an OFF state when
they were instructed to wear the device. Second, the study subjects
indicated that the monitoring device worn on the waist seems to
be more inconvenient compared to the devices worn on other
body parts. Third, disease duration did not affect the time patients
needed to put on the monitoring devices. For all patients, when
comparing the time to put on the sensors to the disease duration,
the Pearson’s correlation coefficient (R), and its p-value, indicated
that there was no significant correlation (r = −0.123 with p = 0.77,
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TABLE 4 Evaluation of the accuracy of PDMonitor® vs. 30-min expert evaluations (UPDRS/AIMS) or diaries (for the OFF case).

PDMonitor® Scale item Thres.a Conf. Matrixb Pos./Neg. Acc./Spec./Sens.c

Arm brad. (UPDRS) 23+ 24+ 25 > 4 0.7 208/41/137/781 249/918 0.85/0.85/0.84

Gait (UPDRS) 29 > 1 1.6 70/39/7/903 109/910 0.99/1.0/0.67

Wrist tremor (UPDRS) 20 > 1 1.64 90/17/2/2,858 107/2860 0.99/0.99/0.84

Leg tremor (UPDRS) 20 > 1 0.16 28/2/1/1,440 30/1441 0.99/0.99/0.93

Dyskinesia (AIMS) AIMS > 4 1.66 68/15/9/1,607 83/1616 0.99/0.99/0.82

OFF (Diaries) OFF 0.5 29/5/18/571 34/589 0.96/0.97/0.85

FoG (UPDRS) 14 > 1 0.02 10/2/1/61 12/62 0.96/0.98/0.83

The threshold derived by a ROC curve analysis (Thres.), the confusion matrix, the number of positives (true positives plus the false negatives), negatives (true negatives plus false positives), as

well as the accuracy, specificity and sensitivity are also provided. The last line of the table presents the accuracy of the freezing of gait discrimination for the “Freezing” patients compared to the

“No freezing” patients and the control subjects. The freezing of gait is evaluated per patient, instead of the 30-minute evaluations of the other outputs presented in this table.
aThreshold for the corresponding PDMonitor R© measure extracted from the ROC analysis.
bTrue positive/False negative/False positive/True negative.
cAccuracy/Specificity/Sensitivity PDMonitor R© measures are compared against specific scale items provided in the column “Scale Item.”

for Germany, r = −0.195 with p = 0.38, for Greece and r = 0.67
with p = 0.32, for Italy). As expected, patients who had no help
putting on the sensors, needed more time than patients assisted by
a caregiver (6.28 vs. 4.67 minutes).

3.2. Assessment of accuracy

3.2.1. Agreement with expert on the detection of
specific symptoms

In this section, the results regarding the agreement of the device
with the expert assessments (UPDRS/AIMS evaluations performed
every 30 minutes), and the symptom diaries, are presented.

Bradykinesia. PDMonitor R© arm bradykinesia estimation for
30-minute windows had significant correlation with the UPDRS
arm bradykinesia subscore (r = 0.68) and had a rather high
accuracy (0.85) in detecting patients with a sum of the bradykinesia
UPDRS subscore (sum of UPDRS items 23, 24 and 25) larger
than 4, as presented in Table 4. In order to further evaluate the
device’s performance in discriminating bradykinesia impairment, 4
bradykinesia groups were considered:

1. control individuals (referring to healthy subjects),
2. patients with 0 bradykinesia UPDRS subscore,
3. patients with < 4 bradykinesia UPDRS subscore,
4. patients with > 4 bradykinesia UPDRS subscore.

The PDMonitor R© bradykinesia estimation distributions for
those groups are presented in Figure 6A. All groups have
statistically significant different means, indicating the rather good
correlation between the PDMonitor R© estimation and the arm
bradykinesia, annotated by the experts.

Dyskinesia. Based on the method described in Section 2.2.2,
the accuracy of the dyskinesia detection method was evaluated
for the discrimination of 30 minutes’ regions where the patients’
AIMS score, as annotated by experts, had a value greater than
4, compared to that of those participants (control and patients)
with no dyskinesia. The threshold of 4 is the minimum AIMS
score for which the device can provide the most accurate results
regarding the sensitivity and specificity of the detection. The
accuracy obtained (Table 4) was 0.99 with an excellent specificity

(0.99) and sensitivity (0.82). A high specificity is paramount,
considering that the device is intended to be used in daily living and
during free activities where normal movements could be confused
with dyskinesia.2 To this end, the use of healthy subjects for the
evaluation of the algorithms was rather important in order to
ensure that dyskinesia can be accurately discriminated. Similarly to
bradykinesia, 5 groups were considered based on their AIMS score.
Those groups were:

1. control individuals (healthy),
2. patients with a 0 AIMS score,
3. patients with < 4 AIMS score,
4. patients with 4− 12 AIMS score,
5. patients with > 12 AIMS score.

The PDMonitor R© dyskinesia estimation distributions for those
groups are presented in Figure 6C. All groups have statistically
important differences indicating a rather good performance of
the device in discriminating dyskinesia. It should be noted that
PD patients with no dyskinesia have significantly lower dyskinesia
estimations compared to both patients with slight dyskinesia
(AIMS < 4) as well as healthy subjects. The only shortcoming
observed with our method was the underestimation of dyskinesia
in the rare case of patients having significant dyskinesia on the head
or the neck and less dyskinesia in their extremities.

Gait. The PDMonitor R© gait score was evaluated for the
detection of gait impairment in 30-minute windows taking into
account mild and severe gait impairment according to the score of
the UPDRS item 29. For the evaluation, annotations with a score
of 1 in the UPDRS item 29, as well as regions with dyskinesia, were
excluded. The accuracy of gait impairment detection is presented
in Table 4. A rather high accuracy is achieved (0.99 accuracy
with >0.99 specificity and 0.67 sensitivity). PDMonitor R© gait
score distributions for the different expert UPDRS assessments are
provided in Figure 6B.

2 It should be noted that according to the device’s instructions for use,

the device is not intended to be worn during intense activities (i.e., any

activity other than walking). The reason being, signals logged by the IMU

sensors during intense activities would contain abrupt changes that would

contaminate the system’s output.
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FIGURE 6

(A) Boxplot representing the PDMonitor® bradykinesia score distribution for the di�erent subgroups based on expert UPDRS bradykinesia

evaluations. (B) Boxplot of PDMonitor® gait score distribution for the di�erent subgroups based on expert UPDRS gait evaluation. (C) Boxplot of

PDMonitor® dyskinesia score for the di�erent subgroups based on expert AIMS dyskinesia evaluation. (D) Boxplot of PDMonitor® tremor (wrist) score

distribution for the di�erent subgroups based on expert UPDRS tremor evaluation. The dots represent outliers in the dataset, while the asterisks

represent statistical significance. On top of each box there is the number of data points contained within each group. Every data point represents an

estimation of the respective symptom for a 30-min window. Regarding the underlying rules for the generation of the box plots, the “whiskers” extend

to all points that belong within 1.5 IQR (interquartile range). The rest of the points, lying outside this range, are considered as outliers and are

depicted as dots. The asterisks (*) that are drawn on top of the box plots, denote statistical significance and correspond to p-values’ ranges.

Specifically, 4 asterisks would denote p ≤ 0.0001, 3 asterisks p ≤ 0.001, 2 asterisks p ≤ 0.01, 1 asterisks p ≤ 0.05 while ns denotes p > 0.05.

Freezing of gait. During the Phase I of the PDNST001
study, 30-minute, in-clinic, sessions were annotated by experts for
each patient as “Freezing” or “No-Freezing,” based on whether
they identified freezing of gait in their UPDRS evaluations. The
expert annotations were also compared to symptom diaries, when
available. Cases where diaries and expert annotations were in
disagreement were excluded, taking into account mainly cases
where FoG was not observed during the UPDRS examination. It
should be noted that the clinical examination included a walking
test requiring the subjects to open a door and pass through it.

However, the protocol neither included specific tests or activities
to elicit freezing events, nor called for patients to be monitored
throughout the session (recorded on video), thus limiting our
ability to fully assess FoG events. As a result, the PDMonitor R©

was evaluated in terms of discriminating between “Freezing” and
“No freezing” patients based on a ROC (Receiver Operating
Characteristic) analysis. To that end, first the device produced the
ratio of the “number of freezing of gait events” compared to the “total
number of freezing of gait regions, per 30-minute periods,” and then
aggregated those ratios, per patient, for the whole session. Finally
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FIGURE 7

(A) PDMonitor® output importance for OFF detection (per group defined in Table 1). (B) UPDRS item importance for OFF detection (per group in

Table 1).

the ROC analysis for the evaluation of the discriminating power of
the device was conducted. The results are presented in Table 4, in
which it can be seen that the device had an excellent accuracy in the
discrimination of patients exhibiting freezing of gait.

Tremor. Wrist tremor with a 30-minute constancy was
evaluated compared to the patients’ symptom diary. The accuracy
of the wrist tremor detectionmethod was initially evaluated. All 30-
minute intervals with RW (right wrist) or LW (left wrist) tremor
score (> 1) in the UPDRS item 20 (tremor at rest) were considered
as cases with tremor, whereas 30-minute windows without tremor
(taking into account both the legs and the wrists) were considered
as negative cases. Again, neighboring windows of different tremor
classification where excluded. The confusion matrix is presented
in Table 4. The specificity of tremor detection is very high (>
0.99) with a significant sensitivity (> 0.85). Based on the method
described in the corresponding part of Section 2.2.6, the accuracy of
leg tremor was also evaluated. Accuracy, sensitivity and specificity,
along with the confusion matrix are presented in Table 4. The
accuracy of the PDMonitor R© in the discrimination between those
patients that exhibit more than slight leg tremor compared to those
patients that exhibit no tremor in 30-minute intervals is 0.99. As
presented in Figure 6D the device is able to accurately discriminate
tremor rated with a UPDRS item 20 score of> 1. It should be noted
that neighboring samples with different UPDRS annotations were
not excluded in the box-plot and therefore the overlapping between
the distributions could be even smaller in practice.

ON/OFF and Fluctuations. PDMonitor R© OFF estimation is
based on a method combining the individual symptoms and
measures produced by the device. The results of the Relief method
for assessing the importance of each symptom in estimated OFF
periods are presented in Figure 7A. As discussed in Section 2.2.7,
a similar analysis was performed trying to estimate OFF periods
as were reported in symptom diaries. The results are presented in

Figure 7B for PDMonitor R© and UPDRS annotations respectively.
Features related to gait, postural instability and gait difficulties
(PIGD) have the highest importance in discriminating between
ON and OFF states consistently in both the PDMonitor R© and
the UPDRS estimations. The UPDRS body bradykinesia (UPDRS
items 27 and 31) had similar importance with gait. However, this
was expected since the correlation of gait (UPDRS item 29) with
the rising from chair activity (UPDRS item 27) in our study was
very high (r = 0.88). Therefore, the order of the symptoms’
importance is consistent between the PDMonitor R© and the expert
annotations, highlighting again the rather good agreement between
the device and the expert raters. The accuracy, the sensitivity and
the specificity of the OFF score produced from the PDMonitor R©

compared to the UPDRS annotations and the symptom diaries
was evaluated in 30-minute windows and is presented in Table 4.
The evaluation included exclusively 30-minute intervals where
estimations for gait from the PDMonitor R© were available. It
should be noted that for one site, diaries were not filled in during
the Phase I of the PDNST001 study. Moreover, neighboring 30-
minute intervals with different OFF evaluations where excluded,
in order to reduce possible errors due to the transition between
OFF and ON states (and vice versa). The accuracy and the
specificity of the OFF detection method was excellent (0.96 and
0.97 respectively).

3.2.2. Agreement on the total time of presence of
specific symptoms

OFF Time. For each session, the percentage of each patient
in the OFF state was calculated. The percentage of time while a
patient was in the OFF state was estimated as the ratio of the
“number of evaluations where the probability for being in an OFF

state was higher than 0.55,” to the “total number of evaluations.” A
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high correlation, r2 = 0.75, between the PDMonitor R© estimations
and the combination of UPDRS evaluations and symptom diaries
is observed, as it can be seen in Table 5. Correlation and Bland-
Altman plots are presented in Figure 8A.

Dyskinesia Time. The time with Dyskinesia is estimated in a
similar fashion, considering the percent of expert annotations in
which the AIMS scores were higher than 4. A total of 80 subjects
were included in this analysis and the correlation of the variable

TABLE 5 Correlation of the measures “Time with OFF” and “Time with

dyskinesia,” as were estimated by the PDMonitor® system, compared to

expert annotations (and diaries in the case of “Time with OFF”) per

recording/session.

PDMonitor® No. of
patients

Correlation
(r2)

Spearman’s
Rho

Time with OFF 54 0.75 0.65

Time with
dyskinesia

80 0.63 0.77

The “Time with OFF” was calculated from expert annotations using the ratio of the “number

of evaluations where the probability for being in an OFF state was higher than 0.55”, to the

“total number of evaluations.” ‘Time with dyskinesia”. On the other hand, the “Time with

dyskinesia” was calculated as the percent of expert annotations in which the AIMS scores

were higher than 4.

called “Time with dyskinesia” as produced by the PDMonitor R©,
compared to the expert assessments was r2 = 0.63 (Table 5).

3.2.3. Agreement on day-to-day symptom
evaluation

The day-to-day agreement was evaluated for those patients
of PDNST001, Phase II and those controls (healthy individuals)
of PDNST002, having more than 1 day of monitoring activity.
For each symptom, the average severity was estimated per day,
and then pairs of different days were compared. Correlation and
Bland-Altman plots of the results are presented, for bradykinesia,
in Figure 8B. The ICC correlations are presented in Table 6.
Considering the fact that there is an intrinsic variation in the PD
symptoms, the device’s ICCs could be considered rather high.

4. Remarks

During the course of the first study (PDNST001), the UPDRS
annotations were performed by one physician, although different
in each site. Diaries were not filled in one site during the Phase I of
the PDNST001 study and as a result, for this site, we were not able

A

B

FIGURE 8

(A) PDMonitor® OFF estimation and Bland Altman plot for the patient diaries. (B) Correlation and Bland-Altman plots for day-to-day agreement of

PDMonitor® estimated time percentage, where (left leg) bradykinesia score was more than 1 (UPDRS).
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TABLE 6 Intra-class correlation coe�cients of PDMonitor® estimated

measures for di�erent recording days.

PDMonitor® ICC (r2) Spearman’s
Rho

Time spent with bradykinesia
(LL) > 1

0.77 0.83

Time spent with dyskinesia
(LL) > 1

0.82 0.45

Time spent with gait > 1 0.71 0.83

This analysis evaluated the day-to-day agreement for those patients of PDNST001, Phase

II and those controls (healthy individuals) of PDNST002, having more than one day of

monitoring activity. For each symptom, the average severity was estimated per day, and then

pairs of different days were compared.

to compare the UPDRS evaluations with the corresponding diaries.
Themajority of the recordings were performed inside hospitals, but
the subjects were free to perform any kind of activity. For example,
in one site, many patients also performed rehabilitation exercises.
Therefore, even if the recordings were not in the patients’ actual
environment, the conditions during the studies were quite close
them. Moreover, since patients are instructed not to use the device
during intense activities, the actual conditions they encounter
during their everyday lives, while wearing the PDMonitor R©, were
expected to be quite similar to the ones they experienced during the
studies. Intense activities were defined as any activity other than
walking. The patients were advised not to wear the monitoring
devices during intense activities as there would be abrupt signal
changes logged by the IMU sensors, which would contaminate the
system’s output.

5. Discussion

PDMonitor R© is a monitoring system that has been developed
for the detection and follow-up monitoring of parkinsonian
symptoms based on wearable monitoring devices. Although, it
should be noted, that the device does not replace, neither a clinical
examination, nor a patient’s symptoms report, and any findings
should be always verified with the patients and their caregivers.
The aim of the studies presented herein, was to validate the
system’s usability and efficacy in the detection of motor symptoms
manifested in Parkinson’s disease.

The first significant outcome of the PDNST001 study was the
confirmation that PDMonitor R© can be effectively, and easily, used
by patients and caregivers. As a reference, in order to use the
system, about 5 minutes are required, in average, for mounting
all sensors, although patients in the OFF state may need more
time or additional help. This finding is also confirmed by the CRS
questionnaire in which the question “I have a difficulty in putting
on the device” received a higher score by the patients compared
to the control subjects. It should be noted that the PDMonitor R©

device has a number of features that enable its unsupervised use
in hospital and home environments. The first important feature,
is the ability to automatically identify the position of each of
the 5 monitoring devices on a patient’s body, thus, significantly
reducing the complexity/burden of wearing the 5 sensors, as well
as the probability of device misuse. Another important feature is

that no user interaction is needed to start a recording, apart from
undocking and wearing the monitoring devices, as well as putting
them back overnight for data transfer and charging. A point to
note is that, in terms of usability, the question “I would wear the
device if it was invisible” of the CRS, received an increased score.
This question is probably answered by patients having in mind
the stigma around medical conditions, and thus it denotes a wish
for discreet “invisible” medical devices in general. As a result, this
is a well known aspect of similar devices (45) and PDMonitor R©

design aims to reduce such concerns. More data from real world
use may be needed to further evaluate the effect of such issues
on the usability of the device. The effective use of the system was
also demonstrated in the study performed by Bendig et al. (69),
where 12 subjects used the monitoring devices for 3 months and
demonstrated significant adherence and satisfaction (both being
prerequisites for effective use).

The second major outcome of the study is related to the
performance of the device in the detection of PD related
motor symptoms. Statistical analysis comparing the symptoms
detected by the PDMonitor R©, to those identified through clinical
evaluation and patient diaries, revealed the system’s capacity to
accurately detect the majority of PD motor symptoms and their
fluctuations. Table 4 summarizes all PDMonitor R© outcomes and
their accuracy measures, compared to the detection and severity
estimation of PD motor symptoms based on the expert evaluations
or diaries. In all cases, the outcomes of the PDMonitor R©

algorithms were translated to clinically relevant scales which are
familiar to movement disorders healthcare professionals, aiming
to immediately offer actionable knowledge. Even in cases where
the accuracy was moderate, the specificity was very high. This
was an important requirement of the device, considering the
fact that it is intended to be used at home, as well as in
general unconstrained, environments with a need of avoiding
false positives occurring during daily activities. The significant
day-to-day correlation between symptoms presented in Section
2.4.2 is also very important as it depicts the repeatability of
the device’s outcomes. This is also further supported by the fact
that both bradykinesia and gait impairment were statistically
different between control subjects (healthy individuals) and PD
patients with a UPDRS score of 0 on the respective UPDRS
items (Figures 6A, B). The results for both OFF and dyskinesia
time estimation are also very important (r2 = 0.75 and r2 =

0.63 respectively) considering the sparse evaluations (30-minute
intervals) and a typical duration of each session between 4 and 8
h. Therefore, PDMonitor R© provides a rather comprehensive, and
accurate, evaluation of the main parkinsonian symptoms. Each
one symptom worths a further evaluation, in greater technical
and clinical detail, in which there will be also presentations of
specific cases. However, this was not possible in the context of
this work due to space limitations. We will focus on this task in
a future work.

Moreover, there are specific cases where the limitations of the
physical examination were highlighted, even though they were not
systematically evaluated in the studies. For example, some patients
did have significant altered symptom manifestations before and
during the clinical examination, including gait difficulty, which
was however clearly depicted in the PDMonitor R© report as it is
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not based only on a specific time period in which the symptoms
may have subsided. This further supports the need of using
remote monitoring in clinical practice. Also, a very interesting
fact is that features related to gait, postural instability and gait
difficulties (PIGD) seem to be better indicators of OFF, compared
to arm bradykinesia. This may further highlight the importance of
ambulatory gait evaluation for assessing PD patient monitoring.

The progression of the neurodegeneration process in PD
is related to the emergence of motor complications, such as
fluctuations and dyskinesia, which are often difficult to predict and
manage, especially in advanced patients (14, 70). The treatment
strategies that are currently available for PD, as it advances, include
lifestyle changes, fine tuning of oral medication, different routes of
drug administration, and deep brain stimulation (13, 71). However,
the efficacy of these treatments is limited and it relies mainly
on the information that physicians manage to acquire regarding
each patient’s symptomatology, which does not always depict with
accuracy the patient’s overall state and disease progression. A study
performed by Erb et al. (72) found that 38% of all participants who
were asked to complete an electronic motor diary at home missed
approximately 25% of all possible entries. Also, the entries the
participants made had an average delay of more than 4 h. During
clinical evaluations by PD specialists, self reports of dyskinesia
were marked by approximately 35% false negatives and 15% false
positives. Compared to the live examinations, the video evaluations
of the Part III of the UPDRS significantly underestimated the subtle
features of tremor and extremity bradykinesia, suggesting that these
aspects of the diseasemay bemisjudged during remote assessments.
On the other hand, based on the results of this study, PDMonitor R©

can effectively detect the majority of PD related motor symptoms,
with high test-retest reliability. The device also provides a highly
accurate estimation of OFF and dyskinesia time, which is crucial
for any therapeutic decision.

Other systems previously reported to detect parkinsonian
symptoms in PD (36, 73, 74), do provide useful information
to physicians leading to improved therapeutic decisions and
patient outcomes (41, 75). However, PDMonitor R© has the
main advantage of evaluating all motor symptoms and their
complications, including gait, freezing of gait and postural
instability. The detection of freezing of gait along with other
problems related to postural instability and gait difficulties (PIGD)
is a key component when we try to optimize pharmacological
and non-pharmacological treatment in Parkinson’s (13, 71). These
symptoms also have a strong effect on a patient’s quality of
life. The recent COVID-19 pandemic has further highlighted the
importance of telemedicine and remote monitoring as a way to
hamper the impact of social and mobility restrictions, particularly
in patients in advanced stages of the disease and those that have
undergone invasive treatments (19, 76).

PDMonitor R© is designed for long-term continuous
monitoring, enabling a new paradigm in PD management.
Long-term and continuous monitoring facilitates the early
detection of fluctuations (wearing off) and PIGD in patients,
which the treating physicians could not otherwise identify. Timely
detection and treatment could help patients better understand
their status (77) and improve the probability of living a normal
life while staying effective in their work. This is expected to have
a serious impact to the Health Economics of the System and

the patients’ Quality of Life. Tsamis et al. (22) presented two
specific cases where the potential of PDMonitor R© to accurately
capture the diverse clinical manifestations of advanced PD was
demonstrated, thus reducing the need for prolonged in-person
examinations or hospitalization. Both presented cases, included
significant difficulties in the diagnostic approach, due to missing
information regarding the time course of symptoms throughout
the day. With the use of PDMonitor R©, physicians had access to
an objective assessment of the patients’ motor symptoms, as these
were manifested in their daily home environments, managing to
reach a final diagnosis and making the right treatment decisions.

PDMonitor R© also offers the possibility to be used for advanced
therapy selection based on a set of patient eligibility criteria.
For example, Antonini et al. (9) have developed a screening tool
for identifying patients eligible for deep brain stimulation (DBS).
The tool consists of a number of questions regarding PD motor
symptoms and their fluctuations, such as:

• Do you have ≥ 2 h of OFF time per day?

• Do you experience unpredictable fluctuations?

Objective measurements and measures like the ones suggested,
based on PDMonitor (78), may complement such screening tools
and provide a valuable instrument for a timely and accurate patient
selection eligible for advanced therapies.

Furthermore, PDMonitor R© can be used for post-DBS
monitoring and tuning. The challenge in post-DBS management
is to find the proper stimulation paradigm along with the proper
medication treatment. The problem increases when the patients go
home and after 3–4 weeks they start losing the acute effect of their
therapy, creating the need for further medication optimizations.
This is a use case when a medical device, like PDMonitor R©, could
be really useful, as it can guide the medication adjustment through
precise monitoring, fulfilling a true unmet need of moving the
patients’ care away from the hospital and to the home.

Dorsey et al. (79) also supported that in order to improve
PD care, more of it must be delivered at home. Emerging
care models will combine remote monitoring, self-monitoring,
and multidisciplinary care in order to enable the provision of
patient-centered care at home and decrease the need for in-
clinic assessments. It should be noted that PDMonitor R© also
provides an accompanying mobile app with important features
like medication and medication intake, as well as a symptom
diary. All logged information is also available in the PDMonitor R©

reports as those presented in Figures 2A, B. The mobile app also
includes educational material and provides to each patient a form
of an one-way communication with their physician. It is known
that mHealth solutions tend to increase patient awareness and
disease self-management, as demonstrated in similar applications
(80). Therefore, based on the results of the studies (PDNST001
and PDNST002) and considering the usability, the performance
and the clinical need, PDMonitor R© could be considered as a tool
that could be essential in daily practice and in the management
of Parkinson’s disease. New and ongoing studies are expected to
provide additional evidence about the clinical benefits of this new
paradigm, that PDMonitor R© is a part of, enabling a wider adoption
(81). Physicians and healthcare systems may need to adopt and
embrace this new paradigm in order to overcome current barriers
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(77, 82) as well as to unlock the full potential of continuous
patient monitoring.

6. Conclusions

Objective symptom monitoring in Parkinson’s disease can be
a groundbreaking tool for the proper management of the disease
and the therapeutic decision making process. Monitoring the most
important PDmotor symptoms with high accuracy, may contribute
to better, more precise and more effective treatment interventions.
The results of these studies demonstrated that PDMonitor R© can
provide a comprehensive evaluation of the majority of motor
symptoms, with significant accuracy, as compared to expert
assessments and patient/caregiver diaries, and also that it can be
easily used by the patients and their caregivers. PDMonitor R©

enables longitudinal objective monitoring of patient symptoms and
their lifestyle, unlocking important patient management potential.

Related patents

The following patent has been filed and published:
WO2020120999A1 Monitor system of Multiple Parkinson’s
Disease Symptoms And Their Intensity.
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