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We report on evaluation of lattice thermal conductivity of GeTe/Sb2Te3 superlattice (SL) by using

femtosecond coherent phonon spectroscopy at various lattice temperatures. The time-resolved

transient reflectivity obtained in amorphous and crystalline GeTe/Sb2Te3 SL films exhibits the

coherent A1 optical modes at terahertz (THz) frequencies with picoseconds dephasing time. Based

on the Debye theory, we calculate the lattice thermal conductivity, including scattering by grain

boundary and point defect, umklapp process, and phonon resonant scattering. The results indicate

that the thermal conductivity in amorphous SL is less temperature dependent, being attributed to

dominant phonon-defect scattering. VC 2011 American Institute of Physics. [doi:10.1063/1.3611030]

Phase change data storage technology offers high speed,

rewritable, and reliable nonvolatile solid state memory, which

may overcome the current generation of Si-based memory

technologies. In the phase change memory (PCM) materials,

the switching between a high resistance amorphous and low

resistance crystalline phases can be operated by optical

means. One of the most common and reliable materials for

the modern optical recording is Ge2Sb2Te5 (GST), in which

the phase transition between the crystalline and amorphous

phases serves rewritable recording.1 Recently, extensive theo-

retical investigations on the mechanism of the phase change

in GST have been made using molecular dynamics simula-

tions.2,3 In addition, experimental studies using extended

x-ray absorption fine structure (XAFS),4 time-resolved x-ray

absorption near-edge structure (XANES) (Ref. 5), and Raman

scattering measurements6 have examined local atomic

arrangements in GST materials.

One of the advantages of using GST films as the optical

recording media is its ultra-high speed switching characteris-

tics, whose time scale could be less than 1 ns.4 In the last

decade, however, most of the literatures have studied nano-

second dynamics of the phase change in GST materials using

nanosecond and picosecond laser (or electrical) pulses.7

Hence, thermal properties of GST materials have been

believed to govern the phase change in GST materials when

it is promoted by laser heating. There, thermal conductivity

(j) is important to engineer the performance of the phase

change,8 such that lower thermal conductivity enables one to

realize low power operation of the switching, where, focused

laser irradiation causes lattice heating.9,10

Coherent phonon spectroscopy (CPS) has recently been

applied to GST materials of alloy11 and superlatticed films,12

and the related Sb2Te3 films.13 In their study, the observed

local phonon modes in the amorphous GST films were found

to be strongly damped modes, with its relaxation time of less

than a few picoseconds due to the scattering by lattice

defects.11,12 The CPS on GST compounds, however, have

not yet been applied to investigate thermal properties,

although Wang et al. have recently proposed to use CPS as a

powerful method to estimate lattice thermal conductivity.14

In this paper, we present detailed analysis on the ultra-

fast dynamics of coherent optical phonons in GeTe/Sb2Te3

superlattices (SLs) at low and room temperatures to investi-

gate lattice thermal conductivity. Based on the Debye theory,

we calculate the lattice thermal conductivity, including vari-

ous phonon scattering processes, where the relaxation rate

and the frequency of the observed coherent local modes are

included in the model. The results indicate in amorphous

(a–) GeTe/Sb2Te3 SL that j� 0.3–0.4 Wm�1 K�1 at

T� 100 K, while in the crystalline (c–) GeTe/Sb2Te3 SL j is

strongly temperature dependent and j� 2.0 Wm�1 K�1 at

300 K.

We have chosen GeTe/Sb2Te3 SL as a sample after the

proposal of a class of superlattice-like GeTe/Sb2Te3.15 Sig-

nificantly, lower SET and RESET programming current for

the SL cells has already been discovered15 and thus GeTe/

Sb2Te3 SL will be a potential candidate for the future PCM

devises. The samples used in the present study were thin

films of GeTe/Sb2Te3 SL fabricated using a helicon-wave

RF magnetron sputtering machine on Si (100) substrate. The

thickness of the films was 20 nm. The annealing of the as-

grown SL films at 503 K (230 �C) for 10 min changed the

amorphous into the crystalline states.16 The TEM measure-

ments confirmed that the c–GeTe/Sb2Te3 SL films have lay-

ered structures with clear interfaces.

A reflection-type pump-probe measurements using a

mode-locked Ti:sapphire laser (pulse width¼ 20 fs and a

central wavelength¼ 850 nm) was employed at the tempera-

ture range of 5–300 K. The average power of the pump and

probe beams were fixed at 120 and 3 mW, respectively, from

which we estimated the pump fluence to be 284 lJ/cm2 at

120 mW. The excitation of the GST-SL films with the 850

nm (¼ 1.46 eV) laser pulse generates nonequilibrium carriers

across the narrow band gap of� 0.5–0.7 eV.17 The transient

reflectivity (TR) change (DR/R) was measured as a function

of the time delay.

Figures 1(a) and 1(c) show the time-resolved TR signal

(DR/R) observed at 5 and 300 K in GeTe/Sb2Te3 SL filmsa)Electronic mail: mhase@bk.tsukuba.ac.jp.
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with the amorphous and crystalline phases, respectively. Af-

ter the transient electronic response due to the excitation of

nonequilibrium carriers at the time delay zero, coherent oscil-

lations with several picoseconds relaxation time appear. Fou-

rier transformed (FT) spectra in Figs. 1(b) and 1(d) are

obtained from the time-domain data, in which two broad peaks

are observed at � 5.1 THz and � 3.78 THz in amorphous film,

while a sharp peak at 3.68 THz is observed in crystalline film

at 300 K. These peaks in the amorphous film were assigned to

the A1 optical modes due to the local GeTe4 unit (3.78 THz

peak),11,12 and that due to the local pyramidal SbTe3 unit (5.1

THz peak).6,12 The red shift of the local A1 mode frequency in

the crystalline phase ð3:78THz) 3:68THzÞ has been attrib-

uted to the local structural change from tetrahedral GeTe4 into

octahedral GeTe6 species.12 It is to be noted that the zone-fold-

ing modes of the acoustic dispersion18 cannot be detected in

our measurements because the SL period (d� 5Å) of GeTe/

Sb2Te3 film is an order of the lattice constant.

To investigate the effect of these local phonon modes on

lattice thermal conductivity, the parameters of the coherent

local phonons (the frequency and the relaxation rate) are

used to compute the lattice thermal conductivity based on

the Debye theory, combined with the resonant scattering

model.14,19 Lattice thermal conductivity is expressed as,20

jðTÞ ¼ 1

3
CVv2sc (1)

¼ kB

2p2v
kBT

�h

� �3 ðHD=T

0

x4ex

s�1
c ðex � 1Þ2 dx; (2)

where x ¼ �hx=kBT, CV is the lattice specific heat, v the sound

velocity, HD the Debye temperature,21 kB the Boltzmann con-

stant, x the phonon frequency, and sc the acoustic phonon

relaxation time, whose inverse (relaxation rate) can be given

by contributions from various scattering mechanisms14,19:

s�1
c ¼

v

L
þ Ax4 þ Bx2Te�HD=3T þ Cx2

ðX2 � x2Þ2
; (3)

where L, A, B, and C characterize grain boundary, phonon-

defect scattering, phonon-phonon umklapp scattering, and

phonon resonant scattering, respectively. X is the optical

phonon frequency observed in the CPS and the last term in

Eq. (3) represents the resonant scattering between the local-

ized optical modes and acoustic phonon modes.

From the low temperature limit of the relaxation rate of

the coherent A1 modes (0.253 ps�1 for the amorphous and

0.026 ps�1 for the crystalline phase),12 we can estimate the

ratio of the phonon-defect scattering rate in the amorphous

to the crystalline Aa/Ac to be � 10 for the GeTe/Sb2Te3 SL

film. The same ratio of Ba/Bc¼Ca/Cc¼ 10 has been applied

in the simulation. We take the resonant phonon frequency

(X) at 300 K from the FT spectra in Fig. 1. It is to be noted

that, the choice of the optical phonon frequency at different

temperatures does not significantly affect the results of the

thermal conductivity, but the coefficient of the phonon reso-

nant scattering (C) is more sensitive to the value of j. The

magnitudes of all the parameters (L, A, B, and C) are deter-

mined as listed in Table I to give the experimental value of j
for the a–GeTe/Sb2Te3 SL (j� 0.33 Wm�1 K�1 at 300 K).22

As shown in Fig. 2, comparing the thermal conductivity

obtained for the SL films in different phases, we found that

the thermal conductivity in a–GeTe/Sb2Te3 SL is less tem-

perature dependent, being due to dominant contribution from

the phonon-defect scattering.12,23 On the contrary, in the

crystalline phase thermal conductivity is strongly tempera-

ture dependent, being attributed to significant contribution

from umklapp and phonon resonant scatterings, both of

which are related to the phonon dispersion curves and there-

fore, they are significantly temperature dependent.24 We note

FIG. 1. (Color online). (a) and (c) The time-resolved TR signal observed at

5 and 300 K in the a– and c–GeTe/Sb2Te3 SL films, respectively. (b) and (d)

The FT spectra obtained from the time-domain data in (a) and (c).

TABLE I. Parameters used in Eqs. (2) and (3). For the a–GeTe/Sb2Te3 SL C1 and C1 represent the resonant scattering coefficient due to the A1 local modes at

3.78 THz and 5.1 THz, respectively, while for the c–GeTe/Sb2Te3 SL C1 represents that at 3.68 THz.

Samples HD (K) v (m/s) L (nm) A (10�43 s3) B (10�18 s K�1) C1 (1038 s�3) C2 (1038 s�3)

a–GeTe/Sb2Te3 SL 250a 2250b 10.0 40.0 40.0 20.0 20.0

c–GeTe/Sb2Te3 SL 300a 3190b 100.0 4.0 4.0 2.0 –

aFrom Ref. 21.
bFrom Ref. 8.
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further that, the thermal conductivity obtained in the SL films

is high compared to the conventional GST alloy films; j� 0.2

Wm�1 K�1 for the amorphous and j� 0.4 Wm�1 K�1 for the

crystalline (cubic) phases.8 The higher thermal conductivity

while the lower operation current found in GeTe/Sb2Te3 SL

films, suggests that the phase change in the SL films under the

irradiation of ultrashort laser pulses would not be promoted by

thermal process, but rather by nonthermal process, which has

recently been observed in sub-picosecond time scale.25

In conclusion, our results on ultrafast coherent phonon

spectroscopy have illustrated temperature dependence of lat-

tice thermal conductivity in GeTe/Sb2Te3 SL films. These

data show that the Debye model, including scatterings by

grain boundary and point defect, umklapp process, and pho-

non resonant scattering, well reproduces the experimental

value of thermal conductivity measured by using thermo-re-

flectance. The thermal conductivity in the a–SL film is less

temperature dependent, due to the dominant phonon-defect

scattering, while in the c–SL it is strongly temperature de-

pendent because of the main contributions from umklapp

and phonon resonant scatterings. We argue that the higher

thermal conductivity in the SL films implies that the phase

change in GeTe/Sb2Te3 SL under the irradiation of ultrashort

laser pulses is not promoted by thermal process, i.e., lattice

heating, but rather by nonthermal process, i.e., coherent lat-

tice excitation, because, the thermal process requires lower

thermal conductivity.9,10

The authors thank Y. Miyamoto for the assistance at the

early stage of the experiments. This work was supported in

part by PRESTO-JST, KAKENHI-22340076 from MEXT,

Japan and “Innovation Research Project on Nanoelectronics

Materials and Structures – Research and development of

superlatticed chalcogenide phase–change memory based on

new functional structures” from METI, Japan.

1N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira, J. Appl. Phys. 69,

2849 (1991).
2J. Akola and R. O. Jones, Phys. Rev. B. 76, 235201 (2007).
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function of lattice temperature calculated by Eqs. (1)–(3). The closed square

at 300 K represents the experimental data for the a–GeTe/Sb2Te3 SL

obtained by thermal reflectance measurements (Ref. 22).
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