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Bioinformatic analysis reveals
potential relationship between
chondrocyte senescence and
protein glycosylation in
osteoarthritis pathogenesis
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Osteoarthritis (OA) is the most common degenerative and progressive joint

disease. Cellular senescence is an irreversible cell cycle arrest progressive with

age, while protein glycosylation is the most abundant post-translational

modification, regulating various cellular and biological pathways. The

implication of either chondrocyte senescence or protein glycosylation in the

OA pathogenesis has been extensively and individually studied. In this study, we

aimed to investigate the possible relationship between chondrocyte senescence

and protein glycosylation on the pathogenesis of OA using single-cell RNA

sequencing datasets of clinical OA specimens deposited in the Gene

Expression Omnibus database with a different cohort. We demonstrated that

both cellular senescence signal and protein glycosylation pathways in

chondrocytes are validly associated with OA pathogenesis. In addition, the

cellular senescence signal is well-connected to the O-linked glycosylation

pathway in OA chondrocyte and vice-versa. The expression levels of the

polypeptide N-acetylgalactosaminyltransferase (GALNT) family, which is

essential for the biosynthesis of O-Glycans at the early stage, are highly

upregulated in OA chondrocytes. Moreover, the expression levels of the

GALNT family are prominently associated with chondrocyte senescence as

well as pathological features of OA. Collectively, these findings uncover a

crucial relationship between chondrocyte senescence and O-linked

glycosylation on the OA pathophysiology, thereby revealing a potential target

for OA.
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1 Introduction

Osteoarthritis (OA) is the most common degenerative and

progressive joint disease, frequently leading to functional

disability and chronic pain in the elderly (1, 2). The economic toll

and prevalence of OA are steadily rising worldwide, making it a

representative public health concern for the coming decade (3, 4)..

OA is characterized by degeneration of articular cartilage, synovial

inflammation, osteophyte formation, and subchondral sclerosis (5,

6). Although much attention has been focused on the mechanisms

of initiation and progression of OA, the precise pathogenesis of OA

remains unclear, leading to no availability of disease-modifying

osteoarthritis drugs (DMOADs) (7, 8). The initiation and

progression of OA are induced and regulated by numerous

factors, including joint injury, obesity, inflammation, gender,

heredity, aging, and cellular senescence (9, 10).

Cellular senescence, an irreversible cell cycle arrest that various

intrinsic and extrinsic factors can induce in normal cells, is recently

shown to contribute to the OA phenotype (11, 12). Senescent

chondrocytes were shown to accumulate in OA cartilage lesions

and release the senescence-associated secretory phenotype (SASP)

factors into the surrounding microenvironment (13, 14). The OA

development was ameliorated by the genetic and pharmacological

removal of senescent chondrocytes in the OA mouse model, where

intraarticular transplantation of senescent chondrocytes-induced

cartilage degeneration suggested that senescent chondrocytes could

be an effective target of OA prevention and treatment (15, 16).

Protein glycosylation plays a pivotal role in cartilage homoeostasis

as well as degeneration. Notably, clinical investigations of OA

patients and basic research utilizing animal models have

demonstrated a relationship between abnormal glycosylation and

the onset and progression of OA.

Protein glycosylation, well-known as one of the major

post-translational modifications, regulates various cellular and

biological pathways, including signal transduction, proliferation,

differentiation, and survival (17, 18). It is classified into N-linked

glycosylation, O-linked glycosylation, C-mannosylation,

phospho-glycosylation, and glypiation (19, 20). Aberrant

glycosylation is associated with multiple human diseases,

including congenital disorders of glycosylation (CDGs), cancer,

and autoimmune disease (17, 21). Protein glycosylation is vital in

physiological cartilage homeostasis and pathological cartilage

degeneration (22–25). Alternations in high-mannose type

N-glycans were observed in both human OA cartilage and

degraded mouse cartilage, along with the increase of b1,2N-

acetylglucosaminyltransferase I (GlcNAc-TI) (23). Moreover, O-

linked N-acetylglucosamine (O-GlcNAc) protein modification is

increased in the cartilage of OA patients (24).

Although extensive studies have been conducted to reveal the

implication of either chondrocyte senescence or protein

glycosylation in the initiation and progression of OA, no evidence

is available regarding the pivotal relationship between cellular

senescence signals and protein glycosylation pathway in

chondrocytes on the pathogenesis of OA.
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Thus, in this study, we aimed to investigate the possible

relationship in OA chondrocytes using single-cell RNA

sequencing (scRNA-seq) datasets of clinical OA specimens

deposited in the Gene Expression Omnibus (GEO) database.
2 Materials and methods

2.1 Information on scRNA-seq data

sc-RNA-seq data, GSE104782 and GSE169454 (26, 27),

were obtained from the Gene Expression Omnibus of the

National Center for Biotechnology Information (https://

www.ncbi.nlm.nih.gov/geo/). The GSE104782 dataset contains

1600 chondrocytes of 10 patients with OA undergoing knee

arthroplasty surgery, and cells are labeled with OA grades

according to the OARSI grading system (grade 0; n = 320, grade

1; n = 320, grade 2; n = 320, grade 3; n = 320, grade 4; n = 320).

These scRNA-seq libraries were generated using a Kapa Hyper Prep

Kit (Kapa Biosystems, Wilmington, MA, USA) and sequenced

using the Illumina HiSeq 4,000 platform (Novogene, Beijing,

China) with a read length of 150 bp. The GSE169454 dataset

contains 7 scRNA-seq dates. These scRNA-Seq libraries were

generated using the 10X Genomics Chromium Controller

Instrument and Chromium Single Cell 3’ V3 Reagent Kits (10X

Genomics, Pleasanton, CA, USA) and sequenced using the Illumina

HiSeq 4,000 platform (Novogene) with a read length of 150 bp.
2.2 Processing of scRNA-seq data

The data were analyzed using the “Seurat” package (ver 4.2.0) of

the R software (ver 4.0.2). First, sc-RNA-seq data, GSE104782 and

GSE169454 (26, 27), were read with the Read10X function. In the

preprocessing of the GSE104782 dataset, cells with > 7500 and < 200

expressed genes were considered low-quality cells and

were removed with the subset function. Accordingly, 1457

chondrocytes (grade 0; n = 262, grade 1; n = 302, grade 2; n =

305, grade 3; n = 284 or grade 4; n = 304) were used for further

analysis. In the preprocessing of the GSE169454 dataset, cells with >

6000 and < 500 expressed genes with a proportion of mitochondrial

genes > 25% were considered low-quality cells and were removed

with the subset function. For each dataset, normalization was

performed with the SCTransform function with the removal of

the mitochondrial mapping percentage and the method set of

glmGamPoi. To remove the batch effects, integration of the 7

sample datasets in GSE169454 was performed using reciprocal

PCA (RPCA) including the process of SelectIntegrationFeatures,

PrepSCTIntegration, RunPCA, FindIntegrationAnchors, and

IntegrateData function. Accordingly, 66795 chondrocytes

(cartilages of 3 patients without OA, n = 8887; and cartilages of 4

patients with OA, n = 57908) were used for subsequent

bioinformatic analysis.
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2.3 Identification of differentially expressed
genes (DEGs) and gene set enrichment
analysis (GSEA)

DEGs were identified among 220 human glycosylation-related

genes registered in GGDB (Glycogene Database) using Wilcoxon’s

rank-sum test by the “presto” package (ver 1.0.0) with the wilcoxauc

function (P < 0.05). GSEA was performed using the “clusterProfiler”

package (ver 3.18.1). GSEA results are evaluated based on an

enrichment score, which represents the extent to which a given

gene set is overrepresented at the top or bottom of a ranked gene

list. The normalized enrichment score (NES) considers differences

in gene set size and correlation between gene and expression data

sets. Other factors that are also reflected in the analysis include the

P-value, which indicates the significance of the enrichment score,

and the false discovery rate (FDR), which indicates the probability

of a false positive result (28, 29). GSEA was performed to compare

gene set enrichment between the two groups. The area under the

receiver operator curve (AUC) was calculated using Wilcoxon’s

rank-sum test with the wilcoxauc function. Gene lists in descending

order of AUC were created, and GSEA was performed using the

gene lists with the GSEA function (parameters: minGSsize = 5,

maxGSsize = 500, eps = 0, pvalueCutoff = 1.00). The gene sets were

obtained from the MSigDB databases (http://www.gsea-

msigdb.org/gsea/msigdb/index.jsp) using the msigdbr (ver 7.5.1)

package with the msigdbr function. The HALLMARK gene sets

were obtained from the H collection of the MSigDB databases, the

GOBP gene sets from the C5 collection, and the REACTOME gene

sets from the C2 collection. Gene sets with NES > 0 and P < 0.05

were considered enriched. The visualization of GSEA results was

performed using the “enrichplot” package (ver 1.10.2) with the

gseaplot2 function. To investigate the association of GALNT family

gene expression with pathological features of OA and chondrocyte

senescence, GSEA was performed on two groups of chondrocytes

(the top 25% and bottom 25% of the expression level of the

GALNTs-family in OA chondrocytes at all grades are defined as

GALNTs-expressionhigh chondrocytes (n = 364) and GALNTs-

expressionlow chondrocytes (n = 364), respectively).

Single sample GSEA (ssGSEA) was performed using the “GSVA”

package (ver 1.38.2) with the gsva function. ssGSEA is an extension of

GSEA that allows separate enrichment scores to be calculated for each

sample and gene set pair. Each ssGSEA enrichment score represents the

extent to which genes within a particular gene set are cumulatively

upregulated or downregulated in a given sample (30, 31). ssGSEA on

the scRNA-seq dataset (GSE104782) was performed to compare gene

set enrichment for each OA stage and divide the chondrocytes

into two groups in subsequent analysis (senescencehigh OA

chondrocytes; n = 729, senescencelow OA chondrocytes; n = 364, O-

linked glycosylationhigh OA chondrocytes; n = 729, O-

linked glycosylationlow OA chondrocytes; n = 364, N-linked

glycosylationhigh OA chondrocytes; n = 729, N-linked

glycosylationlow OA chondrocytes; n = 364). For ssGSEA on the

scRNA-seq dataset (GSE169454), OA chondrocytes were divided into

two groups (senescencehigh, senescencelow, O-linked glycosylationhigh,

O-linked glycosylationlow, N-linked glycosylationhigh, N-linked

glycosylationlow OA chondrocytes; n = 5790, respectively). The
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visualization of ssGSEA results was performed using the “ggplot2”

package (ver 3.3.6) with the ggplot function.
2.4 Statistical analysis

Statistical analysis between the two groups was performed using

Wilcoxon’s rank-sum test for DEG and permutation test for GSEA.

Statistical analysis between the three groups was performed using

Wilcoxon’s rank-sum test followed by Bonferroni’s correction.

Statistical significance was set as P < 0.05. Significance levels are

indicated by asterisks (*P < 0.05, **P < 0.01, ***P < 0.001).
3 Results

3.1 Cellular senescence signal and protein
glycosylation pathways in chondrocytes
are associated with the OA pathogenesis

We first used a scRNA-seq dataset derived from clinical OA

specimens deposited on the GEO database (GSE104782) to profile

the properties of OA chondrocytes at different stages (26). We analyzed

chondrocytes obtained from the articular cartilage at the OA early

stages (grades 0 and 1) and the late stages (grades 3 and 4) based on the

gene set associated with OA pathogenesis by GSEA (Figure 1A). We

determined the enrichment of gene sets involved in “apoptosis,”

“hypoxia,” “oxidative stress,” “ossification,” “ECM degradation,” and

“differentiation,”which have a robust association with OA pathogenesis

(1, 5), in chondrocytes of the late stage OA, confirming the validity of

the scRNA-seq dataset used for our further analyses (Figure 1B).

Chondrocyte senescence has emerged as a fundamental

mechanism which substantially contributes to OA phenotype (11,

12). GSEA revealed that gene sets involved in “cellular senescence”

and “SASP” were enriched in chondrocytes at the late-stage OA

(Figure 1C). Aberrant glycosylation is linked to OA development in

the clinical specimen and animal models (23, 24). Among the gene

sets associated with glycosylation, GSEA revealed significant

enrichment for gene sets related to the “glycosylation,” “O-linked

glycosylation,” and “N-linked glycosylation” in chondrocytes at the

late stage OA (Figure 1D). Moreover, the enrichment of gene set

related to “O-linked glycosylation” was positively associated with

increased OA grades (early (grade 0 and 1), middle (grade 2) and

late (grade 3 and 4) stages) by ssGSEA, while gene sets related to

“glycosylation” and “N-linked glycosylation” were not significantly

altered between the early stage and the middle stage (Figure 1E).

These results indicate that chondrocyte senescence signal and

protein glycosylation pathways are linked to the OA phenotypes.
3.2 Cellular senescence signal is associated
with O-linked glycosylation pathway in OA
chondrocyte, and vice versa

Both cellular senescence and protein glycosylation in

chondrocytes are linked to the OA phenotype, as described in
frontiersin.org
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Figure 1. However, the possible relationship between chondrocyte

senescence and protein glycosylation in the pathophysiology of OA

remains undefined. We, therefore, determined whether the cellular

senescence signal was associated with the protein glycosylation
Frontiers in Endocrinology 04
pathways in OA chondrocytes by performing GSEA on the

scRNA-seq dataset (GSE104782).

We divided chondrocytes obtained from all stages (grade 0 to 4)

into two groups, Senescence-signalhigh and Senescence-signallow
A

B

D

E

C

FIGURE 1

Cellular senescence signal and protein glycosylation pathways are enriched in OA chondrocytes at the late stage. (A) Schematic diagram of sample
information and single-cell RNA-seq analysis of the GSE104782 dataset. Chondrocytes were harvested from ten patients with OA (early [grade 0; n =
262, and grade 1; n = 302], middle [grade 2; n = 305], and late [grade 3; n = 284, and grade 4; n = 304] stages). (B–D) Gene set enrichment analysis
(GSEA) of OA chondrocytes. (B) “apoptosis”, “hypoxia”, “oxidative stress”, “ossification,” “ECM degradation” and “differentiation”, gene sets. (C) “cellular
senescence” and “SASP” gene sets. (D) “glycosylation”, “O-linked glycosylation,” and “N-linked glycosylation” gene sets. (E) Single sample GSEA
(ssGSEA) scores of glycosylation pathways in each stage of OA (**P < 0.01, ***P < 0.001, n.s., not significant).
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chondrocytes, based on the gene set associated with “cellular

senescence (REACTOME_CELLULAR_SENESCENCE)” by

ssGSEA (Figure 2A). The expression levels of TP53, CXCL8,

IGFBP4, TIMP2, FGF2, VEGFA, which are known as cellular

senescence and SASP markers, were significantly higher in

Senescence-signalhigh chondrocytes, validating our classification

method by ssGSEA (Figure 2B). GSEA revealed that the gene set

related to the O-linked glycosylation via threonine was significantly

enriched in Senescence-signalhigh chondrocytes, whereas the N-

linked glycosylation-related gene set was significantly enriched in

Senescence-signallow chondrocytes (Figure 2C).We then divided

into O-linked or N-linked glycosylation-pathwayhigh and O-linked

or N-linked glycosylation-pathwaylow chondrocytes, based on the

gene sets associated with O-linked or N-linked glycosylation

(GOBP_PROTEIN_O_LINKED_GLYCOSYLATION or

GOBP_PROTEIN_N_LINKED_GLYCOSYLATION) by ssGSEA

(Figure 2D), and noted the enrichment for the gene set related to

the “cellular senescence” in O-linked glycosylation-pathwayhigh

chondrocytes but not in N-linked glycosylation-pathwayhigh

chondrocytes (Figure 2E).

To confirm the results obtained from GSE104782, we analyzed

the different scRNA-seq dataset (GSE169454). We divided OA

chondrocytes into two groups, Senescence-signalhigh and

Senescence-signallow chondrocytes, based on the gene set

associated with “cellular senescence” by ssGSEA (Figure 2F).

GSEA revealed the enrichment for the gene sets related to the O-

linked and N-linked glycosylation in Senescence-signalhigh

chondrocytes (Figure 2G). We further divided into O-linked or

N-linked glycosylation-pathwayhigh and O-linked or N-linked

glycosylation-pathwaylow chondrocytes, based on the gene sets

associated with O-linked or N-linked glycosylation by ssGSEA

(Figure 2H). GSEA revealed the enrichment for the gene set

related to the “cellular senescence” in both O-linked and N-linked

glycosylation-pathwayhigh chondrocytes (Figure 2I).

These results indicate that the cellular senescence signal is

prominently connected to the O-linked glycosylation pathway

rather than the N-linked glycosylation in OA chondrocytes and

vice versa whenever taken together.
3.3 Expression analysis of DEGs linked to
glycosylation pathway in OA chondrocytes

To further elucidate the contribution of the protein

glycosylation pathway to the OA phenotype, we next identified

DEGs related to the glycosylation pathway in OA chondrocytes

using two scRNA-seq datasets (GSE104782 and GSE169454)

(26, 27).

Thirty-two and 171 DEGs were screened in GSE104782 (OA

early-stage chondrocytes vs. OA late-stage chondrocytes) and

GSE169454 (normal cartilage vs. OA cartilage), respectively.

These include 25 and 42 significantly upregulated genes and 7

and 129 significantly downregulated genes in GSE104782 and

GSE169454, respectively (Figures 3A, B).

Of the 25 and 42 DEGs in GSE104782 and GSE169454,

respectively, the 12 overlapping genes were co-upregulated
Frontiers in Endocrinology 05
(Figure 3A), and 7 were related to the O-linked glycosylation

(Figure 3C). Among the upregulated genes related to the O-linked

glycosylation, polypeptide N-acetylgalactosaminyltransferase 16

(GALNT16), a member of the UDP-N-acetyl-a-D-galactosamine:

polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) family

of enzymes essential for O-Glycan biosynthesis at the early stage

(32–34), was the highest upregulated gene in OA chondrocytes at the

late stage (grade 3 and 4) compared with those at the early stage

(grade 0 and 1) (Figure 3C). Moreover, the expression levels of

GALNT1, GALNT2, GALNT7, and GALNT15 were significantly

upregulated in OA chondrocytes at the late stage than at the early

stage (Figure 3C). In addition, the expression of GALNT1 in

chondrocytes was positively associated with increased OA grades

(early, middle, and late stages) (Figure 3D). Meanwhile, significantly

increased expressions ofGALNT7 (at the late stage than at the middle

stage) and GALNT16 (the middle stage than at the early stage) were

observed in chondrocytes (Figure 3D).

These results suggest that the O-linked glycosylation pathway

and the corresponding genes (GALNT family) are activated in OA

chondrocytes, and may play a role in OA pathophysiology.
3.4 Expression of the GALNT family is
associated with pathological features of
OA and chondrocyte senescence

Among the seven upregulated genes related to the O-linked

glycosylation pathway (Figure 3), five significantly upregulated

genes (GALNT1, GALNT2, GALNT7, GALNT15, and GALNT16)

belonged to the GALNT family. Thus, we subsequently focused on

the GALNT family.

We determined whether the expression of the GALNT family

members was associated with the OA pathogenesis and

chondrocyte senescence using the scRNA-seq dataset

(GSE104782). We divided chondrocytes into GALNTs-

expressionhigh and GALNTs-expressionlow groups based on their

expression levels in chondrocytes obtained from all stages (grades 0

to 4). GSEA revealed that gene sets linked to OA pathogenesis

(“apoptosis,” “hypoxia,” “oxidative stress,” and “ossification”) were

significantly enriched in GALNT1-, GALNT2-, GALNT7-,

GALNT15- and GALNT16-expressionhigh OA chondrocytes

(Figure 4A). In addition, the gene set involved in “cellular

senescence” was significantly enriched in GALNT1-, GALNT2-,

GALNT7- , GALNT15- and GALNT16-expressionhigh OA

chondrocytes (Figure 4B).

These findings indicate that the GALNTs, which are key

enzymes to initiate mucin-type O-glycosylation, are linked to the

chondrocyte senescence and OA pathology.
Discussion

In this study, we performed integrated bioinformatic analysis

using an independent cohort and demonstrated a possible

relationship between the cellular senescence signaling and

glycosylation pathway in chondrocytes in context of OA
frontiersin.org
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FIGURE 2

O-linked glycosylation pathway is enhanced in senescencehigh OA chondrocytes, and vice versa. (A) Schematic diagram of chondrocyte classification
by ssGSEA of genes associated with “cellular senescence” in GSE104782 (senescencehigh OA chondrocytes [n = 729], senescencelow OA
chondrocytes [n = 364]). (B) Expression levels of cellular senescence and SASP marker genes in senescencehigh and senescencelow OA
chondrocytes. (C) GSEA of “O-linked glycosylation” and “N-linked glycosylation” gene sets in senescencehigh OA chondrocytes. (D) Schematic
diagram of chondrocyte classification by ssGSEA of genes associated with “O-linked glycosylation” and “N-linked glycosylation” in the GSE104782
dataset (glycosylationhigh OA chondrocytes [n = 729] and glycosylationlow OA chondrocytes [n = 364]). (E) GSEA of “cellular senescence” gene set in
glycosylationhigh OA chondrocytes. (F) Schematic diagram of chondrocyte classification by ssGSEA of genes associated with “cellular senescence” in
GSE169454 (senescencehigh OA chondrocytes [n = 5790], senescencelow OA chondrocytes [n = 5790]). (G) GSEA of “O-linked glycosylation” and “N-
linked glycosylation” gene sets in senescencehigh OA chondrocytes. (H) Schematic diagram of chondrocyte classification by ssGSEA of genes
associated with “O-linked glycosylation” and “N-linked glycosylation” in the GSE169454 dataset (glycosylationhigh OA chondrocytes [n = 5790] and
glycosylationlow OA chondrocytes [n = 5790]). (I) GSEA of “cellular senescence” gene set in glycosylationhigh OA chondrocytes. *P < 0.05, **P < 0.01,
***P < 0.001.
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pathogenesis. OA affects not only the cartilage and chondrocytes

but also joint tissues and related cells, including subchondral bone,

synovium, mesenchymal stem cells, bone cells, fibroblasts, and

immune cells (3, 35–37). As various tissues and cells within the

joint contribute to OA development, the implication of their

interactions in the OA pathophysiology should be considered.

Moreover, the cellular heterogenicity of chondrocytes may

contribute to the pathophysiology of OA as different populations

of chondrocytes are present in the OA cartilage (38–40). To the best

of our knowledge, this is the first study to show the relationship

between chondrocyte senescence and O-linked glycosylation and its

role in the pathophysiology of OA using integrated

bioinformatics analyses.

O-linked N-acetylglucosamine (O-GlcNAc) protein

modification stimulates chondrogenic differentiation and is

increasingly observed in the cartilage of OA patients, indicating

the implication of O-linked glycosylation in the normal cartilage

homeostasis and pathological cartilage degenerative disease (24,
Frontiers in Endocrinology 07
25). The GALNT family, also known as ppGalNAc-Ts or GalNAc-

Ts, comprises 20 isoenzymes responsible for initiating mucin-type

O-glycosylation by transferring N-acetyl galactosamine to the

hydroxyl group of a serine/threonine residue in Golgi apparatus

(34). Although the GALNT family is highly homologous, individual

GALNTs have different activities with different substrate

specificities, and consequently, initiation of O-glycosylation is

regulated by a repertoire of GALNTs (32, 33). The tumor growth

and metastasis could be associated with the aberrant expression of

GALNT family members, and distribution and subsequent marked

alterations in GalNAc O-linked glycosylation in various cancer

types (34, 41, 42). Moreover, the GALNT family is associated with

various diseases, such as obesity, diabetes, and osteoporosis, in

addition to CDGs (43–45). However, the role of the GALNT

enzyme family in OA development and progression remains

unknown. Here, we demonstrated that the expression levels of the

GALNT enzyme family were significantly upregulated in OA

chondrocytes, with GALNT16 being the top upregulated gene,
A B

DC

FIGURE 3

GALNT family gene expression is upregulated in OA chondrocytes. (A, B) Venn diagram showing overlapping differentially expressed genes (DEGs) in
GSE104782 (OA chondrocytes at the early stage [grade 0; n = 262, and grade 1; n = 302] vs. OA chondrocytes at the late stage [grade 3; n = 284,
and grade 4; n = 304], expressed in more than 30% of chondrocytes) and GSE169454 (normal cartilage; n = 8887 vs. OA cartilage; n = 57908).
(A) Upregulated genes related to the glycosylation pathway in each dataset. (B) Downregulated genes related to the glycosylation pathway in each
dataset. (C) Fold-change in upregulated DEGs related to the O-linked glycosylation pathway between OA chondrocytes at the late stage and early
stages in the GSE104782 dataset (*P < 0.05, **P < 0.01, ***P < 0.001). (D) Expression of GALNT1, GALNT2, GALNT7, GALNT15, and GALNT16 in each
stage of OA chondrocytes in the GSE104782 dataset (*P < 0.05, **P < 0.01, ***P < 0.001, n.s., not significant).
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along with significant upregulation of GALNT1, GALNT2,

GALNT7, and GALNT15 among genes related to the O-linked

glycosylation pathway. Notably, expression analysis of DEGs

related to the glycosylation pathways revealed the involvement of

alternative candidate genes in OA chondrocytes (Figure 3). Despite

these additional genes and molecular pathways that need further

exploration, we revealed the possible crucial connection between

cellular senescence and O-linked glycosylation in OA chondrocytes.

Medications for OA, including pain relievers and non-steroidal

anti-inflammatory drugs, are commonly prescribed to control its

symptoms including chronic joint pain and stiffness (46, 47).

Currently, DMOADs remain unavailable and thus, targeting

cellular senescence and SASP with senotherapeutics, senolytic,

and senomorphics drugs, could be beneficial in treating OA (48,

49). Our findings improve our understanding of the molecular

mechanism underlying OA development and suggest that the

relationship between cellular senescence signal and O-linked

glycosylation status in chondrocytes can represent a novel and

effective target for drug development to treat OA in humans.
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