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Spatial-temporal
data-augmentation-based
functional brain network analysis
for brain disorders identification

Qinghua Liu†, Yangyang Zhang†, Lingyun Guo and

ZhengXia Wang*

School of Computer Science and Technology, Hainan University, Haikou, China

Introduction: Due to the lack of devices and the di�culty of gathering patients,

the small sample size is one of the most challenging problems in functional

brain network (FBN) analysis. Previous studies have attempted to solve this

problemof sample limitation through data augmentationmethods, such as sample

transformation and noise addition. However, these methods ignore the unique

spatial-temporal information of functional magnetic resonance imaging (fMRI)

data, which is essential for FBN analysis.

Methods: To address this issue, we propose a spatial-temporal data-

augmentation-based classification (STDAC) scheme that can fuse the spatial-

temporal information, increase the samples, while improving the classification

performance. Firstly, we propose a spatial augmentation module utilizing the

spatial prior knowledge, which was ignored by previous augmentation methods.

Secondly, we design a temporal augmentation module by random discontinuous

sampling period, which can generate more samples than former approaches.

Finally, a tensor fusion method is used to combine the features from the above

two modules, which can make e�cient use of spatial-temporal information

of fMRI simultaneously. Besides, we apply our scheme to di�erent types of

classifiers to verify the generalization performance. To evaluate the e�ectiveness

of our proposed scheme, we conduct extensive experiments on the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) dataset and REST-meta-MDD Project

(MDD) dataset.

Results: Experimental results show that the proposed scheme achieves superior

classification accuracy (ADNI: 82.942%, MDD: 63.406%) and feature interpretation

on the benchmark datasets.

Discussion: The proposed STDAC scheme, utilizing both spatial and temporal

information, can generate more diverse samples than former augmentation

methods for brain disorder classification and analysis.

KEYWORDS

rs-fMRI, spatial-temporal information, functional brain network, data augmentation,

brain disorders

1. Introduction

Functional brain network (FBN) analysis, based on resting-state functional magnetic

resonance imaging (rs-fMRI), has made positive contributions to the diagnosis of brain

diseases and the revelation of the principle of brain diseases (Smith, 2012). As an effective

technique to analyze FBNs, machine learning has become a current focus of research by

automatically analyzing rs-fMRI data to obtain rules and applying these rules to predict new

data (Taschereau-Dumouchel et al., 2022). However, due to the difficulty of acquisition and

collection, the sample size of rs-fMRI is scarce compared to classical dataset used in machine
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learning (Tanveer et al., 2020; Zhang et al., 2023), which

may result in under- or over-fitting of the model for

FBN analysis (Marek et al., 2022).

To solve the problem of small training sizes, data augmentation

has shown great potential in FBN analysis. Numerous studies

have directly transferred image data augmentation methods to

rs-fMRI data. For example, noise addition (Yang et al., 2020),

which is a classical and simple augmentation method for image

data, was applied to add different kinds of noise to rs-fMRI data

for increasing sample size. However, this method is more geared

toward improving the ability of machine learning to resist noise

interference, rather than obtaining more diverse samples (Fang

et al., 2022). Therefore, it is an important purpose to generate more

diversified samples in data augmentation.

Many studies have focused on using efficient algorithms to

obtain more diverse samples. For example, Eslami and Saeed

(2019) used the extended SMOTE algorithm to generate new

samples by linear interpolating different samples in the same

category. Yao and Lu (2019) proposed an improved generative

adversarial network to augment rs-fMRI functional connectivity

data for classification task. Although sample generation based on

the above algorithms has achieved good performance in the field

of rs-fMRI data augmentation, the speciality (e.g., spatial-temporal

information; Yan et al., 2022) of rs-fMRI data that provides valuable

information for understanding the pathological mechanism of

brain disorders is ignored in these methods.

Considering the importance of temporal information in FBN

analysis, more and more studies focus on data augmentation based

on time series of rs-fMRI. For example, Dvornek et al. (2017)

proposed a data augmentation method by randomly cropping

sequences from a time series, which increased the size of the dataset

by a factor of 10. Zhu et al. (2021) used randomwindow resampling

for data augmentation, which generatedmore samples by obtaining

random consecutive time series from the original brain signal. In

addition, Mao et al. (2019) introduced a data augmentationmethod

by sampling fMRI scans into short pieces and taking the sampled

pieces as inputs for classification. Qiang et al. (2021) constructed a

deep recurrent variational auto-encoder that combined variational

auto-encoder and recurrent neural network to aim the small sample

size problem of fMRI data. These methods took full account of

the temporal information of rs-fMRI data. However, these data

augmentation methods ignored the spatial information that is an

important structural characteristics of FBN.

To solve the problems of the above mentioned, we propose

a novel classification scheme based on spatial-temporal data

augmentation that consists of three modules, including spatial

augmentation module, temporal augmentation module, and

spatial-temporal fusion module. Inspired by jackknife cross-

validation, which is effective in reducing linear model bias, we

improve the previous sampling method that only used sliding

window through discontinuous sampling. On the other hand, as

there is often a correlation between adjacent brain regions, using

spatial prior information obtained from brain anatomywill help the

classifier’s analytical ability. Compared with previous approaches,

our scheme can produce more diverse training samples and make

full use of spatial-temporal information of fMRI. Specifically,

(1) We proposed a spatial data augment method, in which

spatial prior knowledge of brain regions is used by a kNN-like

approach.

(2) Different from previous methods, we randomly extract

discontinuous time series form original time period and

recombine them. It can generate more diverse training

samples than previous methods which only use continuous

series.

(3) To prevent the mutual interference of different

augmentation rule, we use a tensor fusion method to fuse

results of classification after different kinds of augmentation.

In this way, we can take spatial-temporal information into

account at the same time, which is ignored by previous

data-augmentation-based methods.

We validate our proposed scheme mainly on the public ADNI

dataset, and the experimental results demonstrate its superiority

over othermethods. Besides, we train our scheme based on different

classifiers (e.g., neural network, random forest, and support vector

machine) and compare their effects. Experiments show that our

scheme can fit well with different classifiers.

The rest of the paper is organized as follows. During Section 2,

we present our scheme and introduce the dataset used in

our scheme. The experiments that we take will be introduced

during Section 3. Then the comparison between different data

augmentation methods and the disease-related features (functional

connections) will be discussed in Section 4. Finally, we will

summarize the conclusions of this paper in Section 5.

2. Materials and methods

In this section, we first introduce the datasets involved in

our experiments, including data acquisition and pre-processing.

Then we describe the overall pipeline of our proposed scheme

in detail.

2.1. Experimental datasets

To validate the effectiveness of the proposed method, we

perform two datasets for disease classification, including the

publicly available ADNI dataset and the MDD dataset.

2.1.1. ADNI dataset
Our main experimental data is from the Alzheimer’s disease

neuroimaging initiative (ADNI) dataset (Jack et al., 2008). This

dataset includes 563 subjects, 154 of whom are normal cognition

(NC), 165 of whom are early mild cognitive impairment (eMCI),

145 of whom are late mild cognitive impairment (lMCI), and 99

of whom are Alzheimer’s disease (AD). The acquisition parameters

are as follows: in-plane image resolution = 2.29–3.31 mm, slice

thickness = 3.31 mm, echo time (TE) = 30 ms, repetition time

(TR) = 2.2–3.1 s, and the scanning time for each subject is 7 min

(resulting in 140 volumes).
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2.1.2. MDD dataset
To demonstrate the effectiveness of our scheme on different rs-

fMRI datasets, amajor depressive disorder (MDD) dataset provided

and pre-processed by the REST-meta-MDD project (Yan et al.,

2019; Chen et al., 2022) is experimented in Section 3. The REST-

meta-MDD dataset consists of 1,276 major depressive disorder

samples from 24 different sites. Specifically, patients with major

depressive disorder (MDD) contain 463 men and 813 women,

normal controls (NC) contain 462 men and 641 women. The

acquisition parameters are as follows: repetition time (TR) = 2,000–

3,000 ms; echo time (TE) = 25–40 ms; flip angle = 30 or 90◦; slice

number = 22–39.

2.2. Data preprocessing

The pipeline of pre-processing for MDD dataset is provided

by the REST-meta-MDD project, which consists of head motion

correction, spatial normalization, non-linear registration, and

spatial smoothing, and so on (Yan et al., 2019).

However, since we only have access to the preprocessed

MMD dataset, it is difficult to control the preprocessing pipeline.

Therefore, for the sake of fairness, we employ a similar pipeline

as in the MDD dataset to pre-process the ADNI dataset in our

experiments. We use the Data Processing Assistant for Resting-

State fMRI (DPABI) toolbox (Yan et al., 2016) to preprocess the

fMRI data.

Specifically, we discard the initial 10 volumes to avoid outliers

and performed slice-timing correction. After that, the time series of

images for each subject are realigned using a six-parameter (rigid

body) linear transformation. Then, we co-register individual T1-

weighted images to the mean functional image using a 6 degrees-

of-freedom linear transformation without re-sampling. The Friston

24-parameter model is utilized to regress out head motion effects.

Finally, we map the fMRI data to the 116 brain regions of the

AAL template, convert them into time-series signals, and normalize

these signals (Friston et al., 2000). For each subject, we can get 137

time points for each region of interest (ROI) of AAL template after

above steps.

2.3. Methods

The framework of our STDAC scheme is shown in Figure 1,

which consists of three modules, including spatial augmentation

module, temporal augmentation module, and spatial-temporal

fusion module. We denote X = [x1; x2; · · · ; xm] ∈ Rt×m as the

matrix of rs-fMRI data, where m is the total number of nodes, t is

the number of time points, xi = [x1i , x
2
i , · · · , xti ]

T is the time series

of the ith (i = 1, · · · , m) node.

2.3.1. Spatial augmentation module
Previous studies have found that brain regions with similar

spatial information have similar representations, and various

methods for FBN analysis have been proposed based on the spatial

information of fMRI (Zou et al., 2022). For example, many FBN

division methods (Power et al., 2011; Ji et al., 2019) based on

spatial feature have been proposed to search the discriminative

subnetworks that are significant for brain disease (Sheline and

Raichle, 2013). In our proposed STDAC scheme, we use a kNN-

like approach to augment samples with spatial prior knowledge of

brain regions.

As shown in the module (1) of Figure 1, we first measure the

Euclidean space distance between node i and other nodes based on

the AAL template. The measurement method is provided by the

nilearn library (Abraham et al., 2014). Then we update the time

series xi of node i based on the k nearest neighbors (nodes) to obtain

the new time series yi. Specifically, we put the k nearest neighbors

of node i in a set Ci which has the following restrictions:











|Ci| ≤ k+ 1

d(i, s) < d(i, j) (s ∈ Ci, j /∈ Ci)

d(i, s) < r ∗ D (s ∈ Ci, 0 < r < 1)

(1)

where d(·) is the Euclidean space distance, r is a constant number,

and D is the biggest distance in AAL template. Finally, the node i

can be updated by the following equation:

yi = mean(Ci). (2)

After all nodes of the brain are updated, we can get a new

sample (brain). Note, we can obtain different samples by adjusting

the size of k. Once we obtain the new sample, we utilize Pearson’s

correlation (PC) to estimate the FBN, which can capture the full

correlation between nodes and has gradually become one of the

benchmark methods in this field. With the increase of training

data, the ability of the model to use high-dimensional features is

also improved. So we did not perform feature selection commonly

used in conventional FBN analysis methods.

2.3.2. Temporal augmentation module
Temporal information in rs-fMRI is essential for FBN analysis

and is commonly employed in data augmentation studies. Previous

methods usually use time windows to generate more samples by

obtaining random consecutive time series from raw brain signals.

Unlike employing consecutive time series, the time period obtained

can be random in our scheme, meaning that it can generate more

training samples from a single original sample.

Specifically, we obtain new time series zi by randomly selecting

xi and reorganizing the selected vectors as the following equation:

zi =











z1i
z2i
· · ·

zli











∈ Rl (z1i , · · · , z
l
i ∈ random{x1i , · · · , x

t
i }, l < t) (3)

where l denotes the number of selected time points, which should

be smaller than t. We limit the minimum number of sampling

points to prevent too few samples, which may cause the sampling

position to be too sparse. Jackknife cross-validation is a method

that excels at reducing errors in linear regression models and is
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FIGURE 1

Illustration of the proposed scheme based on spatial-temporal data augmentation (STDAC).

widely used in statistical analysis. According to jackknife cross-

validation, this method of randomly selecting time periods without

caring about continuity would be helpful to obtain an average

value when computing the Pearson correlation (Barber et al., 2021),

which calculates the linear correlation between two sets of data. We

try to use this method to reduce estimation bias of brain interval

connections. Similar to the spatial augmentation module, we then

construct FBN based on these augmented samples.

2.3.3. Spatial-temporal fusion module
In this spatial-temporal fusion module, we fuse the results

extracted from temporal and spatial data augmentation module to

prevent the mutual interference of samples generated by different

augmentation rules. Different from feature fusion, we perform

the tensor fusion method to fuse the results of classification after

temporal data augmentation and spatial data augmentation.

As shown in the module (4) in Figure 1, we train two

classifiers with the augmented samples based on different modules,

and obtain the classification results by the original sample as a

test. Specifically, we use multiplication operations on the high-

dimensional maps of the two outcome tensors. Specifically,

we transpose the vector of label score obtained from spatial

augmentation and multiply it with the temporal score vector.

Compared to directly concatenating two vectors, multiplying them

can better preserve the potential information in the vectors and

assist the classifier in assigning weights to the fused vectors. As

shown in Figure 2, directly concatenating method will lose some

potential score information for further classification. The fused

score feature ω is calculated by the following equation:

ω = f
(

Sspatial
TStemporal

)

(4)

where S denotes the label score extracted by two augmentation

modules, f (·) is a de-averaging and normalizing function

commonly used in machine learning. Finally, the label score ω

obtained after fusion will be delivered to the classifier of the spatial-

temporal fusion module.

3. Experiments and results

In this section, we first introduce the four comparison methods

in the following experiments. we then present the implementation

details, parameter settings of our proposed STDAC scheme, and the

valuation metrics for the classification task. And then we report the
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FIGURE 2

Comparison between directly concatenating method and matrix multiplication method for feature fusion. (1) Directly concatenating method. (2)

Matrix multiplication method.

FIGURE 3

Di�erent schemes for comparison. (1) Original, a scheme that does not use data augmentation, (2) SDA, a scheme only with spatial data

augmentation module, (3) TDA, a scheme only with temporal data augmentation module, and (4) STDAC, our proposed scheme.
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TABLE 1 Classification results of three methods with di�erent classifiers in the four-class classification task.

Classifier Augmentmethod Accuracy
Precision Recall

NC EMCL LMCL AD NC EMCL LMCL AD

SVM

Original 63.772 61.042 75.147 59.333 55.667 70.363 57.987 60.432 81.651

SDA 73.387 70.083 81.213 69.381 70.778 70.790 69.984 74.587 85.532

TDA 78.706 74.625 84.265 76.429 78.889 78.217 74.641 79.518 90.944

STDA 79.054 79.125 84.853 73.619 76.889 73.980 74.012 84.226 94.167

RF

Original 51.513 57.792 65.515 45.571 27.222 51.362 48.143 53.403 79.833

SDA 53.828 56.458 69.191 46.095 35.333 50.480 48.879 61.134 81.000

TDA 60.576 65.042 74.007 52.952 42.556 60.195 57.968 59.396 84.369

STDA 61.830 59.833 69.118 58.476 57.667 66.814 62.485 57.421 63.566

NNs

Original 65.909 64.917 62.426 59.238 83.000 71.501 66.164 66.017 62.749

SDA 70.338 68.792 64.669 75.095 74.556 75.040 73.741 65.351 75.399

TDA 82.218 80.458 84.596 78.762 86.000 82.849 81.066 84.097 87.965

STDA 84.170 85.450 83.770 86.367 83.934 81.083 86.544 80.714 90.000

The bold values highlight the best performances in experiments.

experimental results of the comparison methods in ADNI dataset.

Finally, the effectiveness of our proposed scheme on different

datasets is demonstrated convincingly.

3.1. Comparison methods

As shown in the Figure 3, we compare our proposed STDAC

with three methods, including (1) Original, a scheme that does

not use data augmentation, (2) SDA, a scheme only with spatial

data augmentation module, (3) TDA, a scheme only with temporal

data augmentation module, and (4) STDAC, our scheme. Besides,

three popular classifiers are employed to test the effectiveness of our

scheme, including support vector machine (SVM), random forest

(RF), and artificial neural networks (ANN).

3.2. Implementation details and evaluation
metrics

Our STDAC scheme is an offline mode, where the training

phase is separated from the testing phase. The training phase shown

in Figure 1 has been described in detail in Section 2.3. In our

experiments, for the spatial augmentationmodule, we generate four

times more training samples based on the spatial prior knowledge.

And for the temporal augmentation module, we generate 100 times

more training samples based on the time series. After the training

phase, the parameters of the classifier in the test phase are inherited

from the classifier in the training phase. We then use the learned

classifier to classify the test data.

To obtain an unbiased evaluation, all experiments employ a 10-

fold cross-validation method. Specifically, the dataset is randomly

divided into ten equal-sized subsets, nine of which are selected for

training and the remaining 1 is used for testing. We repeat the

whole process 10 times and finally average these 10 results. To

prevent learning samples generated from test data during model

training, which may result in erroneous experimental results, we

divide the data into test dataset and training dataset before the data

augmentation stage and only did data augment for the training

dataset, not for the test dataset. Besides, we use three indicators

(i.e., Accuracy, Precision, and Recall) as performance evaluation

metrics, which are commonly used in machine learning classifiers.

3.3. Classification results

Table 1 summarizes the results of three methods with different

classifiers in the four-class classification task, and Figure 4 plots the

corresponding ROC curves. From Table 1 and Figure 4, we have the

following interesting observations.

(1) As shown in Table 1, our spatial-temporal augmentation

scheme can achieve better results in most cases. It shows that

our STDAC scheme based on data augmentation is effective in

reducing over fitting or under fitting of classification model.

Moreover, the improvement in classifier performance with

spatial-temporal augmentation (STDAC) is often better than

that with data augmentation using only one augmentation

module (SDA and TDA), which verifies the necessity and

effectiveness of our proposed spatial-temporal fusion module.

(2) Among all competing classification algorithms, the

performance of temporal augmentation module is better

than that of spatial augmentation module, which may be

resulted by the number of generated samples. In our scheme,

the spatial augmentation module generates 4-fold samples,

while the temporal augmentation module can generate

100-fold samples. Besides, we discuss the effect of different

augmentation degrees in Section 4.3.

(3) We draw ROC curves using our scheme and original method

with different classifiers in Figure 4. It can be observed that our

scheme fits well with ANN in particular, which may be related

to the fact that neural networks are better suited for processing

large amounts of data.
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FIGURE 4

The ROC curves achieved by original method and STDAC scheme in the task of NC vs. eMCI classification.

TABLE 2 Classification performance in the task of MDD vs. NC classification.

Accuracy F1-score
Precision Recall

NC MDD NC MDD

Original 60.060 57.913 60.829 59.191 62.908 57.087

SDA 62.219 59.145 63.219 61.091 64.839 59.541

TDA 62.305 60.437 63.455 60.996 64.971 59.451

STDAC 63.406 61.325 64.168 62.527 66.134 60.569

The bold values highlight the best performances in experiments.

TABLE 3 Classification performance of the related methods for comparison.

Accuracy
Precision Recall

NC eMCI lMCI AD NC eMCI lMCI AD

The random window-based data augmentation 76.046 70.708 81.801 74.952 75.667 72.661 72.894 77.829 87.433

Improved SMOTE 73.189 74.625 84.890 69.619 56.556 69.305 68.965 76.500 95.655

Auto-encoder-based generative model 65.360 61.625 78.199 60.714 56.444 69.437 60.680 62.377 81.357

Conditional generative adversarial network 73.061 77.780 74.281 71.281 73.701 69.750 65.772 81.238 77.667

GANSO 79.189 74.107 72.398 87.547 95.714 79.042 85.993 73.857 75.778

STDAC (our method) 84.170 85.450 83.770 86.367 83.934 81.083 86.544 80.714 90.000

The bold values highlight the best performances in experiments.

3.4. Experiments in other datasets

To further verify the performance of our SDTA scheme,

we employ a MDD dataset for the eMCI vs. NC classification

task. The experimental results are reported in Table 2. It can

be observed that our scheme achieves the best performance in

the ablation experiments, which indicates the good robustness

of our proposed model. It has been confirmed that data

augmentation using spatial-temporal information can help boost

classification performance for brain diseases. Besides, the effect
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FIGURE 5

Most discriminative ROIs identified by two classifiers in the task of NC vs. eMCI. (1) Discriminative ROIs based on spatial classifier. (2) Discriminative

ROIs based on temporal classifier. The symbol volume of the nodes represents the discriminative power of each brain region.

FIGURE 6

Top 20 discriminant functional connections identified by two classifiers in the task of NC vs. eMCI. (1) Discriminative connections based on spatial

classifier. (2) Discriminative connections based on temporal classifier.

of our model is weaker in the MDD dataset than that in the

ADNI dataset. The one possible reason is the structural changes

in the brain are stronger in neurological diseases (e.g., AD) than

in psychiatric diseases (e.g., MDD) (Yan et al., 2019). Another

reason is that the REST-meta-MDD dataset comes from 24

different sites, where different scanning devices and environments

at different sites can lead to accuracy degradation of the

classification model.
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4. Discussion

In this section, we discuss the performance comparison

between our scheme and previous related methods, the weights of

the ROI obtained by ourmodality, the comparison of our scheme in

different augmentation degrees, as well as the drawbacks and future

of our work.

4.1. Experiments of comparison with
related methods

We compare our model with the latest data augmentation

methods in the field of FBN analysis, including the random

window-based data augmentation (Zhu et al., 2021), improved

SMOTE (Eslami and Saeed, 2019), auto-encoder-based generative

model (Ohno, 2020), conditional generative adversarial

network (Raja and Kannimuthu, 2023), and GANSO (Salazar

et al., 2021), with experimental results reported in Table 3.

Compared with previous data augmentation methods, our

STDAC scheme achieves the best performance on the classification

task in the ADNI dataset. Different from the random window-

based data augmentation, which uses time windows to generate

more samples by obtaining random consecutive time series,

our scheme of randomly selecting time periods without caring

about continuity would be helpful to obtain an average value

when computing the Pearson matrix (Barber et al., 2021).

Besides, improved SMOTE, auto-encoder-based generativemodels,

conditional generative adversarial network, and GANSO ignore

spatial information and temporal information, which limits their

classification performance. In addition, our scheme can fit neural

networks better and can generate more data samples than previous

methods. Therefore, it can reduce over- or under-fitting caused by

insufficient data samples in the neural network.

4.2. Discriminative brain regions and
connections

It is an essential step to select the discriminative biomarkers

in FBN analysis. As shown in Figures 5, 6, we show the most

discriminative connections and ROIs based on the weights in

two classifiers (i.e., spatial classifier and temporal classifier). Since

the weights within each subject can be different, we integrate

them and select the most discriminative features based on the

weights. We demonstrate the top 20 discriminant connections in

Figure 5, where the color of each arc is randomly assigned for better

visualization.

Figure 6 is a visualization based on the AAL template, where the

symbol volume of the nodes represents the discriminative power

of each brain region. We normalize the weights of functional

connections obtained using the model, then add the weights

of functional connections to the brain regions to obtain the

weights discriminating brain regions (Zhang et al., 2021). We

can observe that the discriminative ROIs of the brain regions

after spatial information augmentation are more concentrated in

the right temporal lobe, which corresponds to the fact that the

right brain regions of the mentioned Alzheimer’s patients are

FIGURE 7

Classification accuracy achieved by the STDAC method using

di�erent degrees of spatial and temporal augmentation in the task

of NC vs. eMCI.

more likely to accelerate aging (Roe et al., 2021). The weights of

each brain region after temporal information augmentation are

relativelymore concentrated in the frontal lobes, similar to previous

findings (Agosta et al., 2012).

4.3. E�ect of di�erent data augmentation
degrees

In the proposed STDAC scheme, two data augmentation

modules are employed to generate the samples for classification.

However, different degrees of data augmentation will lead

to different numbers of samples, which may affect the final

performance. Therefore, we validate the accuracy of the two data

augmentation modules for the classification task of eMCI vs. NC

with different degrees.

The experimental results are reported in Figure 7, in which

the darkest red on the figures marks the degrees under the best

accuracy conditions. It can be observed that the best accuracy is

achieved when the spatial degree is 4 and the temporal degree is

100. In addition, whether the degree of data augmentation is too

high or too low affects the final result. For example, when the data

augmentation degree is higher than 100, the data augmentation

effect will also be weakened. The probable reason is that the

excessive degree of data augmentation may lead to many duplicate

samples. Therefore, we need to select the optimal parameters

according to different classification tasks.

4.4. Limitations and future work

The proposed STDAC scheme takes both temporal and

spatial information of rs-fMRI data into account, and mitigates

the occurrence of over- or under-fitting by data augmentation.

However, there are several limitations in our present study. First,
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individual differences between different subjects are not fully

considered in our scheme, which is an important issue for FBN

analysis (Folville et al., 2020; Schabdach et al., 2022) and an

important direction for our future improvements. Besides, since

multi-modal data is taking an increasingly important place in brain

analysis (Jia and Lao, 2022; Zhao et al., 2022), the performance of

employing one-modal data is limited. Compared with the widely

used multi-modal data model (Yu et al., 2021), how to adapt the

scheme to the multi-modal data type is a key point in our future

work.

5. Conclusion

In this study, we perform a spatial-temporal data-

augmentation-based classification (STDAC) scheme based on

data augmentation through spatial-temporal information for

brain disease diagnosis. Specifically, there are three modules in

our proposed scheme, including (1) spatial augmentation module

based on spatial prior knowledge of brain regions, (2) temporal

augmentation module based on random re-sampling of a time

series, and (3) spatial-temporal fusion module based on a tensor

fusion method to fuse the different information extracted by the

previous two modules. Such a technique enables us to alleviate

the problem of small sample size while fusing the spatial-temporal

information. We evaluate our scheme with the public ADNI

and MDD datasets and experimentally demonstrate that the

proposed scheme performs well for classification. In addition, we

employ different classifiers to verify the robustness of our method.

Experiments show that this scheme can be applied to any classifier

in different tasks.
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