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ABSTRACT

Fan and Gijbels (1992) propose a local variable bandwidth that produces MSE minimizing
univariate locally linear estimator (henceforth the LL). Their estimator does not stabilize
variance over the domain. Moreover in the regions where underlying regression function has
curvature zero, their resulting LI estimator is discontinuous. In this paper, we propose a
variance-stabilizing (VS) diagonal bandwidth matrix for the multivariate LI estimator that
does not manufacture such discontinuity. Theoretically, VS bandwidth can outperform the
natural multivariate extension of Fan and Gijbels (1992) estimator in terms of asymptotic

MISE. We present an estimating procedure of VS bandwidth and a simulation study.

1 Introduction

Suppose that we are interested in exploring the association between a set of stochastic
covariates X = (X, ..., X;,) and the response Y. Nonparametric approaches to explain the

conditional expectation such as £ [Y|X] = m(x) are preferable in many cases. In this paper,



we will concentrate on nonparametric kernel-type locally linear estimator (henceforce the LL

estimator) as in Ruppert and Wand (1994), a popular approach in curve estimation.

Let us consider a p + 1 row vector (Xjy,..., X;;,,Y;) of random variables. We assume
X, = (%i1,..yTip), ¢ = 1,...,n, are the realizations of random explanatory vector X, =

(Xity oy Xip), id.d. with respect to ¢ and whose joint density function is denoted as fx(x)

on support [ € R?. The n sample realizations of (X, ..., X;,) can be written as,
T11 T1p
N (1)
Tnl xnp

and we define the i-th column of the matrix in (1) as x,;. We assume that the j-th random
explanatory variable X.; may be correlated with the k-th variable X, 7 # k. We assume
that the response Y;, 1 = 1,...,n, is influenced by the corresponding explanatory vector X;.

in the form of m(X,.) and the disturbance U; as,

where m(-) is m : R* — R function of the X;.. The U;|X,.’s, 1 = 1, ..., n, are random variables
independent with respect to ¢, and assumed to be independent of X;., 7 # j. We assume the

first two conditional moments of U;|X,. are
EUz‘Isz [UZ|X2 = Xi~] =0, EUilxi. [U¢2|Xi = Xi.] = UZ(XZ'.).

In subsequent expositions, we use a set of standard assumptions S 1-4 in Appendix 1 on the
explanatory variables X;., on the disturbances U; and on the responses Y;.

Let Kx(x) be the p-dimensional kernel function and Hx be p-dimensional symmetric
positive definite bandwidth matrix satisfying A 2 and 8 in Appendix 1. The LI estimator
of m(-) is given by the solution for 3, that minimizes along with other 3;, j = 1, ..., p, the

weighted least squares,

2

min Z Y, — 50 — Zﬁ](l'] — xij) [X7x((X — XZ)H)_Cl)
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where
1 Tl — X1 P12 — T2 ... T1p — Tp
D B 1 Tor — L1 T9og — T ... £U2p — xp
=1 o . )
I g1 — 21 Tpa— T2 o0 Ty — T

W (x) = diag (Kx((x — x1.)H'), ..., Kx((x — x,,.)H%")) is the matrix controlling the weight
reflecting the relevant data points in calculating the LI estimator at x, 8 = (8o, 31, .-, 3p)"
is the local linear coefficient vector, Y = (Yi,...,¥,)T is the vector of responses at length n
and the term (g + Ele Bjx; is the linear approximation of m(x) at the neighbourhood of
(21, ...,2,) of x. Solving the minimization problem (2) with respect to 8 and retaining its

intercept term [y, we obtain the LL estimator,

mi.(x) = & [DT(x)W(x)D(x)] " [DT(x)W(x)Y] .

where e is the 1 x (p 4+ 1) row vector having 1 in the first entry and all other entries 0.
Variance and bias of the LI estimator have been well known as in Ruppert and Wand

(1994). With the standard set of assumptions on kernel K 1 and the additional assumptions

A 2-T on fx(x), 0%(x), m(x) and Hx in Appendix 1, the theoretical unconditional variance

of the LI estimators is written as

o [T = S [ o] s

where t = (t1,...,1,). Similarly the theoretical unconditional bias for the LL estimator at x

is known to be

Bx, v, [ma()] = mie0) = P20 e [ 9 ()R] + o (1) (4)

where the variance of kernel and the Hesse matrix are respectively defined to be

3%m(x) 32m(x)

dxr1dxy "' Oxdxyp
2(Kx) = /---/ttTKX(t)dt, Vim(x) =

3%m(x) 3%m(x)

drpdry "' Oxpdry



If we can assume A 1 in Appendix 1 whereby the sphering approach as in Wand and Jones
(1993) is appropriate, we do not have to parametrize the off-diagonal elements of bandwidth
matrix that reflect the correlation between explanatory variables, so that bandwidth matrix
is diagonal.

As most nonparametric regression estimators choose their bandwidth by balancing the
bias squared and variance either globally or locally, they do not produce constant variance
over all values of combinations of regressor variable, unless one is dealing with rare occasions
where the variability of response variable does not vary with the density of data points
or where the covariate variables have joint distribution whose density compensates for the
aforementioned variability of the response. This heteroscedastic nature is unsettling and, if
possible, ought to be avoided.

Fan and Gijbels (1992) introduced the local variable bandwidth for the univariate LL

estimator that minimizes the leading term of mean squared error (we call asymptotic MSE

or AMSE),

AMSE(m(x), m-(x))
]

In the paper, they mentioned the possibility of the local variable bandwidth that stabi-

lizes the variance of the nonparametric regression estimator (henceforth variance-stabilizing

bandwidth or VS bandwidth), which according to our calculation come out to be

1
5

0'2(:)3). [[ K% (t)dt] B
Fe@) [ [, 2t g, |

K@

3
o

hvs(l‘) =

They criticized such choice of bandwidth on the ground that the MSE minimizing local
variable bandwidth in univariate setting will always outperform the VS bandwidth in terms

of asymptotic mean integrated squared error (henceforth AMISE)

AMISE(m(x), mEE / /I AMSE(m(x), mi-(x)) fx(x)dx



The result is brought about by the fact that the univariate VS bandwidth is calculated so as
to minimize MISE among the class of the bandwidths that stabilize variance over all local
points x. This constrained bandwidth choice cannot achieve the minimum MSE at every
local point and thus cannot achieve minimum MISE over the support.

In multivariate regression setting, however, their claim is not neccesary true. In other
words, we are able to find a variance-stabilizing estimator whose MISE can outperform the
MISE of a multivariate extension of Fan and Gijbels estimator. This is possible because in
multivariate regression setting we can reduce sum of the MSE inflated by the constraint by
distributing the inflated MSE among different directions of coordinate axes. To do so, we
employ a set of locally varying parameters that adjust the bias obtained after the variance
is stabilized, or we introduce the local variable bandwidth matrix that negates the variable

part of the unconditional variance in (3) given by

0’2(){) 771()()
fx(x)} 0 0 . 0
0 {02(x) } m2(x) 0 0
S N , 5)
0’2(){) np(x)
0 N =

where hg is a global parameter and n;(x), ¢ = 1,..., p, are the local parameters, both to be

estimated, satisfying

P
> omi(x) =1, (6)
=1

—00 < (%) < oo. (7)

Both the global parameter hg and the local parameters, n;(x), ¢ = 1,..., p, can be determined

so as to optimize AMISE. This optimized bandwidth can outperform multivariate extension

of Fan and Gijbels (1992) local variable bandwidth,

[ [KRmdt] o2x) 17 . .

H,, (x - EERTR I 8
X = R ) D el (8)
a;(x) = ag;gx)j for 1=1,...,p, (9)

k3



which minimizes AMSE at every x among the class of diagonal variable bandwidth matrix,
Hvar(X) = hoo(X) . Ip.

The proposed VS bandwidth matrix is given in Proposition 1 along with the Remarks.

Our proposed VS bandwidth has practical strength over the MSE minimizing variable
bandwidth in (8) in that it avoids discontinuity often encountered by (8): The denominator
of the MSE minimizing local variable bandwidths in (8) are zero at the points satisfying

—

37 ai(x,)]” = 0. Then, the bandwidth take infinitely large value and mifs (x.) takes
el’[—;dz‘?, the intercept term of OLS estimator. Since, m(x,) does not coincide with elé‘m
in general, this invites large bias at the corresponding points. However, our proposed VS
bandwidth is continuous on these points as long as a standard assumption such as A 4 in
Appendix 1, is placed. We explain this issue on discussion.

In section 2, we introduce the VS bandwidth that minimizes AMISE and show a sufficient
condition that enables the proposed VS bandwidth matrix to outperform (8). In section 3,
we present a basic idea of estimating VS bandwidth matrix and simulation to check the

performance of our proposed estimator in bivariate setting. The estimation algorithm is

shown in Appendix 2. In section 4, we give discussions.

2 Introduction of the variance-stabilizing bandwidth

Proposition 1. The theoretically variance-stabilizing diagonal bandwidth matriz for the
multivariate LL estimator,

Hvys(x) = hj - diag ({%rw,m, {%(XX))} n;<x>> : (10)

minimizing asymptotic MISE is given by the following optimized parameters hf and n¥(x),
1=1,....p.
(i) The optimal global parameter hy is given by

[ [ K2(t)dt A
L%(KX)Tvs(nf(x), ...,n;(x))] p , (11)

6
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where

st o) = [+ [ x0 [ | j;i’j)]wrdx. 12)

(i1) The optimal local parameters nf(x), 1 = 1,...,p, are given by

(13)

ifa;(x) >0,i=1,...,p, ora;(x) <0,1=1,...,p.

Remark 1. If o;(x) = 0,7 = 1,...,p, the criterion function to appear in (16) takes zero
minimum value for every n;(x), 1 = 1, ..., p. At the points, any set of values n(x), 1 =1,...,p,

satisfying (6) is available.

Remark 2. If a;(x)’s, i = 1,...,p, are not of the same sign, nf(x)’s, i = 1,...,p, are not
uniquely determined in general when p > 3. In a special case where the function (17) to
appear does not have local maximal nor minimal values at x, the optimal set of parameters
n¥(x), 1 =1,...,p, is given by any set of values satisfying

p 0_2 x 2n;(x) p
Zai(x) [fx((X))] =0, subject to Z ni(x) = 1.

Remark 3. If o,(x) is zero and the rest of o;(x)’s, © = 1,...,p,i # ¢, are non-zero, we
consider the p — 1 dimensional minimization problem of (16) with the ¢-th variable left out

of the minimization problem.

Proof of (i). We first choose hg given n;(x), ¢ = 1,...,p, to minimize AMISE. Integrating

square of the unconditional bias in (4) and the unconditional variance in (3) over the support

17, the leading term of MISE between @(X) and m(x) is

[/.../K%((t)dt] + M%(f’x) [trace [H§V2m(x)HX]]1 Fx(x)dx.

7



Substituting Hx in (14) for Hys(x) in (5), we obtain

x| [ RO - B s (0. (14)

The optimal global parameter (11) minimizes (14) with respect to hy. 0

Proof of (ii). We then optimize n;(x), i = 1,...,p, in terms of AMISE. Plugging A in (11)
into hg in (14), we obtain AMISE optimized in terms of hy written as

[ [ Ky (t)dt] ™+ ( - p> -
- . i -n ptHe, 15
[ (Kx)]™ 7+ [Tvs(m(x), ..., mp(x))] " 7+ g 4 )

To minimize (15), the term Ty s(n1(x), ..., ny(X)) defined in (12) must be minimized in terms of
ni(x)1=1,...,p. Forsuch n;(x),7 =1, ..., p, we solve the following constrained minimization

problem in terms of n;(x), 1 = 1, ..., p, at every point of x,

P o2(x) 2:(x)] 2 P
min [Z a;(x) |:fX(X):| ] , subject to Z ni(x) = 1. (16)

=1

Let G/(-) donote the p — 1 variate function with respect to ny(x), ..., np—1(x),

p1 o2 (x) 127
R

=1

o*(x) } 21 o) -

fx(x)

Fay(|

Differentiating (17) with respect to n;(x), ¢ = 1,...,p — 1, and equating the outcome to be
zero, we obtain the following simultaneous equations
oG ey T 2(x) 12 2(5) 1 2[ - ()] 2

(1 (%), s mpm1(X)) [ai(x) [a <x>] oy [a <x>] " [a <x>]

Ini(x) fx(x) Jx(x) Jx(x)
=0, i=1,..p—1. (18)

Solving the simultaneous equations (18) and (6) with respect to n;(x), i = 1, ..., p, we obtain

the first order condition,

ni(x) = > , 1=1,..,p. (19)




To check the second order condition, we examine the principal minors of order & = 1,..,p—1,

An(x) Apa(x) ... Ap(x)

Agi(x) Aga(x) ... Ag(x
My = [0 A A

Akl(X) AkQ(X) Akk(X)

= [ 58  RC F  R

i=1 i=1,i

where

PG (%), - Mp-1(%))
Ini(x)In; (x)

If o;(x) > 0,7 =1, ..., p, the sequence of the principal minors (20) are A;(x) > 0, Ay(x) > 0,

Aij(x) =

1 (%) =17 (%) eoeyip—1 (X) =15 (X)

ey Ay_1(x) > 0. This means the function (17) takes positive minimal value under the first
order condition (19). On the other hand, if a;(x) < 0, ¢ = 1,...,p, the sequence of the
principal minors (20) are A;(x) < 0, Az(x) > 0, Az(x) < 0,... This means the criterion
function (17) takes negative maximal value under the first order condition (19). Since the
criterion function in (16) is the squared of the function (17), the first order condition (19)

optimizes the minimization problem (16). O

Remark 4. Interpretation of the two parameters are as folows. As for hg, see (14). The
parameter ho plays a role to control AMISE globally. As for the interpretation of n;(x),
i = 1,...,p, this set of parameters are intended to cancel out the variable part o*(x)/ fx(x)
of the variance (3) and to reduce AMSE locally. Furthermore, the local parameters n;(x),
1 =1,...,p, serve as an adjustment to stabilize the variance at the expense of bias. Especially
when 0 < n;(x) < 1,7 =1, ..., p, the parameters n;(x), ¢ = 1, ..., p, can be interpreted as the
fractional rate of the power of the squared bias that should be distributed to every coordinate
axis, T1,..., Tp.

Remark 5. Suppose that n;(x), ¢ = 1,...,p, do not depend on x like as 7, ...,n,, and

P_.m = 1 at all points x. These globally determined parameters can also achieve the

9



purpose to cancel out the term o?(x)/fx(x) in (3). However, this globally determined n;’s
cannot reduce AMISE so much as the locally determined n;(x)’s.

We present and explain theoretical strength of our proposed VS bandwidth over the MSE

minimizing variable bandwidth. Let v(x) denote the ratio of two “density” functions,

2 fx(x)
f---flp o%(x)dx f---flp Jx(x)dx

Then, when employed VS bandwidth and MSE minimizing variable bandwidth, AMISE’s

7(x)

are respectively written as
P 2 pt4
AMISB(n(x), i (x) = Cnste | oo [ it [pH|ai<x>|p] x| e
P =1

p

p+4

AMISE(m(x), miE (x)) = Cl-n_P4+4-/--- | x(x) v (x) [Zai(x)] dx, (22)

where () = <p—p/(p+4) + p4/(p-|—4)/4) U e f K)?((X)dx] 4/(p+4) [M%(KX)]Z)/(?H)
x [+ [, o?(x)dx] e 0. We obtain the following proposition as to the magnitude
relationship between (21) and (22).

Proposition 2. Suppose that o;(x) > 0, i = 1,...,p, or a;(x) < 0, ¢ = 1,...,p, holds at
every x. Then, the magnitude relationship of AMISE between the VS bandwidth matriz in
(10) and the MSE minimizing variable bandwidth matriz in (8) is determined as follows.

(i) Whenp =1, AMISE(m(x), @Z(l‘)) is always larger than AM IS E(m(x), @(:ﬂ))
(ii) When p > 1, a sufficient condition under which AMISFE(m(x), Tnzlzv\s(x)) is smaller
than AMISE(m(x), mg-. (x)) is

17 (%) [Z i(x)

Proof of (i). When p = 1, by Hoélder’s inequality, we obtain

2

=C, at every x, where C >0 is any positive constant. (23)

AMISE(m(x), ml7 (x)) — AMISE(m(z), ml (z))

10



N ;n—fé [/ Kg((t)dt} 5 [M%([(X)]% {zUZ(x)dxr

@) (oot (@)) do = | [ o] % [ et ayie] 1 <.

X
-1
—

R

Proof of (ii). When p > 1, if we employ (23), we obtain the relation

AMISE"™ (m(x), mi._(x)) — AMISE™ (m(x), my. (x))
2

ptd P 4 [Z?:l ai(X)]Q - H?:1 |ai(X)|%
= [Cl]p.(jm.n—p./.../pfx(x) p dx. (24)

o7 au(x))”

Since 327, ay(x)]* — P11, |oz2-(x)|1/p]2 > 0 always holds at every x, the equation (24) is

always greater than or equal to zero under the sufficient condition (23). O

Remark 6. Proposition 2-(ii) is brought about by the fact that the VS bandwidth matrix
has more flexibility in its matrix form than the diagonal MSE minimizing bandwidth in
(8). The p-variate VS bandwidth matrix has p — 1 local parameters at a given point x
and one global parameter, while the MSE minimizing bandwidth has one local parameter
at the same given point x. However, in univariate setting, the VS bandwidth is reduced to
have one global parameter, while the MSE minimizing bandwidth remains to have one local
parameter at a given point x. As a result, the VS bandwidth will not be able to outperform

the MSE minimizing variable bandwidth by definition as in Proposition 2-(i).

3 Estimation of the variance-stabilizing bandwidth

To estimate the VS bandwidth matrix, the global parameter A in (11), the local parameters
ni(x), i = 1,...,p, in (13), o*(x) and fx(x) must be estimated. Basic idea is to individu-
ally estimate components in (10), (11) and (13), ]/C)\((X), a;(x) = m, i =1,...,p,
0/'\2(X), and plug these estimators into (10), (11) and (13). This idea guarantees weak con-

sisitency of the LL estimator with the VS bandwidth matrix, while simultaneously achieving

11



. . — I
homoscedasticity of mﬁL

2 (x), as long as the components f)\((x) and UAQ(X) in (10) are re-
vs

spectively weakly consistent estimators. We present an example of the plug-in algorithms
along with some details for bivariate setting in Appendix 2.

In the algorithm, we use the quartic polynomial estimator proposed by Fan and Gijbels
(1995) to allow for flexibility in estimating the second derivative of m(x), or a;(x), 7 =1,..., p,
in (11) and (13). As for estimating UA?(X), we employ “residual-based”, estimator explained in
Fan and Yao (1998) which smoothes squared residuals (Y; —m(x))? by the Nadaraya-Watson
regression estimator. The bivariate extention of residual-based estimator is to appear in
(30) and we compute its bandwidth estimator so as to minimize cross-validation statistics to
appear in (32) among the class of diagonal bandwidth matrix to appear in (31). To calculate
the squared residuals, we estimate m(x) by LL estimator with its bandwidth estimated
so as to minimize cross-validation statistics to appear in (29) among the class of diagonal

bandwidth matrix to appear in (28).

Simulation study

In the simulation study, we would first like to see if the proposed algorithm obtains hAg
close to hy in (11). We would also like to see if the proposed estimator of the VS bandwidth
matrix in (33) stabilizes the variances of the LL estimator in general. We also evaluate our
proposed estimator of the VS bandwidth relative to the best possible, that is, theoretically
MSE minimizing variable bandwidth. So, for the latter, we employ multivariate extension
of Fan and Gijbels (1992) local variable bandwidth in (8).

Simulation setting is as follows. Let I x [ denote [—0.5,0.5] x [—0.5,0.5]. The den-
sity function fx, x,(z1,73) is a bivariate normal N((0,0)7, diag(0.252,0.25%)) truncated on
bounded domain [—0.5,0.5] x [=0.5,0.5]. In this setting, 91.1% of the data points dis-
tributed as N((0,0)7,diag(0.5%,0.5%)) is included in the domain [—0.5,0.5] x [—0.5,0.5]. The
true regression function and the conditional variance function are respectively set to be
m(x1,29) = 1 — 2] — 23 as in the left panel of Figure 1 and o*(2y,22) = 0.25 4 0.527 4+ 0.523
as in the right panel of Figure 1. In this setup, variance measured in terms of (3) grows

large near boundaries. Also, this setup assures us that there are no points of x satisfying

12



>0, a;(x)]> = 0 on [—0.5,0.5] x [—0.5,0.5] and the MSE minimizing variable bandwidth in

(8) does not produce discontinuous points as mentioned in section 1. As kernel, we employ

bivariate Gaussian.

m(x4, X2)=1 —xf X5 62(X4, X2)=0.25 + 0.5x$+0.5x§

Figure 1: Graphics of the true regression function on the left and the conditional variance

function on the right in our simulation study.

Procedure for simulation

For n = 500, 1000, 5,000, 10,000 and 15,000 :

1.
2.
3.

Generate (X;1, X;5) of sample size n distributed as fx, x, (21, 22).
Generate U;|{(X;1, Xi2) = (wi1,242)} of sample size n distributed as N(0, 02 (x;1, 2.2)).
Obtain ((Xi1, Xi2),Y:) of sample size n, where Y, = m(ai,2:2) + U;[{(Xi1, Xi2) =

(51?2'17 xz?)}

. Estimate ﬁ;s(xl, xy) at every point (—0.54¢;-7, —0.5+¢-k), ¢ = 0.01, 5 = 1,...,100,

k=1,...,100, using the sample ((X;1, Xi2),Y:), i = 1,...,n, obtained in 1 ~ 3 above.
Construct VS LL estimator @:(:pl, x3). Similarly, construct LL estimator with the
vs

MSE minimizing variable bandwidth (8) written as @(ml, Tg).

. Repeat 1 ~ 5 M = 100 times.
. Obtain the mean and the standard deviation of f/z\z‘) calculated M = 100 times in 1 ~ 5,

and by numerically integrate m given by

—

m = m(m(:pl,xz), miE (2y,25))

Hvs

13



M

1 e (T) ?
=9 Z [/ Ixi.x (21, 72) {m(fvhxz) — mf{%s ($1,$2):| d:z;ldxgl , (25)
I2

T=1

e (T)
where mIL{L (1, 2) is the LL estimator calculated (T) th generated sample of size n.
Vs

Replacing @(ml,m) in (25) with @(ml,xg), we calculate mr as well.
VS var

The ratio M/mr is also calculated here.

8. At every point (=0.5 4 ¢ - j, —0.5 4 €1 - k), ¢, = 0.01, 1, ,100, £ = 1,...,100,
e (T) = (T)
L

compute the sample variances of mg= (z1,22) and mff  (xy,22), T =1,.., M,
Vs

that are respectively calculated in 1 ~ 5.

75— (T)

,/L-L——_(T) —
(x1,22) and My (21, 22),

9. Obtain distributions of the sample variances of Mg
Vs

T =1,..., M, calculated at 10,000 = 100 x 100 points in 8. Calculate means, standard

A(T)
deviations and the coefficients of variations of the sample variances of mIL{L (21, 29)
= (T) ve
and mi (xy,2), T=1,..., M.

The simulation result

Table 1 shows the result of simulation using the procedure 1 ~ 7. 1In the table, we
present means and standard deviations and the ratios he s/hg of M = 100 simulated h* for
n = 500, 1,000, 5,000, 10,000, 15,000. These numbers show that the estimator hé converges
to hy and is stable. We also present the estimates of m, mr and the ratio
m/mr From these numbers on m, we notice that m% approach
to zero as n gets larger and, thus, m’s approach to zero as well as n gets larger except for
the countable number of points (xy,25). Therefore, pointwise convergence of ;1?{%(:1;1, )
to m(xy,x,) in the sense of mean square and thus weak consistency of m%s (x1,25) to
m(xy,x4) are confirmed. Also the ratios Z\W/mr in Table 1 show that the price
for homoscedasticity of the estimate decreases considerbly as the sample size n increases.

To see if the variance is stabilized by the proposed VS bandwidth, we present in Figure 2
boxplots of sample variances of @(1&31,@) and @(??Ijl,xg), T =1,...,100, by 0.05
intervals on z;-axis for sample sizes n = 500, 1,000, 5,000, 10,000 and 15,000. The two

horizontally aligned panels for the same sample size in Figure 2 share the same scale in terms

14



O -aXxI1s u € SCale O -aXl1s 18 snrun rom to O bottom. Hmmce m{xq1,T9) = 1 —I{—T5 18
f y-axis, but th le of y-axis is shrunk from top to bott Si (v1,29) = 1—af—a3i

exchangeable with z; and x5 and so are o%(z1, z2) = 0.25+0.52740.523, we only plot how the
variance is stabilized only along with z,-axis. From Figure 2, we notice that comparatively
smaller variances are achieved by the VS bandwidth near the boundaries with sample size
greater than 5,000, a piece of evidence that the estimator of VS bandwidth stabilizes variance
of the LL estimator when a sample size is large enough. Table 2 summarizes Figure 2.

We notice from Table 2 that both sample means and standard deviations of the sample
variances under both VS and MSE bandwidth diminish as sample size gets large. When
sample size is greater than 5,000, we also notice that the estimator of the VS bandwidth
achieves smaller sample means and standard deviations of the sample variance relative to

the theoretically MSE minimizing variable bandwidth.

n he hi/h:  MISEys  MISE,. — MISEvs/MISE,.

mean  std.dev  mean
500 0.2223 0.0402 1.1344  1.6683-1072 6.0058-1073  2.7778
1,000 0.1963 0.0345 1.0951  8.1323-1072 4.0317-1073  2.0170
5,000 0.1489 0.0057 1.0866  1.4029-103 1.1804-1073 1.1884
10,000 0.1322  0.0038 1.0821  8.6218-10=* 7.6824-10~* 1.1223
15,000 0.1239  0.0022 1.0861  6.1840-10=* 5.4853-10~* 1.1273

Table 1: Simulation result : Estimation of A, m and mr.

Mean and std.dev. of sample variances of the LT at 100 x 100 points (M = 100)

n  Estimator of VS bandwidth (33) MSE minimizing variable bandwidth (8)
mean std.dev. coef.var. mean std.dev. coef.var.
500 1.7116-1072  2.6967-10=2 1.5755 1.1799 - 1072 1.1304-10=2  0.9580
1,000 1.1388-1072 9.5131-1073 0.8353 7.6741-1073  7.2046 - 1072  0.9388
5,000 1.9352-1072 1.1351-107% 0.5865 2.3556 - 1073 2.6702-107% 1.1335
10,000 1.1992-1073  7.6798-10~* 0.6404 1.6076 - 102 2.0903-10=2  1.3002
15,000 8.2800-10=* 5.0645-10"* 0.6116 1.1818 - 1073  1.6600-1072 1.4046

Table 2: Simulation result : Summary of Figure 2 to check if the variance is stabilized.
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4 Discussion

In this paper, we first introduce the multivariate VS bandwidth matrix by simultaneously
employing two types—global and local—of parameters and derive theoretically optimal pa-
rameter values in Proposition 1. In Proposition 2, we give a sufficient condition under which
our proposed VS bandwidth theoretically outperforms the MSE minimizing variable band-
width, a natural multivariate extension of Fan and Gijbels (1992). This proposition reveals
that our VS bandwidth can outperform MSE minimizing variable bandwidth in terms of
AMISE in multivariate setting. It also shows why Fan and Gijbels (1992) decided not to
employ variance stabilizing approach in constructing LI estimate in their univariate setting.

In section 3 and in Appendix 2, we illustrate an idea and the corresponding algorithm to
estimate VS bandwidth and perform a simulation study to find out that the global parameter
hg is successfully estimated using the algorithm. We also find that penalty incurred by
employing VS bandwidth relative to the MSE minimizing variable bandwidth decreases from
2.7778 to 1.1273 as the sample size increases in terms of estimated MISE. This penalty, we
find, is caused mainly by inflated bias for employing VS bandwidth.

Our proposed VS bandwidth is so designed as to negate the variable part in the variance
of the LL estimator (3). The result given in Figure 2 and numerically summarized in Table 2
shows that, under the proposed VS bandwidth selection algorithm, the variance is stabilized
as the sample size increases, and also in comparison with the MSE minimizing variable
bandwidth.

Some may argue that another type of MSE minimizing variable bandwidth that minimizes

AMSE among the class of diagonal bandwidth matrix,
Hoopt (%) = diag (h11(x), ., hpp(x)) (26)

should be compared with (5) along with (6) and (7). However, we feel that the class of VS
bandwidth matrix that ought to be compared with (26) is the one that minimizes AMISE
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among the class of

Hyg (x) = diag (hn {;:(i))} " - {;:(z))] mx)) (27)

because the number of parameters hyy(x), ..., h,,(x) employed in (26) and the number of
parameters hyy, ..., hy, in (27) are the same. In general, optimizing the class of VS bandwidth
(27) in terms of AMISE is theoretically and computationally far more complex.

When we estimate the second derivative of m(x) that appears in (11) and (13) in the
estimation procedure, we employ the quartic polynomial estimator as in Fan and Gijbels
(1992). The rule of thumb helps us estimate a;(x), ¢ = 1, ..., p, with comparatively smaller
computational burden. However, it fails if the true regression curve shows a large degree of
fluctuations over the domain. If so, more refined approach such as employing local polynomial
estimator would be needed. In this paper, we focus mainly on the performance of the
estimator of VS bandwidth, so we employ a true regression function receptive to the quartic
polynomial estimator in simulation.

To illustrate the issue of discontinuous MSE minimizing LI estimators we alluded to in
introduction, we plot the LL estimators with both bandwidths, VS bandwidth and MSE
minimizing bandwidth in univariate setting. We employ true regression function, 0.52*. For

the regression function, the denominator of the MSE minimizing variable bandwidth takes

zero value at z, = 0 that satisfies

o2(z,)=0 or, mP(x,)=0,

where the curvature [m®(z)|/ [1 + [m(l)(x)]2]3/2

of m(x) is zero at this .. This univariate
setup itself highlights the existence of discontinuous points, which we carefully avoided in our
bivariate simulation setting in section 3. To numerically illustrate the problem, we calculate
the VS bandwidth Ay s(x) and the theoretically MSE minimizing variable bandwidth A, ()
respectively with o?(z) = 0.1(|x| + 1), fx(z), a normal distribution with its mean 0 and

standard deviation v/2.5 truncated on [—2,2], and Gaussian kernel. The result is shown in

two bottom panels in Figure 3. To illustrate what effects these choice of bandwidths have on
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the actual estimation of m(x), we generate a data set (X;,Y;), 1 = 1,...,1000, from the true
functions and calculate the univariate LI estimators using these bandwidths. The result is
shown on two upper panels in Figure 3.

The upper left panel plots the LI estimators with VS bandwidth while the upper right
panel with the theoretically MSE minimizing variable bandwidth, both calculated by 0.01
intervals. The bottom two panels on the figure plot the size of the corresponding bandwidth
at every point z. We find the discontinuous point at x, = 0 on the upper right panel, which we
do not see on the upper left panel. Although MSE minimizing variable bandwidths generate
small vertical fluctuations in the LL estimator in most of the support, one discontinuous
point at z, = 0 on the upper right panel shows that the LL estimator is off greatly in the
neighborhood. On the other hand, although VS bandwidths generate large fulctuations in

the LI estimator in most of the support, it does not have a single discontinuous point.

Appendix 1

Set of assumptions

S 1 Random explanatory vectors X;. = (X1, ..., X;,) are i.i.d. with respect to 1.

S 2 The U;|X;’s, i = 1,....,n, are random variables independent with respect to i, and

assumed to be independent of Xj., 1 # j.
S 3 Pairs of random variables (X;.,Y;) are independent with respect to i.

S 4 Column vectors in the covariate matrix (1) are not necessarily independent or orthogonal

with respect to j.
A 1 The data X;.’s are distributed as approximately multivariate normal so that the p

dimensional bandwith matrix Hx is assumed to be diagonal, Hx = diag(hi1, haa, ..., hyp) -

A2 Hx — O as n — oo.
A 3 n|Hx| — oo as n — oc.

A 4 The density of X is 0 < C; < fx(x) < C/ on bounded support I”.

19



* Sample averageof Y.~ *

E E
T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2
X X
n
bl <
o
o-
e
(=]
= =
bl bl
E g o
c c
© ©
om om
Yol
o
(=]
o
S o -
(=]
I I I I I I I I I I
-2 -1 0 1 2 -2 -1 0 1 2
X X

Figure 3: The upper left panel plots the LL estimators with VS bandwidth while the upper
right with the MSE minimizing variable bandwidth, both by 0.01 intervals in the case of
m(x) = 0.52%. The lower left and right panels plot the corresponding size of VS bandwidth

and the MSE minimizing variable bandwidth at every point = respectively.

20



A 5 fx(x) is bounded continuously twice differentiable with respect to x;, i = 1,..., p.
A 6 m(x) is bounded continuously twice differenciable with respect to ;, 1 =1,...,p.

A7 o%x), 0 < Cpe < %(x) < ", is bounded continuously twice differentiable with

respect to z;, 1 =1,...,p.

K 1 Let Kx(t) be the real valued p-dimensional kernel function satisfying

(i)
(i)
(iii) [+ [ Kx(t)dt < oo,
(iv) [+ [|Kx(t)|dt < 400,
)
i)
i)

Kx(t) is symmetric and [--- [ Kx(t)dt =1,
pa(Kx) = [+ [ttT Kx(t)dt < oo,

(v

(vi) sup [Kx(t)] < oo,

[t||Kx(t)] = 0 as |[t] — oo,

(vii) [ [ Kx(t;,t;)tt;dtdt; =0,¥i, 5 =1,..,p,j # 1.

Appendix 2

We present an algorithm to estimate the multivariate LL estimater with the VS bandwidth

matrix. For illustrative purpose, we consider bivariate situation.

Stage 1. Estimation of fx(x1,....,2,),i=1,...,p

When p = 2, to estimate fx, x,(x1,22), we employ the bivariate kernel density estimator,

— 1 n . ~. —1
[z (1, 22) = i z:fﬁxl,x2 <(:1?1 — Xi1, 23 — Xio)Hp > :
where ITI;« is the estimator of bandwidth matrix donoted as

Hp = diag(hfn, hf22)
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by the assumption A 1 and Kx, x, ( -, - ) is bivariate Gaussian. Assuming A 1, we employ

the Scott’s rule (Scott 1992 p.152) as

Stage 2. Estimation of 0*m(x1,...,2,)/dx:0z;, 1,7 = 1,...,p, 1 # J.
This stage consists of three steps.
Step 1. Following Fan and Gijbels (1995), we estimate the quartic polynomial pilot estimator

m(xy,xq) of the form,
< _ 7. ~2 0.3 04 ~ 2, 1.3 14
m(ry,2y) = to+tiwy + tawy + a2y + 1z 4+t + lewy + 72y + ta7)
Horiwa + borial + fuaial + fortes + biarlel + faaies,

by OLS.
Step 2. We select the best model that minimizes AIC by removing insignificant terms. We

OLS(

denote the predicted value at (2, z2) as m T, T2).

Y

Step 3. We calculate point estimates of 9*m%%(zy,2,) /022, 1 =1,2.
Stage 3. Estimation of o%(z1, ..., x,).

We employ /@Z(ajl, x5) to calculate the squared residuals,
M

P2(Xn, Xin) = (Vi— mE (X, Xi))% i=1,..,n

HM g aney I

where ITI;[ is the estimator of the diagonal bandwidth matrix defined to be

The estimator of Hys is selected so as to minimize the cross-validation statistics in terms of

o~

h,, written as,
I 2
J= > [V T (X Xa)| (20)
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(Xi1, Xj2) is the leave-one-out LL estimator with its i-th element of sample

—— e —
where mbL i

_iy M

left out. Then, we construct residual-based variance estimator,

n - =1\ _
— Ei:l AX17X2 <($1 - Xilv Ty — Xi?)HV > rz(Xila Xz2)
0'%;(1‘1, Ty) = — —3 ; (30)
doim Kxix, <(=’1?1 — Xit, 72 — Xio)Hy >
where ﬁ; is the estimator of the diagonal bandwidth matrix defined to be
Hy = diag(hvv hv) (31)

As an estimator of (31), we employ the following bandwidth that minimizes the cross-

validation statistics with respect to f;\v,

~ 1 " — 2
CV(hU) = — Z |:r2(Xi17Xi2) — 0'2_2.7ﬁ; (Xil,XZ'Q):| , (32)

n <
=1

where

n - X=X X=X\ ~2 ) .
Zj:l;j;éi[‘Xl,Xz( T T (X1, Xj2)

n - Xi—Xj1 Xip—Xjo
Zj:l;j;éi[‘Xl,Xz( S

is leave-one-out residual based estimator with its ¢-th element of sample left out.

;2(\()(2'1,)(2'2) =

—iHy )

The bandwidth minimized in terms of cross-validation statistics is equivalent to the one
minimizing averaged squared error (henceforth ASE) on average. Also, ASE and MISE lead
asymptotically to the same level of smoothing as in Marron and Héardle (1986). This is the

reason to employ cross-validation statistics.

Remark 7. When o?(zy,z;) is considered to be homoscedastic, we employ
[1/(n —2)] >0, 7*(Xi1, Xi2) for the estimator of o2(x1, ) instead of “residual based” esti-

mator.

Remark 8. At the end of Stage 3, we are able to estimate ﬁ;*(xl, zo),1=1,2. ay(2,2y) =

as(x1,72) = 0 happens at the point (21, 73) as indicated in Remark 1, we set ﬁ;*(xl,xz) =
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1/2,i = 1,2. Similarly, if ay(zy, z2) # 0, az(z1,22) = 0, or ag(xy,z2) = 0, az(xy,x2) # 0,
happens at the point (x1, x2) as pointed out in Remark 3, we set 7%(:1;1, xq) =1, 77;(:1;1, xq) = 0,

or 77Af(51?17$2) =0, 77A§(:L'1,x2) = 1, respectively.

Stage 4. Compute hAg.

Now that we have obtained fﬁ;(:pl,xz), Uzﬁ;(xl,xg), ai(xy,xa), ni(x,29), ¢ = 1,2, in

Stages 1-3, we can obtain the universal,

o)~
S
o=

[[ [ K2(ty, t3)dtdty) ] é2

M%(K)TVS(UT(@’M5?2)7773(51/’175&2))

by numerically integrate the function of the form,

— 2 (w1,2)
— A o~ — 2 ~ 0'%\(1}1,:&2)
Tvs(ﬁf(wlafz)aﬁﬁ(whfz))Z/ faz(z1, 72) Zai($17$2) e dxidzs.
r =1 fﬁ;(xlva)

Stage 5. So far, one universal A} and, at every point (z1,x2), U%;(wl,fg)/fﬁ;(l'l,fz)

and 7;;»*(:1;1, x3), 1 = 1,2, are obtained. With the estimated VS bandwidth matrix,

o 77/;(1’1,1’2) T 77/;(1’1,1’2)
— ~ . U%\(xlvxZ) 1 UiIA(l'hiﬁz) ’ N N
Hys(w1,22) = by - diag | | 22—~ Y LA -20-n70, (33)
fﬁ;(l'lafz) fﬁ;(l'hiﬁz)

we calculate the bivariate LI estimator at every point (2, z3) on the domain.
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