
INTRODUCTION

Hepatic encephalopathy (HE) is a neuropsychiatric syn-

drome of both acute liver failure and chronic liver disease 

with symptoms ranging from subtle fluctuating cognitive 

impairment to coma [1]. It is characterized by personality or 

mood changes, abnormal movements, intellectual impair-

ment, and a depressed level of consciousness [1]. Overt HE 

occurs in 30–40% of patients with cirrhosis, whereas minimal 

HE affects up to 80% of patients with cirrhosis [1,2]. Although 

the incidence of HE is high, there is still a paucity in the un-

derstanding of precise pathogenesis of HE, which calls for 

basic research into the pathogenic mechanism of HE. 

For HE research, a wide range of animals have been used, 

including large animals (dogs, goats, pigs, and rabbits) and 

rodent (rats and mice) [3]. Hepatotoxin models have been 
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Background: Bile duct ligation (BDL) has been used for experimental research on he-
patic encephalopathy (HE) caused by chronic liver disease. However, little research has 
been done on a BDL model in C57BL/6 mouse. Therefore, we evaluated the suitability 
of a BDL model in C57BL/6 mouse for the study of HE and determined which behavioral 
tests are appropriate for the identification of HE in this model. 
Methods: Twelve to fourteen-week-old male C57BL/6 mice were randomly assigned to 
either sham group or BDL group. Histological changes in liver were confirmed by hema-
toxylin/eosin and Masson’s trichrome staining. Liver function alterations were detected 
by alanine aminotransferase (ALT) and ammonia levels. To identify behavioral changes, 
open field, elevated plus maze, novel object recognition, and passive avoidance tests 
were performed.
Results: Inflammatory liver injury and fibrosis were observed 14 days after BDL. ALT 
and ammonia levels were significantly higher in BDL group than in sham group. There 
were no differences in general locomotor activity or anxiety between the groups. No dif-
ference was observed between these two groups in the novel object recognition test, but 
BDL group showed significant learning/memory impairment in the passive avoidance 
test compared to sham group. 
Conclusions: Fourteen days of BDL in 12–14-week-old male C57BL/6 mice is a clini-
cally relevant model for HE, as these mice have liver fibrosis with impaired liver function, 
hyperammonemia, and learning/memory impairment. Passive avoidance can be used 
as the major behavioral test in this model of HE.
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widely used to study HE caused by acute liver failure [3–5]. 

Meanwhile, for the research of HE in chronic liver disease, 

bile duct ligation (BDL) has been used [3,6–11]. BDL in ro-

dents provides a model of secondary biliary fibrosis, which 

is characterized by proliferation of bile ductules, cholestasis, 

portal inflammation, and fibrosis [12,13]. Rats are particularly 

adapted to BDL model because they do not have a gall blad-

der; however, BDL is also used in mice although marked dila-

tion of the gall bladder occurs after BDL [12,14]. 

BDL can be performed by double ligation of the common 

bile duct with or without transection at the midpoint between 

the two ligatures [6–11,13,14]. However, in the case of dis-

section of the bile duct between the ligatures, there is the risk 

of bile leaks if one knot is not secure, which results in severe 

peritonitis and mortality [14]. In C57BL/6 mice, double liga-

tion of the common bile duct without transection success-

fully induces inflammatory liver injury and fibrosis with a low 

mortality rate; liver enzymes such as alanine aminotransfer-

ase (ALT) and aspartate transaminase (AST) peak 10–14 days 

after BDL and periportal fibrosis and perisinusoidal fibrosis 

appear 14 days after BDL [14]. 

Recently, mice are rapidly overtaking rats as the major 

model of choice in biological research; mice accounted for 

about 20% of test animals in the 1970s and 1980s, and then 

grew to around 50% in recent years [15]. This shift may be re-

lated to the availability of techniques for genetic modification 

of mice [15]. Among mice, C57BL/6 mice are the most com-

monly used mouse in biomedical research [15]. A wide array 

of genetically engineered mutant mice on the C57BL/6 back-

ground have provided extensive insights into specific genes 

and pathways involved in different liver diseases; therefore, 

C57BL/6 mice remain the most widely used strain in liver re-

search [15]. However, whether BDL in C57BL/6 mice is useful 

for HE research has not been established. Our aims in this 

study were to evaluate the suitability of a BDL model using 

C57BL/6 mouse for the study of HE and to determine which 

behavioral test is appropriate for the identification of HE in 

this model. 

MATERIALS AND METHODS

Animals 

All procedures were approved by the Institutional Ani-

mal Care and Use Committee (IACUC) of Yonsei University 

Health System (no. 2018-0068). Twelve to fourteen-week-

old male C57BL/6 mice (Orient Bio, Korea) were used for 

this study. Mice were randomly assigned to sham group (n 

= 12) or BLD group (n = 14). For the 10% possibility of mor-

tality, two more mice were assigned to BDL group. Animals 

were housed under a 12-h light/dark cycle in a temperature-

controlled room with ad libitum access to food and water. 

Surgery for bile duct ligation

All surgery for BDL was performed as described in a previ-

ous study with slight modifications [14]. Sham-operated mice 

were laparotomized without BDL.

1) Anesthesia was induced by inhalation of 4 vol% isoflu-

rane, and maintained with 1.5–2.0 vol% isoflurane in 100% 

oxygen at a flow rate of 1 L/min. 

2) The mouse was placed on a 37°C heated hot plate. The 

abdominal fur of the mouse was removed with an electric fur 

shaver and the eyes were protected by using an eye ointment.

3) The abdominal skin was sterilized with betadine fol-

lowed by 70% ethanol (2–3 times) using cotton swabs.

4) The abdomen was opened by a midline laparotomy ap-

proximately 2 cm in length with a surgical scissor, and the 

connective tissue on top of the peritoneum was dissected us-

ing a pair of scissors as a spreader.

5) The peritoneum was cut along the linea alba to open the 

peritoneal cavity.

6) The cavity was enlarged by inserting a holding suture in 

the sternum, raising the filament of the suture, and fixing it 

on top of the circuit. The peritoneal cavity was enlarged with 

a retractor.

7) The liver was lifted with a moistened (0.9% NaCl solu-

tion) cotton swab so that the ventral side of it stuck to the dia-

phragm and the hilum was clearly visible. The bile duct was 

exposed by caudal movement of the gut.

8) The bile duct was separated from the portal vein and he-

patic artery using micro-serrations forceps (Fig. 1A).

9) A 5–0 silk suture was placed around the bile duct and 

secured with two surgical knots (Fig. 1B). A second cranial li-

gation was added in the same manner but did not dissect the 

bile duct in-between (Fig. 1C). 

10) The ends of the sutures were cut, the sternum was low-

ered, and the retractor was removed.
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11) A 0.9% NaCl solution (0.3–0.5 ml) was applied to the 

peritoneal cavity and the abdominal organs were replaced in 

their physiological positions.

12) The peritoneum and skin were closed with simple 

continuous suture with 5–0 silk, and the operation area was 

sterilized with betadine followed by 70% ethanol (2–3 times) 

using cotton swabs.

13) Intraperitoneal injection of tramadol 0.25 mg/kg was 

performed immediately after surgery. 

Behavioral tests 

All behavioral tests were performed as described in a previ-

ous study with the modifications described below [16]. Symp-

toms of minimal HE include anxiety and impaired memory 

[1,2]. Therefore, open filed test and elevated plus maze test 

were performed to test anxiety, and novel object recognition 

test and passive avoidance test were performed to test mem-

ory. For environmental acclimation, mice were placed into 

a behavior room for 1 h prior to the test. After each trial, the 

apparatus was cleaned with distilled water and then cleaned 

with 70% ethanol and the inter-trial interval was 3 min. Be-

havioral data were automatically analyzed using SMART 

Video Tracking system, which tracks nose, tail, and center of 

the mouse’s body (Panlab Harvard Apparatus, Spain) with 

SMART v2.5.21 software. 

Open field test (13 days after surgery)

After acclimation of the behavior room in the home cage, 

the mouse was gently placed in the center of an open field 

chamber (40 × 40 × 40 cm, JEUNGDO Bio & Plant Co., Ltd., 

Korea) and allowed to move freely for 10 min. The total dis-

tance moved and time spent in the center were recorded and 

analyzed to evaluate general locomotor activity and level of 

anxiety, respectively. 

Elevated plus maze (14 days after surgery)

The maze consisted of two open arms (31 × 6 × 1 cm) and 

two enclosed arms (31 × 6 × 15 cm) with a central open square 

area (5 × 5 × 1 cm), and was elevated by 50 cm (JEUNGDO 

Bio & Plant Co., Ltd.). Mice were individually placed in the 

center facing an open arm and allowed to explore for 5 min. 

Duration of open arm and closed arm entries were recorded. 

Entry was defined as movement of all paws into an arm. The 

percentage of time spent in open arms was measured.

Novel object recognition test (14 days after surgery)

To evaluate recognition memory, the novel object recogni-

tion test was performed in the same chamber of open filed 

test. After 24 h of open filed test, the individual mouse, which 

was habituated to the chamber during open field test, was 

presented with two equal sample objects for familiarization 

and allowed to explore freely for 10 min. After 1 h, one of the 

familiar objects was replaced with a novel object and free ex-

ploration was allowed for 10 min [17]. Recognition memory 

was expressed as the percentage of novel object exploration 

time, which was calculated as (novel object exploration time/

[familiar object exploration time + novel object exploration 

time]) × 100%.

Passive avoidance test (13 and 14 days after surgery)

To evaluate learning/memory as a result of a fear response, 

the passive avoidance test was performed in a 41 × 21 × 30 cm 

plastic chamber consisting of light and dark compartments 

separated by a guillotine door (JEUNGDO Bio & Plant Co., 

Ltd.). The stainless steel grid on the floor of the dark compart-
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Fig. 1. Surgical procedures used for 
bile duct ligation. (A) Separation of the 
bile duct from the portal vein and he-
patic artery. (B) Ligation of the bile duct 
with a 5–0 silk suture. (C) Double liga-
tion of the bile duct without dissection 
between the two ligatures.



ment was capable of administering an electric shock. In the 

training trial (13 days after surgery), each mouse was placed 

in the light compartment and allowed to explore the cham-

ber for 10 s. The door between the two compartments was 

opened 10 s after the mouse was placed on the light compart-

ment and the mouse was allowed to explore and move freely 

into dark compartment. When the mouse entered the dark 

compartment completely, the door was closed and an elec-

tric foot shock (0.5 mA) was applied for 3 s through the steel 

grid on the floor. Twenty-four hours after the training trial (14 

days after surgery), retention trial was performed in the same 

chamber. Identical to the training trial, the mouse was placed 

in the light compartment and then 10 s later, the door was 

opened. The time to enter the dark compartment (transfer la-

tency) was recorded. If the mouse did not enter the dark side 

within 300 s, transfer latency was recorded as 300 s.

Laboratory tests (14 days after surgery)

After behavioral tests, whole blood obtained by cardiac 

puncture and ammonia levels were measured using the 

PocketChem BA PA-4140 (Arkay Inc., Japan) according to 

the manufacturer’s instructions. Analysis of ALT level was 

performed in serum by the Korea Animal Medical Science In-

stitute (KAMSI, Korea) using Hitachi 7180 chemistry analyzer 

(Hitachi High-Technologies Co., Japan). 

Liver histology (14 days after surgery)

Livers were fixed in 4% paraformaldehyde overnight at 4°C, 

embedded in paraffin, and then sectioned to obtain 4-μm 

slices. Hematoxylin and eosin (H&E) and Masson’s trichrome 

staining were performed and stained slides were examined 

using an Olympus BX53 microscope (Olympus, Japan).

Statistical analysis

Data are expressed as mean ± standard deviation or me-

dian (1Q, 3Q) of independent experiments. Normality of dis-

tribution was assessed with D’Agostino-Pearson test. Inde-

pendent t test was used for parametric data (ALT, ammonia, 

total distance moved and time spent in the center [open field 

test], time spent in open arms [elevated plus maze test], and 

percentage of novel object exploration time [novel object rec-

ognition test]), and Mann–Whitney U test was used for non-

parametric data (transfer latency [passive avoidance test]). 

Body weight was analyzed by two-way ANOVA with repeated 

measures in one factor. P < 0.05 was considered statistically 

significant, and all analyses were performed with GraphPad 

Prism Software v7.0 (GraphPad Software, USA).

RESULTS

Histological changes of the liver in the BDL model

To assess histological changes and liver fibrosis, H&E and 

Masson’s trichrome staining were performed 14 days after 

surgery (Fig. 2). In H&E staining, mononuclear cell infiltration 

around the portal vein and massive cytoplasmic degenera-

tion with vacuolated cytoplasm was observed in BDL group. 

Moreover, pyknotic nuclei and hepatocyte necrosis were 
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Fig. 2. Liver tissue with (A) hematoxylin & eosin and (B) Masson’s tri-
chrome stain after 14 days of surgery. The scale bar represents 100 
µm. BDL: bile duct ligation. 



evident in widened areas, especially surrounding the portal 

vein in BDL group (Fig. 2A). In Masson’s trichrome staining, 

marked fibrotic areas (stained blue) around the portal vein 

were revealed in BDL group (Fig. 2B).

Alteration of physiological and biochemical 

parameters in the BDL model

Although body weights were similar between the groups 

before surgery (28.9 ± 1.4 vs. 29.9 ± 1.2 g in sham group and 

BDL group, respectively, P = 0.416), the body weight was sig-

nificantly less in BDL group 14 days after surgery compared 

to the sham group (23.1 ± 1.9 vs. 29.3 ± 1.6 g, respectively, P < 

0.001; Fig. 3A). The level of ALT was more than 25-fold higher 

in BDL group than in sham group (1,013 ± 599 vs. 37 ± 14 U/

L, respectively, P = 0.007; Fig. 3B). In addition, BDL group 

showed a significant increase in blood ammonia levels com-

pared to sham group (297 ± 82 vs. 101 ± 48 μg/dl, respectively, 

P < 0.001; Fig. 3C). 

No alteration of general activity and anxiety in 

BDL model

General locomotor activity (total distance moved) mea-

sured by open field test were not different between the groups 

(2,732 ± 525 vs. 2,343 ± 389 cm in sham group and BDL group, 

respectively, P = 0.114; Fig. 4A). The level of anxiety assessed 

by open field test (time in center) and elevated plus maze 

(time in open arms) were similar between the groups. In open 

field test, 10.9% of time was spent in the center in sham group 

and 8.5% of time in BDL group (P = 0.503; Fig. 4A). In elevated 

plus maze test, 19.9% of time was spent in open arms in sham 

group and 20.1% of time in BDL group (P = 0.977; Fig. 4B). 

Impairment of learning/memory in the BDL 

model

Learning/memory was assessed by novel object recogni-

tion test and passive avoidance test. In the novel object recog-

nition test, the time spent exploring novel objects was similar 

for the two groups (59.9 ± 14.3 vs. 58.5 ± 17.8% in sham group 

and BDL group, respectively, P = 0.571; Fig. 4C). However, in 

the passive avoidance test, transfer latency to enter the dark 

compartment was shorter in BDL group than in sham group 

(48.5 [20.8, 259] vs. 300 [241.5, 300] s, respectively, median 

[1Q, 3Q], P = 0.018), which indicates learning/memory im-

pairment in BDL mice (Fig. 4D). 

DISCUSSION

This study demonstrated that liver fibrosis was induced 

and learning/memory impairment appeared 14 days after 

BDL in C57BL/6 mice. Therefore, this 14 day-BDL model 

in C57BL/6 mouse can be used to study HE and the passive 

avoidance test can be used to identify HE in this model. 

HE is subdivided into type A, which is caused by acute liver 
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failure, type B, which is predominantly due to portosystemic 

bypass or shunting without associated intrinsic liver disease, 

and type C, which is caused by cirrhosis [1]. To create type A 

HE rodent models, various types of hepatotoxic substances 

has been used: thioacetamide, acetaminophen, and carbon 

tetrachloride in rats [3,18–20], and azoxymethane in mice 

[3–5]. Among 6,307 patients who visited the liver clinic of a 

single community hospital in Korea, 3,957 (62.7%) patients 

were diagnosed with chronic hepatitis, whereas 528 (8.4%) 

were diagnosed with acute hepatitis [21]. Therefore, a type C 

HE model may be more appropriate than a type A HE model 

in Korea in that type A HE has different manifestations from 

type C HE such as a prominent increase in intracranial pres-

sure with cerebral edema [1]. 

Since BDL model has features of chronic liver disease and 

is technically relatively simple and quick to perform [13,14], it 

can be considered good experimental models for type C HE 

[3]. In fact, several studies have used BDL model in mice for 

HE research [6–11]. BDL in mice induces inflammatory liver 

injury and fibrosis through obstructive cholestasis [13,14]. 

After BDL, ductular reaction is induced by the proliferation of 

biliary epithelial cells, while hepatocytes in areas of prolifer-

ated bile ducts undergo necrosis and apoptosis [13,14]. As the 

degree of fibrosis after BDL can be dependent on the genetic 

background, sex, and age of the mice [12,13], confirmation of 

liver fibrosis is crucial in each mouse strain that is planned for 

use. In the present study, double ligation of the common bile 

duct without transection was applied in male C57BL/6 mice, 

and inflammatory liver injury and fibrosis were observed 14 

days after BDL with mortality rate of 7% (1 of 14). Therefore, 

a 14-day BDL model can be applied in male C57BL/6 mouse 

for research on chronic liver disease. 

To evaluate brain function alterations in a disease model, 

determination of appropriate time points for behavioral tests 
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is important. In previous studies using BDL model, behav-

ioral tests were performed at a different time point [6–11]. In 

studies using female Sabra mice (8 weeks of age, 25–30 g), 

eight-arm maze test (learning/memory) and open filed test 

(motor function) were performed 3 weeks after BDL [8,9]. 

Meanwhile, in studies using male NMRI mice (25–35 g), 

passive avoidance test (learning/memory) and novel object 

recognition test (learning/memory) were performed 24 days 

after BDL and 4 weeks after BDL, respectively [10,11]. There-

fore, we had to determine the time point for behavioral tests, 

as no previous study had evaluated learning/memory func-

tion in C57BL/6 mice after BDL. In previous studies using 

male C57BL/6 mice (6–8 weeks of age), recruitment of acti-

vated monocytes into the brain were observed 10 days after 

BDL [6,7], which implies that inflammatory responses were 

already triggered in the brain 10 days after BDL. In the pres-

ent study, impairment of learning/memory was identified by 

a passive avoidance test 14 days after BDL when liver fibrosis 

and elevation of ALT were also observed. A previous study 

reported that ALT and AST peaked after 10–14 days, total bili-

rubin reached a plateau after 7 days, and periportal fibrosis 

and perisinusoidal fibrosis manifested after 14 days of BDL 

[14], thus 14 days of BDL may be appropriate to investigate 

secondary organ dysfunction in liver disease. 

Mice aged 12–14 weeks were used in the present study, in 

contrast to previous studies that used 6–8-week-old C57BL/6 

mice [6,7]. Many investigators choose 8–12-week-old mice 

usually because of cost; however, many developmental 

processes occur during this timeframe that can have a large 

impact on experimental variables [22]. Three- to six-month-

old C57BL/6 mice (equivalent to 20–30 human years) are 

considered mature adult mice [22]. Therefore, we argue that 

12- to 14-week-old male C57BL/6 mice are good candidates 

for research on HE. 

In the present study, general locomotor activity was as-

sessed by an open field test (total distance moved) and anxi-

ety was assessed by an open field test (time in center) and 

elevated plus maze test (time in open arms) [23,24]. General 

locomotor activity was not impaired and anxiety was not 

increased 14 days after BDL in C57BL/6 mice. To investigate 

hippocampus-dependent learning/memory, we used a novel 

object recognition test and passive avoidance test [23–25]. 

No difference between BDL and sham-operated mice was 

observed in the novel object recognition test; however, BDL 

mice showed significant learning/memory impairment in 

a passive avoidance test compared to sham-operated mice. 

The reason for memory impairment in the passive avoidance 

test but not novel object recognition test may be due to the 

different stress intensities of the two tests. Novel object rec-

ognition test is relatively less stressful, however the passive 

avoidance test is fairly stressful because the mouse receives 

an aversive stimulus (electric foot shock) when entering a 

comfortable environment (dark compartment) [23–25]. In 

fact, the passive avoidance test has been used in various 

models of brain disease to evaluate learning/memory impair-

ment because strong memory retention can be gained after a 

single training trial in most mouse strains [24]. Therefore, the 

passive avoidance test may be the best option to detect mini-

mal HE in C57BL/6 mice. 

Although the correlation between blood ammonia level 

and severity of HE is not always consistent, ammonia is a 

crucial factor in the pathogenesis of HE [26]. This is sup-

ported by the fact that neurological/psychiatric symptoms 

and electroencephalographic abnormalities improve when 

blood ammonia levels are lowered in HE patients [27,28]. 

Moreover, the severity of HE has been found to correlate well 

with blood and brain ammonia levels in animal models of 

HE [29,30], and feeding rodents a high-ammonia diet is one 

of the methods used to induce HE in rodents [3]. Therefore, a 

high level of blood ammonia, along with an abnormal behav-

ioral test, can serve as supportive evidence of HE in mice. In 

our study, blood ammonia levels were approximately double 

in BDL mice than sham-operated mice, which supports our 

argument that a 14-day BDL model in C57BL/6 mouse is a 

clinically relevant model for HE. However, further studies in-

vestigating the effects of hyperammonemia on the alteration 

of signal transduction pathway, gene expression, and astro-

cyte function are needed to confirm the development of HE. 

In conclusion, a 14-day BDL model using 12- to 14-week-

old male C57BL/6 mice is an appropriate HE model of chron-

ic liver disease as evidenced by liver fibrosis with impaired 

liver function, hyperammonemia, and learning/memory 

impairment. Passive avoidance can be considered as the pri-

mary behavioral test of HE in this model. 
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