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Mitophagy is a type of autophagy that can selectively eliminate damaged and

depolarized mitochondria to maintain mitochondrial activity and cellular

homeostasis. Several pathways have been found to participate in different

steps of mitophagy. Mitophagy plays a significant role in the homeostasis and

physiological function of vascular endothelial cells, vascular smooth muscle

cells, and macrophages, and is involved in the development of atherosclerosis

(AS). At present, many medications and natural chemicals have been shown to

alter mitophagy and slow the progression of AS. This review serves as an

introduction to the field of mitophagy for researchers interested in targeting

this pathway as part of a potential AS management strategy.
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1 Introduction

Atherosclerosis (AS) is a systemic disease and an important risk factor for various high-

risk cardiovascular and cerebrovascular diseases, such as stroke, myocardial infarction, and

even sudden death (1). Vascular endothelial cells (ECs), vascular smooth muscle cells

(VSMCs), and macrophages all play important roles in the development and formation of

AS. The vascular endothelium is essential to AS, as it can regulate vascular tension, the

proliferation of VSMCs, and vascular permeability (2). ECs also exhibit anti-coagulant and

fibrinolysis-promoting capabilities, which can reduce platelet aggregation and immune cell

adhesion, preventing the development of pathogenic thrombi (3). Oxidized low-density

lipoprotein (ox-LDL) damages ECs in the early stages of AS, causing themsecrete a large

amount of chemokines and high expression of endothelial adhesion cytokines (2).

Furthermore, ECs can attract monocytes into the endangium, where they differentiate

into macrophages, resulting in a partial inflammatory response. Subsequently, VSMCs

migrate from the mesomembrane to the subintimal space and proliferate massively (4).

This is followed by increased extracellular matrix secretion, which finally leads to the

formation of a fibrous plaque cap (5). As lipid build-up increases, macrophages die and

create a necrotic core (6). The necrotic core is covered by a fibrous cap, which is composed

of oxidized lipoproteins, cholesterol crystals, and cellular debris, with varying levels of
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remodeling and calcification. (7). In addition, macrophages, when

activated by ox-LDL, can transform into cholesterol-rich foam cells,

producing matrix metalloproteinases capable of hydrolyzing

collagen fibers in the fibrous cap (7). This causes a progressive

thinning of the fibrous cap around the necrotic core, which

eventually transforms into a vulnerable plaque. Therefore, a

favorable control of the roles of ECs, VSMCs, and macrophages is

crucial for the prevention and treatment of AS.

Mitochondria are organelles found in eukaryotic cells that use

oxidative phosphorylation to produce adenosine triphosphate

(ATP) and supply energy to the cells (8). Dysfunctional

mitochondria, which are a major source of oxidative stress, cause

a build-up of excessive reactive oxygen species (ROS) (9, 10).

Lemasters et al. (11) developed the idea of “mitophagy” in 2005

and established that mitophagy may selectively remove damaged

mitochondria and that this process plays a key role in maintaining

mitochondrial homeostasis and lowering ROS generation. The brief

process of mitophagy is shown in Figure 1. Under physiological

conditions, mitophagy can effectively remove mitochondria with

impaired functions, maintain intracellular calcium homeostasis, cell

signal transduction, and ATP synthesis, and reduce the level of ROS

and oxidative stress damage (12). Under stress conditions (such as
Frontiers in Immunology 02
nutrient starvation, traumatic injury, or ischemia/hypoxia),

deficient mitophagy leads to a build-up of poor-functioning

mitochondria, resulting in excessive ROS (13, 14). This further

damages mitochondria, causing the release of pro-apoptotic

proteins into the cytoplasm, exacerbating partial inflammatory

responses, and eventually causing the rupture of unstable AS

plaques (15, 16). In actuality, the key cells involved in the

formation and development of AS depend on mitophagy to

operate normally (17–19). As a result, in this review, we outline

the current knowledge on the classical mechanism of mitophagy in

AS on the role of these cell types.
2 Mechanisms of mitophagy

2.1 PINK1/Parkin-mediated mitophagy

2.1.1 Regulation of PINK1 stability in
polarized mitochondria

It was discovered as early as 2006 that in Drosophila,

abnormalities in the phosphatase and tensin homolog-long

(PTEN)-induced putative kinase protein PINK1 or the Parkin
FIGURE 1

The relationship between mitophagy and AS. The left panel of the image illustrates the macro process of mitophagy. The figure below illustrates the
main mitophagy pathway involved in the formation and development of AS. To the right of the figure, the stress conditions and cellular responses
reported in current studies on mitophagy in macrophages, ECs, and VSMCs, which are involved in the formation and development of AS are presented.
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RBR E3 ubiquitin-protein ligase cause mitochondrial dysfunction,

muscle degeneration, and decreased longevity (20, 21). PINK1/

Parkin-mediated mitophagy may control cell survival or death by

eliminating damaged mitochondria (22–24). Under normal

conditions, PINK1 enters the mitochondria through the

translocase of the outer mitochondrial membrane (TOMM)

complex, which is found in the outer mitochondrial membrane

(OMM), and the translocase of the inner mitochondrial membrane

23 (TIMM23), and then moves on to the inner mitochondrial

membrane (IMM) translocase complex (25). Subsequently,

mitochondrial processing peptidase (MPP) in the mitochondrial

matrix cleaves the N-terminal mitochondrial-targeting sequence of

PINK1, and presenilin-associated rhomboid-like protein (PARL) in

the inner mitochondrial matrix cleaves the M-segment of PINK1

(26, 27). The remaining PINK1, with an unstable amino acid at the

N-terminus, is released into the cytosol, where it is destroyed by the

ubiquitin-proteasome system (UPS) after being targeted by an N-

degron2-type E3 ubiquitin ligase (28–30). Due to its degradation,

PINK1 remains at very low levels in polarized mitochondria. In

addition, Cristina et al. (31) have found that the degradation of

PINK1 by the proteasome depends on valosin-containing protein

(VCP) and the components of the endoplasmic reticulum-related

degradation pathway, such as E3 ligase GP78 and HRD1. However,

this does not rule out the possibility that PINK1 serves some sort of

physiological purpose.

When mitochondria are damaged, the membrane potential

(DYm) of the IMM is depolarized, rendering these mitochondria

unable to import PINK1 into the IMM (32), preventing PINK1

from being cleaved by PARL (33). This uncleaved PINK1 is

stabilized and accumulates on the OMM, becoming a dimer and

attaching to the TOMM complex to limit the import of freshly

produced proteins into the mitochondria (29). The TOMM

complex supports the autophosphorylation of dimeric PINK1 and

aids in its proper localization, both of which are necessary for the

recruitment of Parkin and the completion of mitophagy (34).

Furthermore, TOMM7 (35) , the complex subunit of

mitochondrial contact-site and cristae organizing system (36),

and the mitochondrial protease OMA1 (35) are involved in

controlling PINK1’s stability on the outer membrane.

2.1.2 Recruitment of Parkin and phosphorylation
of ubiquitin

PINK1 at the OMM is activated by autophosphorylation at

Ser228 (37) and Ser402 (38), and it affects Parkin in two ways. First,

PINK1 can phosphorylate ubiquitin (UB) attached to OMM

proteins at Ser65 in the mitochondria (39). Due to the high

affinity of Parkin for phosphorylated ubiquitin (pSer65-UB), this

can drive its translocation from the cytosol to the mitochondria (40,

41). Furthermore, PINK1 directly phosphorylates Parkin at Ser65 in

the UB-like domain and attracts Parkin from the cytoplasm to the

OMM to recruit autophagy mechanisms (30, 39, 42). In both cases,

the activated Parkin conjugates more UB to OMM-associated

proteins, which are then phosphorylated by PINK1. This forms a

positive feedback loop that amplifies the initial signal, leading to

extensive recruitment and ubiquitination of Parkin and the
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decoration of the OMM with pSer65-UB (43, 44). In addition, the

study of crystal structures has provided important insights into the

interaction between PINK1 (45, 46), Parkin (47–49), and UB (50).

Studies have shown that phosphorylated UB (pUB) can bind two

distinct sites on the Parkin structure. The high-affinity site on

RING1 controls the Parkin localization, and the low-affinity site

on RING0 releases the Parkin autoinhibition (51). The interaction

between Parkin’s RING1 and pUB results in the disengagement of

the UB-like domain from the core structure and the liberation of

Parkin from inhibitory interactions and accumulation on OMM

(52, 53). Notably, the UB-like domain of Parkin, when replaced

with UB, is more readily activated by PINK1 phosphorylation (51).

It can be seen that pUB holds an important role in the feedforward

mechanism because it is not only the signal of Parkin recruitment

but also the signal of activation.

Parkin is activated by the recruitment and phosphorylation of

PINK1, which leads to the ubiquitination of various substrates at

the OMM, such as voltage-dependent anion-selective channel

protein 1 (VDAC1), mitofusin 1 (MFN1), and mitofusin 2

(MFN2). This results in the general ubiquitination of the

mitochondria (54). Indeed, VDAC1 plays a crucial role in

regulating mitophagy and apoptosis as a key substrate of Parkin.

VDAC1 deficient in polyubiquitination impedes mitophagy, while

VDAC1 deficient in monoubiquitination promotes apoptosis by

increasing mitochondrial Ca2+ uptake through the mitochondrial

calcium uniporter channel (55, 56). Pharmacological inhibition of

VDAC1 significantly prevents apoptosis induced by sonodynamic

therapy combined with endogenous protoporphyrin IX derived

from 5-aminolevulinic acid in human myeloid leukemia-derived

(THP-1) monocytes by decreasing Ca2+ levels and oxidative

stress (57).

2.1.3 Mitophagy adaptors
The Atg8/LC3 family of autophagy-related proteins is a

component of the autophagosome membrane that functions as a

bridge between cargo and autophagosomes (58). During autophagy

activation, Atg8 family proteins bind to phosphatidyl ethanolamine

(PE) through a lipidation process (59). The newly synthesized Atg8

is cleaved by Atg4 family members and then conjugated to PE

through a ubiquitination-like reaction cascade (60–62). Once

inserted into autophagic membranes, the lipidized LC3 serves as a

docking site for various autophagy adaptors and receptors that

facilitate the movement of autophagic vesicles and target selection,

respectively (63). After the remodeling of the OMM through

proteasomal degradation of partially ubiquitinated proteins such

as VADC1, MFN2, and MFN1, UB-bound adaptor proteins are

recruited to form a substrate poly-UB chain (64, 65). This chain

causes the UB-binding protein p62, optineurin (OPTN), nuclear

domain 10 protein 52 (NDP52), Tax1-binding protein 1

(TAX1BP1), and the BRCA1 gene 1 protein (NBR1) to aggregate

and bind to ubiquitinated proteins (66). Notably, OPTN and

NDP52 are the primary, yet redundant, receptors for Parkin-

mediated mitophagy, whereas p62 and NBR1 are dispensable

(66). Unlike other autophagy receptors for mitochondria, p62

preferentially localizes to the domain between adjacent
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mitochondria, and aggregates damaged mitochondria using its

polymerase basic protein oligomerization domain but does not

regulate LC3 recruitment to mitochondria (67, 68). The UB-

binding domain of autophagy adaptors recognizes mono- or

polyubiquitin chains conjugated to proteins at the surface of the

mitochondrion, while the LC3 interaction region (LIR) interacts

with Atg8 family proteins. Subsequently, autophagosomes engulfing

damaged mitochondria fuse with lysosomes to form

“autolysosomes” that degrade the cargo (69, 70). It is worth

noting that PINK1, as both a sensor and an effector of

mitochondrial damage, can recruit NDP52 and OPTN to

damaged mitochondria without the assistance of Parkin (66).

Furthermore, tank-binding kinase 1 (TBK1) can phosphorylate

some autophagy adaptors, which increases the binding affinity of

those proteins to UB chains and Atg8/LC3 proteins (71, 72). TBK1

phosphorylates OPTN (Ser177) (73), NDP52 (Thr137) (74), and

p62 (Ser403) (72) to enhance their LC3-binding affinity. In

addition, OPTN (Ser473 and Ser513) (73, 75) and p62 (Ser403)

(72) are phosphorylated by TBK1, increasing their ability to bind to

UB chains, as shown in Figure 2. It is worth noting that PINK1’s

phosphorylation of UB is necessary to recruit various autophagy

adaptors to mitochondria (66, 76). Mitochondrial damage triggers

the phosphorylation of TBK1 (Ser172), which activates its catalytic

activity in a PINK1/Parkin-dependent manner (77). This suggests

that the assembly of UB chains by Parkin at the OMMmay promote

a feedforward loop that drives TBK1 phosphorylation to enhance

adaptor binding to UB chains.
Frontiers in Immunology 04
2.1.4 Deubiquitinases and PTEN-L as regulators
of mitophagy

Recent studies have found that phosphatase and tensin

homolog- long (PTEN-L) can effec t ive ly prevent the

mitochondrial translocation of Parkin, dephosphorylate pSer65-

UB, and reduce the level of Parkin phosphorylation (78). This

activity keeps Parkin in an autoinhibited state, inhibits its E3 ligase

activity, and prevents its recruitment and activation at the OMM.

This leads to a blockade of the feedforward mechanism and

inhibition of mitophagy (78, 79).

Deubiquitinases (DUBs) are members of the cysteine and

metalloproteinase families, which cleave UB from protein

substrates. Multiple DUBs regulate mitophagy positively or

negatively. USP8 has been demonstrated to selectively remove

K6-linked UB chains from Parkin and promote Parkin

localization to depolarized mitochondria (80, 81). Conversely,

USP15, USP30, and USP35 have been shown to remove Parkin-

mediated ubiquitination of OMM proteins and attenuate

subsequent depolarized mitochondrial clearance (82–84). Among

these DUBs, USP30 tends to hydrolyze unanchored and

mitochondrially conjugated Lys6- and Lys11-linked UB chains,

delaying or antagonizing Parkin-mediated mitophagy by

interfering with its recruitment to mitochondria (85–88). Notably,

USP14 is one of the major deubiquitinating enzymes that associates

with the proteasome, and its primary function is believed to be

preventing proteins from being misubiquitinated in vivo by cleaving

UB chains on protein substrates, thereby participating in the
BA

FIGURE 2

PINK1/Parkin-mediated mitophagy. (A) Under normal circumstances, PINK1 enters the mitochondria via TOMM and TIMM23. MPP and PARL cleave
PINK1. The UPS degrades the remaining portion after it is released into the cytosol. (B) Under stress conditions, PINK1 accumulates and stabilizes on
the OMM, forming dimers and interacting with TOMM complexes. Accumulated PINK1 (Ser228 and Ser402) is phosphorylated on its own and
activated, phosphorylating Ser65 to recruit UB and Parkin. OMM protein substrates (VDAC1, MFN1, and MFN2) are ubiquitinated by activated Parkin.
Mitophagy adaptors (p62, OPTN, NDP52, and NBR1) are recruited by the polyubiquitin chain linked to Parkin to start the process of delivering
mitochondria to autophagosomes. These mitophagy adaptors work together with LC3 to enclose damaged mitochondria in autophagosomes. TBK1
can promote mitophagy by phosphorylating mitophagy adaptors such as p62 (Ser403), OPTN (Ser177, Ser473, and Ser513), and NDP52 (Thr137).
IMM, inner mitochondrial membrane; LC3, microtubule-associated protein 1 light chain 3; MFN1, mitofusin 1; MFN2, mitofusin 2; MPP, mitochondrial
processing peptidase; NBR1, neighbor of BRCA1 gene 1; NDP52, nuclear domain 10 protein 52; OMM, outer mitochondrial membrane; OPTN,
optineurin; Parkin, E3 ubiquitin-protein ligase Parkin; PARL, presenilin associated rhomboid-like protein; PE, phosphatidyl ethanolamine; PINK1,
serine/threonine-protein kinase PINK1; SQSTM1/p62, sequestosome-1/ubiquitin-binding protein p62; TBK1, tank-binding kinase 1; TIMM23, inner
mitochondrial membrane 23 translocase; TOMM, outer mitochondrial membrane translocase; UB, ubiquitin; VDAC1, voltage-dependent anion-
selective channel protein 1.
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process of regulated protein degradation (89, 90). Studies have

shown (91) that USP14 is highly expressed in human aortic valve

tissue, which may be related to its inhibition of the degradative

activity of the proteasome. AS is a lipid-inflammatory process.

USP14 can activate the non-canonical NF-kB signaling pathway

and promote the expression of tumor necrosis factor (TNF)-a,
interleukin (IL)-6, and IL-18, which interact to form a positive

feedback cycle, promote lipid deposition, and ultimately induce the

occurrence of AS (92, 93). Fu et al. (94) have shown that the

overexpression of USP14 in ECs can interfere with the activation of

NF-kB, and adenovirus injection of USP14 can alleviate AS in

ApoE–/– mice. Inhibition of USP14 reduces the formation of foam

cells in AS by down-regulating CD36-mediated lipid uptake (95).

Furthermore, the knockdown of USP14 prevents the proliferation

of VSMCs induced by platelet-derived growth factor (PDGF)-BB,

by inhibiting the mTOR complex 1 (mTORC1)/ribosomal protein

S6 kinase signal pathway (96). Nonetheless, it remains unclear how

OMM-associated poly-UB prevents cleavage by DUBs. One study

found that the PINK1-dependent phosphorylation of UB rendered

ubiquitinated OMM proteins DUB-resistant (97). Collectively,

understanding the function of DUBs and their regulation in

cellular mitophagy may provide a novel and effective approach to

the treatment of AS and is worthy of further study.
2.2 BNIP3L and BNIP3-mediated mitophagy

2.2.1 BNIP3L/Nix
BCL2-interacting protein 3-like (BNIP3L/Nix) is an OMM

protein that belongs to the BCL2 family of BH3-only proteins.

Studies have demonstrated (98) that BNIP3L is a mitophagy

receptor that may bind LC3 via the LIR motif at its N-terminus.

Notably, BNIP3L can inhibit ox-LDL-induced ROS production and

nucleotide oligomerization domain (NOD)-like receptor

thermopro te in dome-as soc i a t ed prot e in 3 (NLRP3)

inflammasome activation in macrophages through mitophagy

(99). In addition, dynamic phosphorylation can regulate BNIP3L-

mediated mitophagy. Phosphorylation of Ser17, Ser34, Ser35, and

other residues near the LIR domain improves the interaction

between the BNIP3L and LC3 homologs, targeting mitochondria

into autophagosomes for degradation (100, 101).

Protein kinase PRKA phosphorylates BNIP3L at Ser212,

causing it to be exported from mitochondria and sarcoplasmic

sites to the cytosol, preventing mitophagy (102). Furthermore, the

dimerization of BNIP3L confers greater mitophagy receptor activity

than the monomeric form (103). Notably, glycines 204 and 208 in

the transmembrane domain of BNIP3L are important for BNIP3L

dimerization, whereas phosphorylation of C-terminal BNIP3L

disrupts dimerization (103). Unfortunately, it remains unclear

how BNIP3L dimers trigger mitophagy and the molecular

mechanism underlying BNIP3L dimerization.
2.2.2 BNIP3
BCL2-interacting protein 3 (BNIP3) mRNA is positively

correlated with necrotic core size in human AS plaques (104). In
Frontiers in Immunology 05
its role as a mitophagy receptor, BNIP3 is typically expressed as an

inactive monomer in the cytosol. Upon hypoxia, it forms stable

homodimers through its C-terminal transmembrane domain and is

integrated into the OMM through this domain (103, 105). However,

mutations can disrupt homodimerization and cause mitophagy

defects (106). Upon autophagy activation, BNIP3 causes

mitophagy by triggering mitochondrial depolarization and

subsequent sequestration of mitochondria into autophagic bodies

(107). Reduced BNIP3 expression in mouse embryonic stem cells

can cause the accumulation of abnormal mitochondria, along with

decreased DYm, increased ROS production, and decreased ATP

production (108). The BNIP3 gene promoter contains a hypoxia-

inducible factor (HIF) response element, and HIF-1 promotes the

expression of BNIP3 during hypoxia, which limits ROS production

via mitophagy (109–111).

Similar to BNIP3L, the interaction between BNIP3 and LC3 is

also regulated by phosphorylation (112, 113), as shown in

Figure 3A. Zhu et al. (101) have found that phosphorylation at

Ser17 and Ser24 on both sides of the LIR domain of BNIP3

enhances BNIP3–LC3 interaction and promotes mitophagy.

Further studies have revealed that unc-51-like autophagy-

activating kinase 1 (ULK1) is responsible for the phosphorylation

of Ser17 in BNIP3 and of Ser35 in BNIP3L, whereas TBK1 may be

required for the phosphorylation of Ser24 and Ser34 in BNIP3 and

BNIP3L, respectively (114).

2.2.3 Relationship between BNIP3/BNIP3L and
PINK1/Parkin-dependent mitophagy

BNIP3 and BNIP3L may be involved in PINK1/Parkin-

mediated mitophagy. According to Onishi et al. (115, 116),

Parkin may ubiquitinate BNIP3L to attract NBR1, a specific

autophagic adaptor of LC3, to mitochondria, causing

autophagosomes to form around damaged mitochondria. This

study demonstrated that BNIP3L acts as a substrate for Parkin

and that mitochondrial clearance induced by BNIP3L depends on

the presence of Parkin. In addition, Zhang et al. (117) have found

that BNIP3 interacts with PINK1 and promotes PINK1

accumulation at the OMM, leading to Parkin translocation to

mitochondria. In conclusion, BNIP3 and BNIP3L can trigger

mitophagy through various signaling pathways and cytokines

(103). Loss of mitophagy speeds up cell death, but its relationship

with AS is poorly understood, necessitating further research on the

kinases and phosphatases of BNIP3 and BNIP3L in this context.
2.3 FUNDC1-mediated mitophagy

2.3.1 Phosphorylation and dephosphorylation
of FUNDC1

FUN14 domain-containing protein 1 (FUNDC1) is a

mitophagy receptor in mammals. Phosphorylation and

dephosphorylation of Ser17, Ser13, and Tyr18 in FUNDC1’s LIR

domain can have a direct impact on the FUNDC1–LC3 interaction

mechanism (118, 119). Casein kinase 2 (CK2) protein kinase, SRC

proto-oncogene, non-receptor tyrosine kinase (SRC), and ULK1 are

the main regulators of FUNDC1 phosphorylation, while
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mitochondrial phosphatase PGAM family member 5 (PGAM5) and

Bcl-2 like protein 1 (BCL2L1) are considered key regulators of

FUNDC1 dephosphorylation (120–122), as shown in Figure 4.

FUNDC1 can exist in OMM under normal physiological

conditions without mediating mitophagy (123). Furthermore,

FUNDC1 is phosphorylated and has little mitophagy activity.

FUNDC1 is phosphorylated by CK2 kinase at Ser13 and SRC

kinase at Tyr18, which reduces the binding of FUNDC1 and LC3,

thereby preventing mitophagy (119, 124). However, under hypoxia,

the dephosphorylation of FUNDC1 at Tyr18 and the

dephosphorylation of Ser13 by PGAM5 phosphatase both

enhance the interaction between FUNDC1 and LC3, which

further leads to the selective removal of dysfunctional

mitochondria (123). On the other hand, dephosphorylation of

FUNDC1 at Ser17 inactivates FUNDC1, but it is phosphorylated

by ULK1 kinase under hypoxia or mitochondrial uncoupled

stimulation, which increases the binding to LC3 and promotes

mitophagy (125).

It is worth noting that the regulation of FUNDC1-mediated

mitophagy is also influenced by the dephosphorylation and

phosphorylation of other proteins. In normoxic conditions,

BCL2L1 can interact with PGAM5 through the BH3 domain and

inhibit PGAM5 activity, preventing the dephosphorylation of Ser13

(126). During hypoxia, BCL2L1 is degraded, releasing PGAM5 to

promote Ser13 dephosphorylation, thereby initiating or enhancing

FUNDC1-mediated mitophagy (120, 127). Meanwhile, the kinase

ULK1 is recruited to mitochondria and phosphorylates FUNDC1 at

Ser17, enhancing its interaction with LC3 to promote mitophagy

(125). However, the regulatory mechanism of dephosphorylation of
Frontiers in Immunology 06
FUNDC1 at Tyr18 remains unclear. These findings highlight the

complex and intricate nature of FUNDC1-mediated mitophagy,

and further research is needed to fully understand its regulation and

signaling pathways.

2.3.2 Phosphorylation-independent mechanisms
of FUNDC1 regulation

Recent research has demonstrated that FUNDC1’s negative

regulation of phosphorylation-independent activity plays a

significant role in mitophagy. Mitochondria-associated

endoplasmic reticulum (MAM) is a dynamic membrane-coupling

region formed by the coupling of the OMM and the ER and is

involved in mitochondrial dynamics, mitophagy, Ca2+ exchange,

and other processes (128). FUNDC1 mediates the formation of the

MAM and accumulates at the MAM, promoting mitochondrial

activity through indirect binding to calnexin (CANX) on the ER

(129). A high expression of FUNDC1 promotes MAM formation,

leads to increased cytosol Ca2+ levels, promotes phosphorylation of

serum response factor, and enhances its binding to the vascular

endothelial growth factor receptor 2 (VEGFR2) promoter (130). As

a result, angiogenesis is encouraged and VEGFR2 expression

is elevated.

Wu et al. (129) found that the association between FUNDC1

and CANX disappears in the late stage of hypoxia, and FUNDC1

mainly interacts with dynamic-related protein 1 (DRP1), which

causes DRP1 to initiate mitochondrial fission and mitophagy at

MAMs. Interestingly, the deubiquitinating enzyme USP19

incorporates deubiquitinated FUNDC1 at the MAM junction,

which enhances the interaction between DRP1 and FUNDC1 to
BA

FIGURE 3

BNIP3L-/BNIP3-mediated and AMPK/ULK1-mediated mechanisms of mitophagy. (A) Phosphorylation of BNIP3L (Ser17, Ser34, and Ser35) enhances
the interaction between BNIP3L and LC3 homologs. PRKA phosphorylates BNIP3L at Ser212 and causes BNIP3L to leave the mitochondria, thereby
hindering mitophagy. Phosphorylation at Ser17 and Ser24 flanking the LIR domain of BNIP3 enhances the BNIP3–LC3 interaction and promotes
mitophagy. Hif-1a enhances mitophagy by promoting the expression of BNIP3 during hypoxia. BNIP3L can be regulated by Parkin ubiquitination.
BNIP3 interacts with PINK1 and promotes PINK1 accumulation on OMM. (B) When activated by AMPK phosphorylation, ULK1 recruits ULK complexes
consisting of ULK1, Atg13, RB1CC1, and Atg101. The activated ULK complex recruits the Beclin1–Atg14L–Vps34–Vps15 complex. This complex is
responsible for the production of Ptdlns3P and the formation of omegasomes at autophagosome formation sites and the recruitment of WIPI2 and
DFCP1. WIPI2 and DFCP1 recruit and bind the complex of Atg16L1–Atg5–Atg12 and mediate covalent modification of PE and Atg8/LC3. ULK1
directly phosphorylates Beclin1 at Ser14 and Ser30, Atg14L at Ser29, and Vps34 at Ser249. Under stress, AMPK phosphorylates Ser555 of ULK1, and
phosphorylated ULK1 in turn reduces the phosphorylation of Thr172 of the AMPK a-subunit. Phosphorylated ULK1 also phosphorylates the receptor
regulating mitophagy. AMPK, adenosine 5′-monophosphate-activated protein kinase; Atg, autophagy-related protein; BNIP3, BCL2-interacting
protein 3; BNIP3L/Nix, BCL2-interacting protein 3-like; DFCP1, double FYVE-containing protein 1; RB1CC1, RB1-inducible coiled-coil protein 1; HIF-
1, hypoxia-inducible factor 1; PI3P, phosphatidylinositol 3-phosphate; PRKA, protein kinase A; ULK1, unc-51-like autophagy-activating kinase 1; Vps,
vacuolar protein sorting-associated protein; WIPI2, WD repeat domain phosphoinositide-interacting protein 2.
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promote mitophagy and mitochondrial fission (131). This suggests

that FUNDC1 might serve as a bridging link between mitophagy

and mitochondrial dynamics. Furthermore, Chen et al. (132) have

discovered that ubiquitination of FUNDC1 at K119, mediated by

the mitochondrial E3 ubiquitin ligase MARCH5, could inhibit

hypoxia-induced mitophagy via the proteasomal degradation of

FUNDC1 during hypoxia.

2.3.3 FUNDC1 and angiogenesis
In the context of AS, neoangiogenesis may increase the flow of

local nutrients and oxygen, promoting the progress and remodeling

of plaques (133, 134). However, due to the vulnerability of the

neovasculature, this may lead to plaque instability, rupture, and

thromboembolism (135, 136). Wang et al. (130) have found that

FUNDC1-specific deletion in ECs disrupts ECs’ ability to form

MAMs and lowers the expression of VEGFR2, which inhibits the

growth of functional blood vessels both in vitro and in vivo.

However, Wang et al. (137) have discovered that FUNDC1

silencing impairs mitophagy flux and worsens angiotensin II (Ang

II)-induced VSMC proliferation and migration. Overexpression of

FUNDC1 inhibits Ang II-induced proliferation and migration of

VSMCs, blocking Ang II-induced expression of cell adhesion

cytokines and matrix metalloproteinase-9, increasing DYm, and

reducing intracellular ROS production (137). These findings suggest

that FUNDC1 has different effects on participation in angiogenesis

in different cell types and more research is needed to fully

understand its role in AS.
2.4 AMPK/ULK1-mediated mitophagy

2.4.1 Role of ULK1 in autophagosome formation
As previously mentioned, ULK complexes and Atg9 are

required for the formation of mitochondrial autophagosomes
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(138). ULK1, Atg13, RB1-inducible coiled-coil 1 (RB1CC1), and

Atg101, which can be activated by adenosine 5′-monophosphate-

activated protein kinase (AMPK) phosphorylation, are the

components of the ULK complex (139). The activated ULK

complex translocates to the ER tubule vesicle region labeled by

Atg9 vesicles and recruits the Beclin1–Atg14L–vacuolar protein

sorting-associated protein (Vps) 34–Vps15 complex (140). This

complex is responsible for the production of phosphatidylinositol 3-

phosphate (PI3P) at the autophagosome formation site and the

formation of omegasomes (141–143). Omegasomes amplify local

PI3P signaling to attract members of the WIPI protein family, such

as WD repeat domain, phosphoinositide interacting 2 (WIPI2), and

double FYVE-containing protein 1 (DFCP1) (144, 145). These

proteins then attract and bind the Atg16L1–Atg5–Atg12 complex,

which is responsible for the covalent modification of PE and Atg8/

LC3 (146). This is a prerequisite for the formation of

autophagosomes. Notably, ULK1 directly phosphorylates Beclin1

at Ser14 and Ser30 (147, 148), Atg14L at Ser29 (149), and Vps34

itself at Ser249 (148), thereby enhancing Vps34 activity, PI3P

production, and initiation of autophagy.

2.4.2 The AMPL/ULK1 axis signaling cascade
AMPK is a metabolic and redox state sensor that is widely

expressed in various tissues and organs. It consists of one catalytic

subunit (a-subunit) and two regulatory subunits (a b-subunit and a

g-subunit). AMPK senses the energy available in cells by binding

directly to adenine nucleotides, and is activated in response to

changes in the ratio of ATP to ADP or ATP to AMP in cellular

energy (150–152). AMPK plays a crucial role in regulating cellular

metabolism by shifting metabolism toward increased catabolism

and decreased anabolism through phosphorylation of key proteins

in various pathways, such as mTORC1 (153), lipid homeostasis

(154, 155), and glycolysis (156, 157). In addition, AMPK is involved

in various physiological processes, such as metabolism, cytoskeleton
BA

FIGURE 4

FUNDC1-mediated regulation of mitophagy. (A) Under physiological conditions, FUNDC1 is phosphorylated at Ser13 by CK2, phosphorylated at
Tyr18 by SRC, and dephosphorylated at Ser17. It suppresses the interaction of FUNDC1 with LC3. BCL2L1 inhibits PGAM5 activity through the BH3
domain and prevents dephosphorylation at Ser13. (B) Under stress conditions, PGAM5 dissociates from BCL2L1 and dephosphorylates Ser13, thereby
promoting FUNDC1-mediated mitophagy. The kinase ULK1 translocates to the mitochondria and phosphorylates FUNDC1 at Ser17. The separation of
CANX from FUNDC1 and the incorporation of deubiquitinated FUNDC1 by the deubiquitinating enzyme USP19 at the MAM junction enhances the
interaction between DRP1 and FUNDC1. BCL2L1, Bcl-2 like protein 1; CANX, calnexin; CK2, casein kinase 2; DRP1, dynamic-related protein 1; ER,
endoplasmic reticulum; FUNDC1, FUN14 domain-containing protein 1; MARCH5, mitochondrial E3 ubiquitin ligase MARCH5; PGAM5, PGAM family
member 5; SRC, SRC proto-oncogene; non-receptor tyrosine kinase; USP, ubiquitin-specific protease.
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assembly, transcriptional control, apoptosis, and autophagy (158,

159). Zhang et al. (160) have shown that AMPKa1 deficiency

impairs autophagy-mediated macromonocyte differentiation and

decreases macrophage survival, attenuating AS in ApoE–/– mice.

Furthermore, Chen et al. (161) believe that chronic exercise training

may improve aortic endothelial and mitochondrial function by

increasing the expression of AMPKa2, decreasing the expression

of BNIP3L and LC3B, and increasing aortic mitochondrial content.

Recent studies have shown that the AMPK/ULK1 axis is critical

for selective mitochondrial clearance (162, 163). Cells deficient in

ULK1 or AMPK show an increased accumulation of damaged

mitochondria (164–166). Hypoxia significantly induces AMPKa1
phosphorylation at Thr172 and phosphorylation of ULK1 at Ser555

and Ser317, whereas phosphorylation of ULK1 at Ser757 is

decreased (163). This may be due to the enhanced combination

of AMPKa1 and ULK1, while inhibiting or silencing AMPKa leads

to the loss of ULK1 phosphorylation at Ser555 and interferes with

the translocation of ULK1 to mitochondria (163). Furthermore,

under glucose starvation, AMPK promotes autophagy by directly

phosphorylating ULK1 at Ser317 and Ser777 (167). Under nutrient-

sufficient conditions, high activity of mTOR prevents ULK1

activation by phosphorylating Ser757 of ULK1 and inhibiting the

interaction between ULK1 and AMPK (167).

Notably, ULK1 regulates AMPK activity by directly

phosphorylating all three AMPK subunits (168). This suggests

that phosphorylation of ULK1 in turn acts in a feedback loop, as

shown in Figure 3B. Although there is currently insufficient

evidence showing that AMPK/ULK1-mediated mitophagy is

relevant to AS, it has been found that translocation of the

apoptosis-triggering factor AIF from mitochondria to the nucleus,

which induces macrophage cell death, is observed in ULK1-

deficient THP-1 cells upon lipopolysaccharide (LPS) plus

nigericin stimulation (169). Additionally, a high-protein diet has

been shown to induce macrophage apoptosis through increased

mTORC1 targets, phosphorylation of ULK1, and concomitant

inhibition of autophagosome formation, ultimately promoting the

progression of AS plaque (170).
2.4.3 Series of AMPK/ULK1 axis and
PINK1/Parkin axis

As mentioned above, the AMPK/ULK1 axis is linked to the

FUNDC1, BNIP3, and BNIP3L-mediated mitophagy axes. In fact,

the AMPK/ULK1 axis also interacts with the PINK1/Parkin axis.

Under hypoxia or glucose or nutrient starvation, AMPK is activated

in the cytoplasm and subsequently phosphorylates Ser555 and

Ser757 of ULK1 (163). ULK1 activation results in the

phosphorylation of Parkin at Ser108 (171). Inhibition of

AMPKa1 activation or silencing of AMPKa1 causes loss of

ULK1 phosphorylation and interferes with ULK1 translocation to

mitochondria. AMPKa1 deficiency impairs autophagy-mediated

macromonocyte differentiation and decreases macrophage

survival, thereby attenuating AS in ApoE–/– mice (160). Notably,

PINK1-mediated phosphorylation of Parkin (Ser65) requires

ULK1-dependent phosphorylation of Parkin at Ser108 (171). This

highlights the critical and early role played by the AMPK/ULK1 axis
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in mitophagy. The interaction between the AMPK/ULK1 axis and

the PINK1/Parkin axis deserves further investigation.

In addition, the effects of AMPK and ULK1 on the PINK1/

Parkin axis may be independent. Overexpression of AMPKa2 can

interact with Ser495 - the phosphorylation site of PINK1 - to

enhance mitophagy mediated by it (172). Lee et al. (173) have

reported that Parkin is an AMPK substrate and can be activated by

AMPK phosphorylation at Ser9. As a result, cell death during

necrotizing apoptosis is decreased, and receptor-interacting

protein kinase 3 (RIPK3) is polyubiquitinated. Likewise,

according to Hung et al. (171), ULK1 phosphorylates Parkin at

Ser108 and facilitates Parkin translocation to the mitochondria.

Inhibition of ULK1 or mutation of this phosphorylation site results

in delayed activation of Parkin and defective mitophagy. Thus, as an

early mechanism of mitophagy, the AMPK/ULK1 axis is located

upstream of many classical mitophagy pathways. In addition,

independent of AMPK, the mitophagy adaptors NDP52 and

OPTN can also recruit ULK1 (174). In fact, it is well known that

the AMPK/ULK1 axis plays an important role in the prevention and

treatment of AS. It can prevent oxidative stress and inflammation,

control energy metabolism, prevent apoptosis, play anti-

proliferation and anti-migration roles in VSMCs, and inhibit

vascular calcification, to protect ECs (160, 175, 176). However,

further research is necessary to determine whether AMPK/ULK1

can control mitophagy to prevent and treat AS.
2.5 Other receptors for mitophagy

In addition to the above pathways, it has been found that some

receptors are located in the OMM, such as BECN1-regulated

activation molecule in autophagy protein 1 (AMBRA1) (177),

Bcl-2-like protein 13 (BCL2L13) (178), and FKBP prolyl

isomerase FKBP8 (179). These receptors share a common LIR

motif in their N-terminal domain that can interact with LC3B.

According to studies, AMBRA1 has the ability to start mitophagy in

both Parkin-dependent and Parkin-independent ways. AMBRA1

phosphorylation at Ser1014 in LIR regulates AMBRA1–LC3

interaction and mitophagy activity (180). This motif has the

capacity both to enhance Parkin-mediated mitochondrial

clearance and to control Parkin-independent mitophagy (181). As

a result of damaged mitochondria, choline dehydrogenase also

builds up at the OMM and interacts with p62 to trigger the

recruitment of LC3 and autophagosomes (182). A recently

identified receptor that controls mitophagy is the IMM-localized

protein prohibitin 2 (PHB2), which differs from the OMM-localized

mitophagy receptor (183, 184). PHB2 depletion can prevent the

stabilization of PINK1 and recruitment of Parkin, UB, and OPTN to

mitochondria via the PARL–PGAM5 axis, resulting in the

inhibition of mitophagy upon mitochondrial membrane

depolarization or aggregation of misfolded proteins (185).

Overexpression of PHB2 directly induces Parkin recruitment to

mitochondria. In fact, Parkin can directly bind to PHB2 through its

RING1 domain and promote the ubiquitination of PHB2, thereby

enhancing the interaction between PHB2 and LC3 (186). In

addition, PHB2 may play an important role in maintaining the
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contractile phenotype of VSMCs by interacting with cartilage

oligomeric matrix protein (COMP) and regulating mitochondrial

oxidative phosphorylation (187). However, it is not yet known

whether the mitophagy receptors on the OMM and IMM act

synergistically to promote mitophagy.

MAMs play important roles in Ca2+ exchange, mitochondrial

dynamics, and lipid metabolism. Numerous proteins in MAMs

have been implicated in mitophagy (188). For example,

Phosphofurin acidic cluster sorting protein-2 (PACS-2) plays a

critical role in cellular functions by regulating the formation and

transfer of cargo proteins at MAMs also in addition to regulating

mitochondrial dynamics, endoplasmic reticulum stress, Ca2+

transport, autophagy, and apoptosis (189). Studies have shown

that ox-LDL induces clustering of PACS-2 at mitochondria–

endoplasmic reticulum contact sites, thereby increasing MAM

contacts to promote the formation of phagosomal membranes

(190, 191). The knockdown of PACS-2 interferes with

mitochondrial formation and mitophagy, thereby increasing

apoptosis of VSMCs, which may contribute to the formation of

unstable AS plaques.

Recently, the disruption of lipid homeostasis in AS has received

increased attention. Cardiolipin (CL) is a phospholipid molecule

that exists in the IMM and translocates to the OMM upon

mitochondrial damage. Externalized CL can interact with the

dynamin-related protein Drp1 and promote its oligomerization,

which is crucial for mitochondrial fission (192, 193). Furthermore,

externalized CL induces a proinflammatory response. The

proinflammatory response is associated with the activation of

NLRP3 inflammasome (194, 195) and the activation of

inflammatory signal transduction upstream from NF-kB (196). In

addition, CL is particularly susceptible to lipid peroxidation.

Oxidized CL increases the concentration of Ca2+ in monocytes/

macrophages and neutrophils, and elevates the levels of the

adhesion cytokines ICAM-1 and VCAM-1 in ECs (197). The

hydrolysis of CL may lead to endothelial barrier dysfunction and

necrosis (198). The accumulation of oxidized CL in OMM, leading

to mPTP opening, and the release of cytochrome c from the

mitochondria to the cytosol, induces apoptosis and programmed

cell death (199, 200). Notably, externalized CL interacts with LC3 at

the OMM, identifying damaged and dysfunctional mitochondria,

and initiating mitophagy (201). Further research has found that CL

accumulates at MAMs after mitophagy stimulation, interacting not

only with MFN2 and CANX, but also with the multiple molecular

complexes (AMBRA1/BECN1/WIPI1) involved in autophagosome

formation (202). This suggests that CL plays an important role in

both the early and late stages of mitophagy. Inhibition or

knockdown of the convertase catalyzing the synthesis of CL with

a high peroxidation index promotes mitophagy by up-regulating

the expression of PINK1 and promoting the recruitment of Parkin

to dysfunctional mitochondria, thereby alleviating oxidative stress,

insulin resistance, and mitochondrial dysfunction (203–205).

Although there no studies have yet shown a relationship between

CL-related mitophagy and AS, it has been found that antibodies to

oxidized CL correlate with the extent of AS progression, which

warrants further investigation (206).
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Ceramides are a class of bioactive lipids with structural and

regulatory functions. Functionally, ceramide inhibits respiratory

chain activity, induces ROS production and oxidative stress,

disrupts DYm, and may even induce apoptosis (207, 208). There

is a large amount of evidence that ceramides are involved in the

pathophysiological process of AS. Studies have shown that a high

ceramide risk score is significantly associated with a higher risk of

all-cause death in patients with coronary artery disease (209, 210).

From the cellular level, ceramide may affect the activity of ECs by

directly controlling NO levels (211, 212), promoting the

transformation of macrophages into foam cells, mediating the

apoptosis of foam cells (213), and inducing osteogenic

differentiation of VSMCs (214). Recently, Vos M. et al. (215)

showed that the accumulation of mitochondrial ceramide is

sufficient to damage the mitochondrial electron transport chain,

increase ROS production, and promote mitophagy. The ceramide in

the mitochondrial membrane interacts directly with LC3-II on the

autophagosomal membrane, thereby selectively targeting

mitochondria for autophagy (216). Unfortunately, there has been

no study on the relationship between ceramide and AS in the

context of mitophagy.
3 Mechanisms and therapeutic
advances of mitophagy in cells

3.1 ECs

3.1.1 Mitophagy, ROS, and oxidative stress in ECs
Under normal conditions, ECs lining the inner surface of blood

vessels maintain vascular homeostasis by regulating antithrombotic

and anti-inflammatory processes, vascular tone, adhesion, and

proliferation of VSMCs (217). In the development of AS, various

factors cause endothelial dysfunction, resulting in vascular

insufficiency, permeability, and proliferation of VSMCs, among

other effects (218). However, a growing number of studies have

shown that mitophagy plays an important role in endothelial

dysfunction in AS. Mitochondria produce the vast majority of

ROS, promoting poor activation/function of ECs, which leads to

increased intravascular thrombosis, leakage, and inflammation

(219–221). Therefore, regulating ROS-triggered oxidative damage

in ECs may be an important way to prevent AS exacerbation.

Copper oxide nanoparticles can directly trigger oxidative stress

and inflammation, leading to significant genotoxicity and

cytotoxicity. Zhang et al. (222) have shown that copper oxide

nanoparticles are ubiquitously deposited in lysosomes, leading to

lysosomal dysfunction, impairment of autophagic flux, and

accumulation of undegraded autophagosomes. They also induce

EC death through a caspase-independent pathway, resulting in

endothelial lesions. The mitophagy inhibitor Mdivi-1 specifically

inhibits mitophagy, significantly exacerbating copper oxide

nanoparticle-induced death of ECs (223). Activation of PINK1-

mediated mitophagy contributes to the removal of damaged

mitochondria in copper oxide nanoparticle-induced vascular
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ECs (224). This indicates that mitophagy has a protective effect on

the copper oxide nanoparticle-induced death of ECs.

Some substances, such as melatonin and hydrogen sulfide, have

been shown to exert a protective effect on ECs by alleviating

oxidative stress damage through the regulation of mitophagy-

related pathways. Tert-butyl hydroperoxide (TBHP) is a potent

oxidizing agent that is commonly used to induce oxidative stress in

ECs (225, 226). Oxidative stress is a key contributor to the

development of AS. Melatonin reverses the damage in ECs caused

by TBHP by enhancing the phosphorylation of AMPKa, promoting

transcription factor EB (TFEB) nuclear translocation, up-regulating

the protein levels of LC3, Parkin, and PINK1, and decreasing p62

(227). This indicates that melatonin may protect ECs against

oxidative stress injury via Parkin and AMPK-TFEB mediated-

mitophagy. In addition, hydrogen sulfide is a direct scavenger of

ROS and peroxynitrite. It can protect cells from oxidative stress by

reducing mitochondrial ROS production, increasing ATP synthesis,

and preventing mitochondrial membrane depolarization at the

cardiovascular and cellular levels (228). Cysteine b-synthase is

the predominant hydrogen sulfide-producing enzyme in ECs.

Silencing cysteine b-synthase in ECs significantly increases ROS

production and ultimately reduces the lifespan and resilience of

cells by affecting the mechanisms involved in MFN2 down-

regulation, uncoupling of endoplasmic reticulum mitochondrial

contact, increasing mitochondrial fission, and enhancing BNIP3-

induced mitophagy (229). However, exogenous hydrogen sulfide

may protect aortic ECs from high glucose and palmitate by

inhibiting apoptosis and oxidative stress and up-regulating

mitophagy through the PINK1/Parkin signaling pathway (230).

Notably, p66Shc acts as an oxidoreductase that can generate

ROS by oxidizing cytochrome c. Piao et al. (231) have shown that

the knockdown of p66shc inhibits mitochondrial ROS increase,

membrane potential depolarization, and mitochondrial fusion

triggered by the deletion of the CR6-interacting factor CRIF1. It

also inhibits CRIF1 deficiency-induced mitophagy by reducing the

levels of LC3-II/I, PINK1, and Parkin. Indeed, autophagy initiation

requires processes such as autophagosome formation, fusion of

autophagosomes with lysosomes, and degradation of autophagy

substrates in lysosomes. LC3 is mainly involved in the formation of

autophagosomes. In this study, only the expressions of LC3-II/I,

PINK1, and Parkin, and the co-localization of LC3 with the nucleus,

are observed, which cannot prove that the subsequent procedures of

autophagy would take place.
3.1.2 Mitophagy, glucose, and lipids in ECs
Exposure of ECs to high levels of glucose and lipids induces

excessive production of ROS and reduces mitophagy, thereby

accelerating the accumulation of dysfunctional mitochondria.

This, in turn, results in poor EC function and apoptosis, and

ultimately contribute to the development and progression of AS

(232–235). Similarly, mitophagy deficiency in ECs accelerates the

accumulation of dysfunctional mitochondria in ECs and triggers

oxidative stress, thereby accelerating the aging of vascular ECs

(236). Specifically, the most common type of mitophagy in ECs

under high-glucose and -lipid conditions is PINK1-/Parkin-
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induced mitophagy. High levels of glucose and lipids decrease the

expression of PINK1, Parkin, LC3II, Beclin1, and other mitophagy-

related proteins in ECs, whereas the expression of p62 is up-

regulated (8, 230, 236). Knockout of PINK1 or Parkin may inhibit

mitophagy, resulting in the accumulation of mitochondrial

fragments and leading to mitochondrial dysfunction, ROS

overproduction, and apoptosis in ECs (237). Interestingly, the

advanced glycation end products and their main precursor

(methylglyoxal) may play an important role in the progression of

AS and plaque rupture. Glycosylation leads to structural

modifications and functional changes in the fibrinogen molecule,

forming a cleavage-resistant, dense, and less porous fibrin network

that leads to the progression of AS in diabetic patients (238, 239).

The oxidative stress associated with the diabetic metabolite

methylglyoxal may cause mitochondrial damage and the

activation of Parkin-mediated mitophagy, resulting in the

dysregulation of junction proteins and impaired permeabilization

of ECs (240). Furthermore, Li et al. (233) have suggested that ox-

LDL-induced endothelial injuries may be associated with PTEN

overexpression. Inhibition of PTEN expression protects ECs by

activating the AMPK/cAMP-response element-binding protein

CREB/MFN2/mitophagy signaling pathway (233). These studies

suggest that high glucose and lipid levels inhibit mitophagy in ECs

by reducing the expression levels of ubiquitin-mediated

mitophagy proteins.

Several drugs have shown properties that modulate mitophagy

function (as shown in Tables 1, 2). The combination of rivaroxaban

and aspirin may increase the expressions of PINK1 and Parkin,

restore DYm, and decrease the level of ROS in high-glucose-

induced ECs (263). Scutellarin, a plant extract, up-regulates

mitophagy through the PINK1/Parkin signal pathway, thereby

resisting hyperglycemia-induced endothelial injury (244).

Moreover, resveratrol also reduces hyperlipidemia-induced

endothelial injuries by enhancing BNIP3-associated mitophagy

(241). This implies that promoting mitophagy protects

mitochondrial integrity and prevents EC damage induced by high

levels of glucose and lipids.

In contrast, another study has found that ox-LDL can up-

regulate the expression of NR4A1, a member of nuclear receptor

subfamily 4A, and CaMKII, a calcium/calmodulin-dependent

protein kinase, by post-translational modification, thereby

activating Parkin-mediated mitophagy (266). The lack of NR4A1

mitophagy protects excess aortic ECs from ox-LDL-induced

apoptosis. There are two possible reasons for this phenomenon.

First, excessive mitophagy may consume mitochondrial mass,

leading to an energy shortage and poor mitochondrial function.

Second, acute lipid challenge up-regulates cellular autophagy in

response to injury, but long-term lipid stimulation decreases

cellular autophagy by inhibiting autophagosome–lysosome fusion

(267). In chronic lipid loading, decreased macrolipophagy may

promote cellular lipid accumulation, forming a vicious cycle of

excessive lipid accumulation. In addition, human umbilical vein

endothelial cells (HUVECs) exposed to particulate matter exhibit a

significant increase in ROS production, inflammatory response,

mitophagy, and apoptosis under high-glucose conditions (261).

Vitamin D effectively attenuates oxidative stress, mitophagy, and
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inflammation in mice induced by streptozotocin and particulate

matter (261). Moreover, in the thoracic aorta of diabetic mice with

high-glucose- and carbonyl cyanide 3-chlorophenylhydrazone

(CCCP)-induced ECs, salvianolic acid B significantly increases the

expression of the apoptosis regulator Bcl-2, decreases the expression

of the apoptosis regulators Bax, Beclin1, Parkin, and PINK1,

inhibits mitophagy, and protects ECs from apoptosis (247). By

comparing the findings of these studies, we speculate that acute

exposure to hyperglycemia is an acute stress condition. Cells repair

mitochondrial dysfunction by activating mitophagy. However,

long-term exposure to hyperglycemia causes decreased glycolysis

and massive generation of ROS, which inhibits ATP production and

thus leads to suppressed mitophagy (268).
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3.1.2 Mitophagy and hypoxia in ECs
Recent studies have demonstrated that the imbalance between

oxygen supply and demand in the arterial vessel wall is a key

contributor to AS and plaque instability (269). Indeed, hypoxia can

cause ROS overproduction and poor mitochondrial function,

leading to enhanced local inflammatory responses and EC injury

and death and ultimately promoting the formation and progression

of AS plaques (270–273). The beneficial effects of mitophagy

activation in protecting cells after hypoxia are controversial. Some

scholars believe that mitophagy activation can reduce hypoxia-

induced impairment of endothelial function by improving

mitochondrial quality control, reducing ROS production, and

increasing cell viability and proliferation (274–276). Conversely,
TABLE 1 Progress of natural compounds in regulating mitophagy in AS.

Molecule Model Treatment Effects of mitophagy Function Reference

Resveratrol HUVEC ox-LDL
The levels of BNIP3, Atg5, Beclin1, and AMPK

increased
It enhances mitophagy, reduces endothelial

dysfunction, and protects ECs
(241)

13-
Methylberberine

HUVEC H2O2
Levels of LC3-II/I increased, and levels of p62

decreased
It enhances mitophagy, reduces endothelial

dysfunction, and protects ECs
(242)

Puerarin HUVEC LPS Levels of Atg5, Atg7, and Parkin increased
It enhances mitophagy, reduces endothelial

dysfunction, and protects ECs
(243)

Scutellarin HUVEC High glucose
Levels of LC3-II, Beclin1, Atg5, PINK1, and
Parkin increased, and levels of p62 decreased

It enhances mitophagy, reduces endothelial
dysfunction, and protects ECs

(244)

GSCE HAEC
High glucose
and palmitic

acid

Levels of LC3B-II, PINK1, Parkin, and p-AMPK
increased, and levels of p62 decreased

It decreases mitophagy and protects ECs (245)

Aloe-emodin
derivative

HAEC,
ApoE-/mice

HFD
Levels of LC3 II/I, AMBRA1, Beclin1, and Parkin

increased, and levels of p62 decreased
It enhances mitophagy in ECs (246)

Salvianolic acid
B

HUVEC,
db/db mice

High glucose
or CCCP

Levels of Beclin1, Parkin, and PINK1 decreased
It enhances mitophagy, reduces endothelial

dysfunction, and protects ECs
(247)

SL CMECs
Oxygen–
glucose

deprivation

Levels of p62, LC3-II/I, PINK1, and Parkin
decreased

It inhibits mitophagy and protects ECs
function

(248)

ECE VSMC
Serum from

SHR
Levels of BNIP3, Atg12, and LC3-II/I increased,

and levels of p62 decreased
It enhances mitophagy and decreases

vascular calcification
(249)

Astaxanthin VSMC Ang II Levels of PINK1 and Parkin increased
It enhances mitophagy and restrains the

proliferation of VSMCs
(250)

Astragaloside
IV

VSMC Ang II Levels of Parkin increased
It enhances mitophagy and protects cellular

mitochondrial function
(251)

Celastrol VSMC Ang II Levels of Parkin and PINK1 increased
It reduces oxidative stress and maintains
mitochondrial homeostasis in VSMCs

(252)

Taurine THP-1 LPS/IFN-g
Levels of Parkin and p62 increased, and levels of
PINK1, Beclin1, LC3-II/I, and VDAC1 decreased

It blocks mitophagy and reduces excessive
proinflammatory polarization of

macrophages
(253)

Fucoxanthin RAW 264.7 Palmitic acid
Levels of p62, PINK1, Parkin, p-AMPK, BNIP3,

Beclin1, and Atg5 increased
It enhances mitophagy, modulates lipid
metabolism, and decreases inflammation

(254)

Artemisinin
RAW264.7,
ApoE-/-
mice

HFD, ox-LDL
Levels of LC3-II/I and p-AMPK increased, and
levels of AMPK, p-ULK1, p-mTOR, and p62

decreased

It enhances autophagy and suppresses
inflammatory responses

(255)

Alliin THP-1 LPS
Levels of LC3-II, PINK1, and Parkin increased,

and levels of p62 decreased
It enhances mitophagy and attenuates

pyroptosis
(256)
f

CCCP, carbonyl cyanide 3-chlorophenylhydrazone; CMECs, cardiac microvascular endothelial cells; ECE, Ecklonia cava extract; GSCE, Ginseng Panax notoginseng Chuanxiong extract; HAEC,
human aortic endothelial cell; IFN-g, interferon g; SHR, spontaneously hypertensive rat; SL, Shenlian extract.
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Wang et al. (277, 278) believe that inhibiting hypoxia-induced

autophagy/mitophagy can reduce the inflammatory response,

injury, and apoptosis in ECs. Li et al. (248) have found that

Shenlian extract may inhibit mitophagy through the PINK/Parkin

pathway and regulate mitochondrial function to prevent hypoxia-

induced EC dysfunction.

In fact, there may be multiple reasons for the activation of

autophagy in ECs under hypoxia. Autophagy can be considered a

cell protection/stress adaptation mechanism that ECs activate in

response to energy deprivation (hypoxia, ischemia, nutrient

deprivation, etc.) to protect themselves and maintain their own

functions. From the perspective of energy metabolism, hypoxia is

often accompanied by the consumption of nutrients. This activates

AMPK, which phosphorylates and activates ULK1 to initiate

autophagy (279). Regarding autophagy procedures, autophagy

requires the formation of autophagosomes, the fusion of

autophagosomes with lysosomes, and the degradation of

autophagy substrates in lysosomes. Although some experiments

have observed autophagosome formation and upstream regulatory

mechanisms, this does not necessarily mean that mitophagy can

successfully occur at the end or reverse the impairment due to

insufficient mitophagy.

In the aforementioned studies, hypoxia resulted in the

appearance of a large number of autophagosomes in tissues and
Frontiers in Immunology 12
cells, visible under transmission electron microscopy, and increases

in the level of lysosomes co-localized with autophagosomes.

However, the investigators concluded that hypoxia-induced

hyperactivation of mitophagy, the opening of swollen

mitochondria, fragmentation of mitochondrial ridges, and even

fragmentation of the cytoplasm continued, although the ROS-

scavenging ability of autophagosomes was reduced. (248).

Existing evidence suggests that excessive accumulation of

autophagosomes can interfere with cell function by damaging

organelles and disrupting cell transport, ultimately leading to cell

death (280). Moreover, under long-term stress conditions such as

nutrient deprivation, hypoxia/ischemia, and oxidative damage,

excessive activation of autophagy leads to excessive self-

consumption and bioenergetic failure (281). Nevertheless, the

detailed mechanism by which cell death occurs is unclear.

Collectively, mitophagy in ECs is induced by high blood glucose

and lipid levels, ROS, hypoxia, and other vascular risk factors. Basal

mitophagy is required to maintain EC function. However,

insufficiently activated mitophagy to eliminate damaged

mitochondria impairs vascular endothelial function, thereby

promoting the development of AS. Under long-term stress

conditions such as nutrient deprivation, hypoxia/ischemia, or

oxidative stress, mitophagy may lead to cell death in a time-

dependent manner.
TABLE 2 Progress of drug regulation of mitophagy in AS.

Molecule Model Treatment Effects of mitophagy Function Reference

Melatonin

VSMC b-GP
Levels of LC3-II/I, p-AMPK, p-ULK1, and

Beclin1 increased, and levels of p62 decreased
It enhances mitophagy and inhibits VSMC
calcification, apoptosis, and inflammation

(257)

VSMC b-GP
Levels of LC3-II/I and p-AMPK increased,

and levels of p62 decreased

It enhances mitophagy, inhibits apoptosis, and
attenuates the osteogenic-like phenotype

transition of VSMCs
(258)

HUVEC,
flap model

rat
TBHP

Levels of LC3B-II, PINK1, Parkin, and p-
AMPK increased, and levels of p62 decreased

It activates mitophagy and alleviates oxidative
stress and apoptosis

(227)

RAW264.7,
ApoE–/–

mice

ox-LDL,
HFD

Levels of LC3-II/I and Parkin increased
It activates mitophagy and inhibits NLRP3

inflammasome activation
(259)

Pitavastatin
EPC, ApoE–/

– mice
HFD

Levels of LC3B-II, PINK1, and Parkin
increased, and levels of p62 decreased

It enhances mitophagy, protects EPC
proliferation, and promotes vascular re-

endothelialization
(260)

Vitamin D HUVEC
PM2.5 and
high glucose

Levels of LC3B, BNIP3, and p62 decreased
It eliminates oxidative stress, inhibits

mitophagy, and protects cells
(261)

Dexmedetomidine RAW 264.7 LPS Levels of LC3B-II and PINK1 increased
It enhances mitophagy and alleviates apoptosis

and inflammation
(262)

Liraglutide HUVEC High glucose
Levels of LC3B-II, PINK1, and Parkin

increased
It enhances mitophagy, reduces endothelial

dysfunction, and protects ECs
(232)

Rivaroxaban and
aspirin

HCAEC High glucose Levels of Parkin and PINK1 increased
It enhances mitophagy, inhibits ROS

production, and protects ECs
(263)

Coenzyme Q10

HAEC and
HUVEC

NRTI Levels of LC3II/I decreased
It inhibits mitophagy and reduces endothelial

dysfunction
(264)

RAW264.7 LPS/ATP
Levels of LC3II/I, Parkin, Beclin1/Bcl-2, and

p62 increased
It enhances mitophagy and inhibits NLRP3

inflammasome activation
(265)
f

b-GP, b-sodium glycerophosphate; EPC, endothelial progenitor cell; HAEC, human aortic endothelial cell; HCAEC, coronary artery endothelial cell; HFD, high-fat diet; NRTI, nucleoside reverse
transcriptase inhibitor; TBHP, tert-butyl hydrogen peroxide.
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3.2 VSMCs

3.2.1 Mitophagy and ox-LDL in VSMCs
VSMCs are a significant cellular component of the blood vessel

wall, which regulates blood pressure and blood flow through

vasoconstriction and vasodilation (282). Under physiological

conditions, differentiated VSMCs are located in the arterial intima

and have a contractile phenotype. It is characterized by less

proliferation, less extracellular matrix secretion, and the

expression of specific contractile proteins such as smooth muscle

myosin heavy chain, smooth muscle a-actin, and calmodulin (283–

285). However, vascular damage results in the loss of VSMC

contractility and a transition to a proliferative phenotype,

migrating to the intimal layer of the vessel wall, which accelerates

the formation of AS plaques (286). With the development of AS

plaques, the apoptosis and extracellular matrix degradation of

VSMCs increase, rendering them more susceptible to rupture

(287). Therefore, the regulation of VSMC phenotype,

proliferation, and death is the key to stabilizing AS plaques.

In VSMCs, ox-LDL may induce mitochondrial DNA damage in

AS plaques, leading to decreased aerobic respiration in the cap and core

regions (288) and promoting VSMC phenotype conversion (289) and

calcification (290), ultimately resulting in VSMC apoptosis (291).

Apoptosis of VSMCs in the plaque promotes the formation of

unstable plaques (292). Recent studies have shown that mitophagy

regulates the VSMC phenotype and proliferation, and can prevent

apoptosis caused by low levels of ox-LDL (293) or autophagy (294).

First discovered by Swiader et al. (293), knockdown of PINK1 or

Parkin impairs mitophagy flux and increases ox-LDL-induced

apoptosis in VSMCs. However, overexpression of PINK1 and Parkin

can activate granulocyte autophagy and protect VSMCs. It may also

suppress NLRP3 inflammasome hyperactivation to reduce

inflammation in AS plaques (295) and promote a compensatory

glycolytic program linked to AMPK and Hex2 in response to

mitochondrial dysfunction (296).

3.2.2 Mitophagy, ROS, and oxidative
stress in VSMCs

The production of ROS and oxidative stress are important

factors contributing to VSMC proliferation. Several studies have

demonstrated the role of ROS in VSMC proliferation. For example,

hydrogen peroxide (H2O2), a type of ROS, was found to induce the

proliferation of VSMCs in vitro (297, 298). Similarly, angiotensin II

(Ang II) is a peptide hormone that regulates blood pressure and

fluid balance. Studies have shown that it can cause mitochondrial

fragmentation and dysfunction, leading to increased production of

ROS and oxidative stress in VSMCs (250). This can promote the

proliferation and migration of VSMCs (297, 299). Geng et al. (252)

demonstrated that nuclear receptor NR4A1 controls mitophagy and

mitochondrial fission in VSMCs to maintain mitochondrial

homeostasis and protect VSMCs from Ang II-induced oxidative

stress damage. Celastrol restores mitochondrial autophagy flux in

VSMCs through up-regulating nuclear receptor NR4A1 expression.

Meanwhile, Wang et al. (300) suggested that corticostatin can

inhibit mitophagy through its receptor somatostatin receptor
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types 3 and 5, thereby reducing the Ang II-induced production of

ROS and proliferation of VSMCs.

Vascular calcification is a marker of vascular stiffness in AS. It is

caused by advanced glycation end products and excess ROS (301–303).

Excessive ROS production can lead to oxidative stress, which has a

destructive effect on lysosomal membrane integrity, resulting in the

release of lysosomal hydrolases and insufficient mitophagy after

prolonged exposure (301, 304, 305). This is primarily connected to

the onset and development of vascular calcification. The change in

VSMC phenotype is a crucial factor in vascular calcification, and the

transition from a contractile to an osteogenesis phenotype promotes

vascular calcification (306). There have been groundbreaking advances

in the regulation of VSMC phenotype conversion with certain drugs.

Melatonin protects VSMCs from calcification by promoting

mitochondrial fusion and mitophagy through the AMPK/mTOR/

ULK1 pathway, thus reducing the risk of AS (307). In this process,

the dwarf-related protein Runx2 and cleaved caspase-3, which regulate

osteogenic phenotype and transcription factors, are down-regulated.

This indicates that mitophagy and mitochondrial fusion play vital roles

in regulating the phenotype of VSMCs and the development of

vascular calcification, which is a breakthrough in reducing the risk of

AS. In addition, metformin has also been proven to affect

mitochondrial biogenesis by increasing mitophagy, thereby

preventing b-glycerophosphate-induced osteogenic phenotypic

transformation of VSMCs (258).

Aging is a well-known risk factor for AS. Oxidative stress and ROS

may be key to the link between aging and vascular calcification (308).

Tyrrell et al. (309, 310) have shown that aging in the presence of

normal lipids can lead to mitochondrial dysfunction, the activation of

mitophagy, and an increase in the levels of the proinflammatory

cytokine IL-6 in the aorta. Meanwhile, enhancing mitophagy by

adding spermidine to drinking water during hyperlipidemia inhibits

aortic mitochondrial dysfunction, IL-6 levels, and the development of

AS with age (311). Excessive accumulation of lipids is an important

factor that leads to vascular aging (312). Uchikado et al. (313) have

found that ox-LDL induces mitochondrial division via the combination

of lectin-like ox-LDL scavenger receptors and angiotensin type II1

receptors, and the rapidly accelerated fibrosarcom (RAF) proto-

oncogene serine/threonine-protein kinase CRAF/mitogen-activated

protein kinase MEK/extracellular signal-regulated kinase ERK

pathway, causes massive production of ROS, leading to

mitochondrial dysfunction and aging. However, inhibition of the

angiotensin type II1 receptor attenuates senescence by blocking this

cascade and inducing the replacement of autophagy by mitophagy

through the CRAF/MEK axis and mitochondrial quality control

processes in human VSMCs, which are dependent on Ras-related

protein (313). Additionally, astragaloside IV alleviates the structural

and biochemical abnormalities caused by Ang II in VSMCs by

eliminating mtROS levels and enhancing both mitophagy and

mitochondrial biosynthesis (251).
3.2.3 Mitophagy and metabolic reprogramming
of VSMCs

Recent studies have shown that increased expression of

pyruvate dehydrogenase kinase isotype PDK4 is associated with
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calcified vessels in patients with AS (314). Pyruvate produced

during glycolysis is transported to the mitochondria under

normoxic conditions, where it is converted to acetyl-CoA by

pyruvate dehydrogenase complexes and then enters the

tricarboxylic acid cycle (315, 316). However, under hypoxic

conditions, pyruvate dehydrogenase complexes are inhibited,

leading to reduced mitochondrial tricarboxylic acid cycling

activity and increased conversion of pyruvate to lactate in the

cytoplasm, known as the Warburg effect (317, 318). This

metabolic shift is observed in calcified vessels in patients with AS

(314). Recent research has shown that the metabolic

reprogramming of VSMCs toward high-rate glycolysis and lactate

production in the cytosol is driven by PDK4 (319). However, PDK4

inhibition promotes lysosomal activity and mitophagy, reducing

VSMC calcification, and alleviating AS (319). In addition, lactic acid

inhibits BNIP3-mediated mitophagy, leading to VSMC calcification

in vitro (320). Further research has revealed that lactate may inhibit

mitophagy by inducing apoptosis and accelerating the phenotypic

transition of osteoblasts and calcium deposition in VSMCs through

activation of the NR4A1/DNA-dependent protein kinase catalytic

subunit/cell tumor antigen p53 pathway (321). Notably, metabolic

reprogramming and mitophagy seem to interact (322). Mitophagy

controls metabolic reprogramming, which has an impact on how

cells develop and differentiate (323, 324). Therefore, targeting

mitophagy and metabolic reprogramming in VSMCs may hold

promise as novel treatments for AS.

3.2.4 Mitophagy in VSMCs may not
always be beneficial

The migration of VSMCs from the vascular media to the intima is

a key factor in the pathogenesis of AS. Microtubules, an important part

of the cytoskeleton, play an important role in VSMCs’ migration. A

balance between dynamically unstable and stable microtubules is

required for cell migration, and the microtubule stability is regulated

by multiple microtubule-associated proteins and post-translational

modifications (325). KAT2a is a histone acetyltransferase that

increases the acetylation of tubulin-a (326). Acetylation of tubulin-a
increases the polymerization and stability of microtubules, ultimately

inhibiting the directional migration of cells (327, 328). However,

activation of autophagy selectively degrades KAT2a, disrupts the

microtubule stability, and promotes the directional migration of

VSMCs (329). Further research has revealed that specific deletion of

ULK1 in VSMCs can inhibit the autophagic degradation of KAT2A,

which increases the protein level of acetylated tubulin-a and inhibits

the directional migration of VSMCs and the formation of new intima

(330). Thus, inhibiting autophagy in VSMCs may be a crucial

therapeutic strategy for AS. The relationship between autophagy and

microtubule stability remains controversial. Choi et al. (331) have

found that glucocorticoids induce microtubule dysfunction and inhibit

autophagy by activating mTOR, increasing the protein level of SCG10,

a microtubule destabilizing protein, and finally inducing microtubule

instability. Autophagy increases microtubule stability by degrading

SCG10 and promotes axonal regeneration after injury (332).

Kirchenwitz et al. (333) have found that SMER28, an inducer of

autophagy, significantly alters microtubule dynamics in cells,
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promotes acetylation of microtubules, and increases resistance to

excitotoxin-induced axonal degeneration.

Apelin is an endogenous ligand of the G protein-coupled receptor

APJ. Both apelin and APJ receptors are expressed in VSMCs and exert

a variety of effects on the cardiovascular system, namely, angiogenesis,

vasodilation, and cardiac contractility (334). He et al. (335) have shown

that in the AS lesions of ApoE-/- mice and VSMCs induced by apelin-

13, the expression of several mitophagy-related proteins, such as

PINK1, Parkin, p-AMPKa, and VADC1, is significantly up-

regulated. They believe that PINK1/Parkin-mediated mitophagy

promotes apelin-13-induced human aortic VSMC proliferation by

activating p-AMPKa and exacerbates the progression of AS lesions

in vivo. Furthermore, Chen et al. (336) have confirmed this view further

and found that mitochondrial calcium uniporter uptake-dependent

mitochondrial calcium-induced mitophagy is involved in the

proliferation of VSMCs induced by apelin-13. In fact, some scholars

believe that apelin and APJ receptors are protective against AS.

Kostopoulos et al. (337) have found that apelin expression is

negatively correlated with AS by analyzing human aorta and

coronary arteries using immunohistochemical staining, concluding

that apelin and its APJ receptor have anti-AS effects in human

arteries. Chun et al. (338) have found that apelin produces an anti-

AS effect by promoting nitric oxide production and inhibiting the cell

signaling of Ang II. Additionally, apelin-13 treatment improves blood

lipid levels and reduces the vulnerability of AS plaque (339). Apelin

inhibits the increased proliferation of cells and blocks the progression

of the cell cycle in VSMCs in response to hypoxia. This may be due to

apelin's inhibition of autophagy levels in VSMCs. Zhang et al. (340)

have shown that apelin protects VSMCs from apoptosis and inhibits

the migration of VSMCs under hypoxic conditions. Another study

found that apelin can inhibit the osteogenic differentiation of VSMCs

and has a protective effect on the calcification of arteries (341).

Therefore, the role of the apelin/APJ system in VSMCs needs

further investigation.

In summary, most scholars believe that autophagy deficiency in

VSMCs promotes an unstable plaque phenotype in AS (342). As a

regulatory mechanism of mitochondrial homeostasis, mitophagy

may protect VSMCs by regulating ROS generation, oxidative stress,

and metabolic levels and by preventing VSMCs from phenotype

change, proliferation, and death. This provides possibilities for the

prevention and treatment of atherosclerotic, unstable plaques.

Although current studies believe that inhibition of autophagy can

prevent abnormal proliferation and migration of VSMCs, the

degree and duration of autophagy are essential for cell health, and

different stress conditions may also be significant reasons for the

divergence of research conclusions. In conclusion, new therapies for

AS that focus on mitophagy in VSMCs may show great prospects

and need further investigation.
3.3 Macrophages

3.3.1 Mitophagy and lipids in macrophages
Macrophages have the ability to actively engulf ox-LDL, leading

to the expression of high levels of proinflammatory cytokines, such
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as TNF, IL-6, and IL-1b, and releasing matrix metalloproteinases

during the development of AS (6). This weakens the stability of

vulnerable AS plaques by hydrolyzing the collagen fibers in the

fibrous cap. However, excessive lipid accumulation impairs

mitophagy, which may be associated with excessive ROS

generation and exacerbated inflammatory responses (343).

Ultimately, this leads to macrophage dysfunction, secondary

necrosis, and increased inflammation, which can manifest AS

plaque erosion or rupture of vulnerable AS plaques. Mice

deficient in FUNDC1 and stimulated by a high-fat diet show

increased macrophage infiltration, enhanced M1 macrophage

polarization, impaired mitophagy, and develop more severe

obesity and insulin resistance (344). Onat et al. (345) have shown

that lipid-activated eukaryotic initiation factor EIF2a signaling

blocks Parkin-mediated mitophagy in macrophages, leading to

greater mitochondrial oxidative stress, inflammasome activation,

and IL-1b secretion. Gupta et al. (346) have shown that palmitate

induces acetylation of the forkhead box protein FOXO3a, which

inhibits the LPS-induced binding of FOXO3a to the PINK1

promoter. This inhibition may be related to LPS-induced mtROS

production, mtDNA release, apoptosis-associated speck-like

protein (ASC) oligomerization, and caspase-1 activation of

macrophages under palmitate conditions. As a result, the

activation of the NLRP3 inflammasome increases while PINK1-

mediated mitophagy is reduced. The up-regulation of autophagy

not only reduces the accumulation of intracellular lipid droplets but

also inhibits cell apoptosis and the progression of AS by removing

dysfunctional mitochondria and reducing intracellular ROS levels

(347). Fucoxanthin treatment increases the expression of PINK1,

Parkin, BNIP3, and p-AMPK and significantly increases p62

accumulation, and attenuates inflammation in raw 264.7 induced

by palmitic acid (254). Notably, in addition to the high-fat diet,

abrupt high-protein diet intake increases amino acid levels in the

blood and AS plaques, promotes macrophage mTOR signaling to

suppress mitophagy, exacerbates the build-up of dysfunctional

mitochondria, and induces AS lipid-induced macrophage

apoptosis (170).

3.3.2 Mitophagy and NLRP3 inflammasome
activation in macrophages

NLRP3 inflammasome activation and mitophagy must coexist

in a balanced manner to maintain cellular and mitochondrial

homeostasis, but the exact nature of this relationship is still

unknown. Following oligomerization, NLRP3 binds to ASC,

which contains the C-terminal caspase-recruitment domain,

through its pyrin domain (348). The pro-cysteinyl aspartate-

specific proteinase pro-caspase-1 is then recruited to the C-

terminal caspase recruitment domain on ASC, resulting in the

autocatalytic cleavage of pro-caspase-1 to its active form, caspase-

1 (349, 350). However, inhibiting caspase-1 can increase mitophagy,

exocytosis, and M2 polarization of macrophages, prevent foam cell

formation, and inhibit NLRP3 inflammasome assembly, thereby

reducing vascular inflammation and AS (351).

NF-kB is a well-known key activator of inflammation that

induces NLRP3 inflammasome activation by up-regulating pro-
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IL-1b and NLRP3 expression (352–354). Zhong et al. (355) have

found that NF-kB can prevent excessive inflammation and inhibit

NLRP3 inflammasome activation by inducing delayed

accumulation of autophagy receptor p62 in macrophages. It is

beneficial for self-limited host response to tissue repair. This

suggests that NF-kB has both proinflammatory and anti-

inflammatory effects in macrophages, but the complex

mechanism remains to be elucidated.

Endogenous lipidoids can activate the NLRP3 inflammasome,

potentially driving metabolic inflammation relevant to the

pathogenesis of AS (356). Ma et al. (259) have shown that

melatonin can reduce the production of mitochondrial ROS by

activating the silent information regulator sir2-like protein 3/

FOXO3/Parkin-mediated mitophagy, thereby weakening the

inflammatory activation of NLRP3 in macrophages induced by

ox-LDL. In contrast, dietary polyunsaturated fatty acids may slow

the development of AS by triggering macrophage autophagy and

reducing NLRP3 inflammasome activation, reducing the number of

dysfunctional mitochondria (357).

Recent research has demonstrated that the relationship between

macrophages and heme is crucial to homeostasis and inflammation

(358). Btb-and-cnc homolog 1 (BACH1) is a key regulator of the

cell cycle, cell differentiation, oxidative stress response, and heme

homeostasis, which are closely related to the occurrence and

development of AS (359, 360). Pradhan et al. (361) have found

that mitochondrial energy metabolism in BACH1–/– macrophages

shift toward increased glycolysis and reduced oxidative

phosphorylation, resulting in increased DYm and mitochondrial

ROS production and reduced mitophagy. These changes ultimately

trigger the activation of the NLRP3 inflammasome. This enhances

the correlation between metabolic reprogramming and mitophagy.

Overall, understanding the relationship between the NLRP3

inflammasome and mitophagy is essential for maintaining

macrophage and mitochondrial homeostasis and preventing the

development of AS. Further research is needed to fully elucidate the

complex mechanisms involved in these processes.

3.3.3 Macrophage mitophagy and
macrophage polarization

It is well known that several phenotypically different

macrophages play different roles. M2 macrophages are associated

with anti-inflammatory effects, tissue repair, and wound healing,

whereas M1 macrophages are linked to proinflammatory effects and

plaque rupture (362). The polarization classification of

macrophages affects the progression and regression of AS. Choi

et al. (343) have shown that apolipoprotein A-I binding protein

(AIBP) is a novel regulator of macrophage autophagy. In AS,

mitochondrial AIBP is involved in mitophagy and mitochondrial

quality control, which reduces ROS production and prevents cell

death (343). Duan et al. (363) suggest that mitochondrial AIBP may

play an anti-AS role by regulating PINK1-dependent mitophagy

and M1/M2 polarization.

Notably, reprogramming of macrophages from M1 to M2 can

be achieved by targeting metabolic events. Taurine, one of the

byproducts of S-adenosylmethionine’s metabolism downstream to
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the sulfur pathway, helps to maintain the homeostasis of the anti-

inflammatory process and cellular energy metabolism (364). Meng

et al. (253) have discovered that taurine inhibits methylation of the

S-adenosylmethionine-dependent protein phosphatase 2 catalytic

subunit, which blocks PINK1-mediated mitophagy flux. This

maintains high mitochondrial density and eventually prevents the

glycolytic conversion of energy metabolism to M1.

In addition, the cytokines IL-25 (365, 366) and IL-33 (367–369)

are considered to have the potential to regulate the progression of

AS. Lin et al. (370) have found that IL-33 stimulates the generation

of ROS production and subsequently up-regulates the expression of

PINK1, Parkin, and LC3 through the AMPK signaling pathway.

Furthermore, IL-33 significantly decreases the production of the M1

macrophage-related cytokines CXCL-10 and TNF-a, while

increasing the production of the M2 macrophage-related cytokine

CCL-22. Tsai et al. (371) have demonstrated that IL-25 induces ROS

production and significantly activates the expression of p-AMPK

and PINK1, p-Parkin, and LC3 in a dose-dependent manner,

promoting mitophagy and M2 macrophage polarization in THP-

1-derived macrophages.
3.3.4 Mitophagy and macrophage aging
Aging is an important factor affecting mitophagy in macrophages.

The simulator of interference response protein STING is considered a

cell solid DNA sensor that mediates sterile inflammation closely

associated with atherosclerosis and aging (372, 373). Zhong et al.

reported a decrease in PINK1/Parkin-mediated mitochondrial

polyubiquitination in aging macrophages (370). In addition, aging

changes caused impairment of lysosomal biogenesis and function in

macrophages via regulation of the mTOR/TFEB signaling pathway.

Overexpression of PINK1 did not promote mitochondrial lysosome

formation in aged macrophages, but it did reverse the inhibitory effect

of mitochondrial ubiquitination. Combining PINK1 overexpression

and treatment with the mTOR inhibitor Torin-1 restored mitophagy

flux in aged macrophages and attenuated STING activation. In

addition, the guanine nucleotide-binding protein (Gbp1) plays an

important role in regulating macrophage polarization, metabolic

reprogramming, and cellular senescence (374). Qiu et al. (375) have

shown that Gbp1 participates in the removal of damaged or unhealthy

mitochondria brought on by proinflammatory cytokine stimulation

during mitophagy. Specifically, Gbp1 plays a protective role against

inflammation-induced macrophage inflammatory response and

metabolic dysfunction by maintaining mitochondrial function and

preventing mitochondrial dysfunction-associated senescence through

the promotion of mitophagy. However, down-regulation of Gbp1

reduces mitophagy activity, leading to mitochondrial dysfunction,

oxidative stress, inflammation, and aging.

In conclusion, dysregulation of lipid metabolism, inflammation,

and aging are important factors leading to impaired mitophagy in

macrophages. Mitophagy can prevent the formation and

development of AS by removing dysfunctional mitochondria,

reducing intracellular ROS levels, inhibiting NLRP3 activation,

and regulating macrophage energy metabolism, among

other pathways.
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4 Conclusions

Recent research has demonstrated that the occurrence,

development, and pathological mechanisms of AS are all closely

related to mitophagy. Mitophagy dysfunction has been linked to

several factors, such as ROS, glucose and lipid metabolism

disorders, and hypoxia. This dysfunction may cause damage to

ECs and result in the proliferation and phenotypic switching of

VSMCs. Additionally, it can induce altered polarization of

macrophages and metabolic dysfunction, and potentially lead to

cell death. However, there are still many limitations and problems

in the current research. There is a dearth of reports on animal or

clinical studies, with most studies being limited to the cellular level.

The correlation between these studies and AS requires additional

verification. Is there a common or specific mitophagy pathway

present in different cells or tissues within the study model? Does

mitophagy in the same cells and tissues have different feedback in

different stress modes, to varying degrees and over time? Can some

stress conditions closely relate to AS, such as lipid accumulation,

abnormal glucose metabolism, inflammation, and oxidative stress,

only activate specific mitophagy pathways? It should be noted that

further investigations are necessary to determine whether

mitophagy is the preferred stress or compensatory pathway of

cells under these stress conditions.

In terms of research mechanisms, the classical PINK1/Parkin

pathway is currently receiving more attention, while research on

other pathways is relatively scarce. In addition, there is a crosstalk

between different mitochondrial autophagy pathways and classical AS

mechanisms. The same protein can participate in various mitophagy

pathways and respond to various stresses showing different expression

patterns. It is worth noting that mitophagy can protect cells, but it may

also lead to cell damage and cell death. This is an important issue that

needs to be clarified in the future. In drug research, a variety of natural

and auxiliary drugs that can directly or indirectly regulate

mitochondrial quality control have been further explored. However,

there is still a lack of safe and effective mitochondrial-targeted therapies.

In conclusion, mitophagy, as an important mechanism for regulating

AS, needs to be further explored.
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AIBP A-I binding protein

Ang II angiotensin II

AMBRA1 activating molecule in Beclin 1-regulated autophagy protein 1

AMPK adenosine 5′-monophosphate-activated protein kinase

AS atherosclerosis

ASC apoptosis-associated speck-like protein

Atg autophagy-related protein

ATP adenosine triphosphate

BACH1 Btb-And-Cnc homolog 1

BCL2L1 Bcl-2-like protein 1

BCL2L13 Bcl-2-like protein 13

BNIP3 BCL2-interacting protein 3

BNIP3L/Nix BCL2 interacting protein 3-like

CANX calnexin

CCCP carbonyl cyanide 3- chlorophenylhydrazone

CK2 casein kinase 2

CL cardiolipin

COMP cartilage oligomeric matrix protein

DFCP1 double FYVE-containing protein 1

DRP1 dynamic-related protein 1

EC vascular endothelial cell

EPC endothelial progenitor cell

ER endoplasmic reticulum

RB1CC1 RB1-inducible coiled-coil protein 1

FUNDC1 FUN14 domain-containing protein 1

H2O2 hydrogen peroxide

HAEC human aortic endothelial cell

HFD high-fat diet

HIF hypoxia-inducible factor

HUVEC human umbilical vein endothelial cell

Hcy hyperhomocysteine

IL interleukin

IMM inner mitochondrial membrane

LC3 microtubule-associated protein 1 light chain 3

LIR LC3- interaction region

LPS lipopolysaccharide

MAM mitochondria-associated endoplasmic reticulum

MARCH5 mitochondrial E3 ubiquitin ligase MARCH5
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MFN1 mitofusin 1

MFN2 mitofusin 2

MPP mitochondrial processing peptidase

mPTP mitochondrial permeability transition pore

mTORC1 mTOR complex 1

NBR1 next to BRCA1 gene 1 protein

NDP52 nuclear domain 10 protein 52

NF-kB nuclear factor-kappa B

NLRP3 NOD-like receptor thermoprotein dome-associated protein 3

OMM outer mitochondrial membrane

NOD nucleotide oligomerization domain

OPTN optineurin

ox-LDL oxidized low-density lipoprotein

PACS-2 phosphofurin acidic cluster sorting protein 2

PARL presenilin associated rhomboid-like protein

PE phosphatidyl ethanolamine

PGAM5 PGAM family member 5

PHB2 prohibitin 2

PI3P phosphatidylinositol 3-phosphate

PINK1 PTEN-induced putative kinase protein 1

PTEN phosphatase and tensin homolog

PTEN-L phosphatase and tensin homolog-long

pUB phosphorylated UB

Rab Ras-related protein

ROS reactive oxygen species

SQSTM1/p62 sequestosome-1/ubiquitin-binding protein p62

SRC SRC proto-oncogene, non-receptor tyrosine kinase

TBHP tert-butyl hydroperoxide

TBK1 tank-binding kinase 1

TIMM23 inner mitochondrial membrane 23 translocase

THP-1 human myeloid leukemia-derived

TNF tumor necrosis factor

TOMM translocase of the outer mitochondrial membrane

UB ubiquitin

ULK1 unc-51-like autophagy activating kinase 1

UPS ubiquitin-proteasome system

USP ubiquitin-specific protease

VDAC1 voltage-dependent anion-selective channel protein 1

VEGFR2 vascular endothelial growth factor receptor 2

Vps vacuolar protein sorting-associated protein

(Continued)
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VSMC vascular smooth muscle cell

WIPI2 WD repeat domain phosphoinositide-interacting protein 2

DYm mitochondrial membrane potential.
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