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Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) have been 
increasing at an alarming rate worldwide. Many clinical studies have underlined 
the link between NAFLD and atherosclerosis. Our previous experiments have 
discovered that Lactobacillus (L.) plantarum ATCC14917 supplementation could 
decrease the progression of atherosclerotic lesion formation. In this study, 
we aimed to investigate the role of supplementation of L. plantarum ATCC14917 
mitigates liver injury in rats fed with a high-fat diet (HFD, 45% kcal from fat). A total 
of 32 rats were randomly divided into four groups, including two intervention 
groups, who fed with HFD and administering either 1 × 107 or 1 × 109 colony 
forming units (CFU) of L. plantarum ATCC14917, the normal control group, and 
the HFD control group. The results showed that supplementation with low-dose 
and high-dose of L. plantarum ATCC14917 for 8 weeks could alleviate the body 
weight gain (p < 0.05), hepatic steatosis, and serum lipid metabolism (p < 0.05) in 
HFD-fed rats. Moreover, supplementation of L. plantarum ATCC 14917 decreased 
total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), and 
aspartate aminotransferase (AST) levels (p < 0.05) in serum, and improved HFD-
associated inflammation (p < 0.05). Furthermore, cecal contents were analyzed 
by high-throughput 16S ribosomal RNA sequencing. The results indicated that 
supplementation of L. plantarum ATCC 14917 could ameliorate HFD-induced gut 
dysbiosis. In summary, our findings suggest that supplementation of L. plantarum 
ATCC 14917 could mitigate NAFLD in rats, suggesting it may be considered as a 
probiotic agent for preventing HFD-induced obesity.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases, 
characterized by excessive lipid deposition and steatosis in liver cells. It is closely related to 
metabolic syndromes such as obesity, insulin resistance, dyslipidemia, and hypertension. NAFLD 
is a clinicopathological syndrome, ranging from non-alcoholic fatty liver (NAFL) to non-alcoholic 
steatohepatitis (NASH), which can progress to cirrhosis and liver cancer (Kim et al., 2021; Lange 
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et al., 2021). The pathogenesis of NAFLD has not been fully elucidated, 
and the pathophysiology is related to multiple simultaneous factors. 
The high-fat diet (HFD) can cause oxidative stress and lipid 
peroxidation in the liver, leading to internal fat deposition in 
hepatocytes, resulting in the formation of NAFLD (Friedman et al., 
2018; Du et al., 2020). The intake of HFD can cause an imbalance of 
the gut microbiota (Liang et al., 2021), which leads to the excessive 
reproduction of harmful bacteria in the intestine, leading to the 
increased generation of intestinal endotoxin and the imbalance of the 
gut barrier stability (Gil-Gomez et al., 2021). The microbiota-generated 
metabolites and other compounds could enter the liver through the 
portal vein, which activates Toll-like receptors and emit a signal 
transduction cascade to release cytokines and chemokines, causing 
inflammatory responses, oxidative stress, and lipid peroxidation 
(Grabherr et al., 2019; Ferro et al., 2020; Khan et al., 2021).

At present, there is a lack of specific drugs for the clinical 
treatment of NAFLD. Although there are some drugs with 
hypolipidemic effects that can improve the symptoms of NAFLD, they 
may be accompanied by adverse side effects (Romero-Gomez et al., 
2017; Neuschwander-Tetri, 2020). Increasing numbers of studies have 
demonstrated that probiotics can effectively reduce endotoxemia, 
improve gut barrier function, and may play a certain role in the 
treatment of NAFLD (Wang et al., 2020; Ferguson and Finck, 2021; 
Luo et al., 2021; Ren et al., 2021; Huang et al., 2022). As the most 
studied probiotic bacteria, Lactobacillus is an important member of 
the maintenance of microbial flora in the gut, and some strains have 
been widely used in the field of food and health and have been 
developed as probiotics (Liang et al., 2020; Zhang et al., 2020; Lee 
et al., 2021; Yu et al., 2021; Zhu et al., 2021).

Our previous studies have shown that Lactobacillus (L.) plantarum 
ATCC14917 could alleviate the progression of atherosclerotic lesion 
formation in mice, and can significantly improve inflammatory and 
oxidative stress (Hassan et al., 2020). But the effect of L. plantarum 
ATCC14917 on NAFLD has not been elucidated. Therefore, 
we  investigated the effects of L. plantarum ATCC14917 on 
HFD-induced NAFLD in this study. The rat model of NAFLD induced 
by HFD was intervened with L. plantarum ATCC14917 for 8 weeks. 
The ability of L. plantarum ATCC14917 on alleviating NAFLD was 
assessed by the changes in lipid deposition, oxidative stress, 
inflammation, and gut microbiota diversity and compositions. This 
study aimed to provide a basis and reference for the application of 
L. plantarum ATCC14917 in the intervention of NAFLD.

2. Materials and methods

2.1. Materials and reagents

The phosphate-buffered saline (PBS, 022117) and de Man-Rogosa-
Sharpe (MRS, 027315) broth were purchased from HKM Company 
(Guangdong, China). The animal chow was purchased from Jiangsu 
Xietong Pharmaceutical Bio-Engineering Co., Ltd. (Jiangsu, China), 
including HF-diet (45% kcal from fat, XTHF45 according to the 
Research Diet D12451) and a matched control diet (10% kcal from fat, 
XTCON50H). The hematoxylin and eosin (HE) kit (G1001), picrosirius 
red staining kit (GC307014), and Oil red O staining kit (G1015) were 
purchased from Servicebio technology Co., Ltd. (Wuhan, China). Serum 
levels of the triglyceride (TG, 100045051416), total cholesterol (TC, 

100045051438), alanine aminotransferase (ALT, 100045051446), and 
aspartate aminotransferase (AST, 100045051470) were measured by TG 
assay kit (GPO-PAP), TG assay kit (COD-PAP), ALT and AST assay kit 
(IFCC) (Shenzhen Mindray Bio-Medical Electronics Co., Ltd., 
Shenzhen, China) using an automatic biochemical detector BS-240VET 
(Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, 
China). The ELISA kits of tumor necrosis factor (TNF-α, MM-0180R1), 
interleukin-1β (IL-1β, MM-0047R1), and interleukin-6 (IL-6, 
MM-0190R1) were purchased from Jiangsu Enzyme Immunity Industry 
Co., Ltd. (Jiangsu, China). The superoxide dismutase(SOD) activity 
assay kit (spectrophotometer, BC0170), malondialdehyde (MDA) 
content assay kit (spectrophotometer, BC0025), and glutathione 
peroxidase (GSH-Px) activity assay kit (spectrophotometer, BC1195), 
chromogenic end-point TAL assay kit (T7574) was purchased from 
Solarbio Science & Technology Co., Ltd. (Beijing, China). Other reagents 
and chemicals used in this investigation were purchased from Aladdin 
Chemistry Co., Ltd. (Shanghai, China) and were of analytical grade.

2.2. Preparation of the bacterial solution

L. plantarum ATCC 14917 was purchased from China General 
Microbiological Culture Collection Centre (www.cgmcc.net). 
L. plantarum ATCC 14917 was cultured anaerobically in MRS broth 
at 37°C for 16–18 h. After removing the supernatant by centrifugation 
(3,500 × g, 10 min, 4°C), the cells were washed with sterile PBS two 
times and resuspended in PBS. The suspension concentration of 
L. plantarum ATCC 14917 was adjusted to approximately 1 × 107 or 
1 × 109 colony-forming units of bacteria per mL (CFU/mL) to prepare 
for the gavage of rats as described previously (Hassan et al., 2020).

2.3. Animals experimental design

A total of 32 specific-pathogen-free (SPF) male Sprague Dawley 
rats (6 weeks old, 180–200 g) were purchased from Hunan 
Silaikejingda Experimental Animal Company Limited (Changsha, 
Hunan, China). Rats were kept under controlled environmental 
conditions at 25 ± 1°C with a 12 h light/dark cycle and access to food 
and water freely. After acclimation for 1 week, rats were then randomly 
divided into the following four experimental groups (n = 8/group): the 
(1) control diet group (CON); (2) high-fat diet group (HFD); (3) 
high-fat diet with L. plantarum ATCC 14917 (1 × 108 CFU/ml) 
supplement group (HFDLP1); (4) high-fat diet and L. plantarum 
ATCC 14917 (1 × 109 CFU/ml) supplement group (HFDLP2). The rats 
in the CON and HFD groups received equivalent PBS (2 ml) daily 
through oral gavage for 8 weeks. During the experiments, the body 
weight of rats was measured every week. After the last administration, 
the rats were fasting for 12 h but drank water freely. The rats were 
sacrificed after euthanasia at the end of the experiment. Then the 
blood, liver tissues, ileum tissues, and colonic content samples of rats 
were taken for further testing.

2.4. Serum biochemical analysis

Following anesthetization, the blood was collected and coagulated 
naturally at room temperature for 10 min. Afterward, serum samples 
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were collected after centrifugation for 20 min (3,000 × g at 4°C) and 
stored at −80°C until use. The levels of ALT, AST, TG, and TC in the 
serum were detected by an automatic biochemical analyzer (Mindray 
BS-240VET, China). The lipopolysaccharides (LPS) concentration in 
serum was detected with the chromogenic end-point TAL assay kit 
according to the manufacturer’s instructions. The ELISA double-
antibody sandwich method was used to detect the levels of 
proinflammatory cytokines IL-1β, IL-6, and TNF-α in the serum of 
rats in each group. All the operation method is carried out by the 
instructions of the purchased kit.

2.5. Histological and staining analysis

Partial liver and ileum tissues were cleaned with ice-cold 
PBS. Then the tissues were fixed with 10% neutral formalin for 24 h, 
dehydrated with ethanol, dealcoholized with xylene, and then 
embedded in paraffin. Subsequently, the liver tissues were sectioned 
into 4-μm-thick slices. The liver sections of each group of rats were 
stained with HE or Picrosirius red after deparaffinization, according 
to the kit manufacturer. The pathological images were acquired with 
a light microscope (Leica DM 2500, Germany) at 200× magnifications. 
Meanwhile, Oil red O staining was performed to observe liver 
intracellular lipid accumulation. Five fields of vision in each sample 
were collected at random.

2.6. Determination of hepatic MDA, 
GSH-PX, and SOD levels

The liver samples were thoroughly rinsed in PBS and then 
homogenized in PBS in a ratio of 1:10 (w/v) for the detection of 
antioxidant biomarkers (MDA, GSH-PX, and SOD). The levels of 
MDA, GSH-PX, and SOD in the supernatant of homogenates were 
detected by using commercial kits following the manufacturer’s 
protocol, respectively.

2.7. RNA extraction and reverse 
transcription real-time PCR

The TLR-4, MyD88, and NF-κB gene mRNA expressions were 
analyzed by real-time quantitative PCR (RT-qPCR). Total RNA was 
isolated from 50 mg of rat liver tissue using TRIzol Reagent (15596026, 
Invitrogen, United States) following the manufacturer’s instructions. 
Isolated RNA was then quantified (1 μg) and reverse transcribed into 
cDNA with the cDNA Reverse Transcription Kit (4368813, Invitrogen, 
United  States) according to the manufacturer’s instructions. The 
cDNA was then diluted at 1:50 in RNase-free water and kept at −20°C 
until further use. qPCR analysis was carried out in 96-well plates with 
a BioRad CFX-96 real time system (BioRad, United  States) using 
SYBR Premix Ex Taq II (RR820A, TaKaRa, Japan). Gene-specific 
primer sequences used are shown in Table  1. The amplification 
conditions were denaturation at 95°C for 10 min, followed by 40 cycles 
of 95°C for 15 s and extension at 60°C for 30 s. The relative levels of 
the target genes were normalized by the expression of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH). Quantitative changes in gene 
expression were quantified using the 2–ΔΔCT method.

2.8. 16S rRNA gene sequencing of the gut 
microbiota

The colonic content samples were snap-frozen and stored in liquid 
nitrogen. Total microbiota genomic DNA from these samples was 
extracted with biomarker soil genomic DNA kit (RK02008, Beijing 
Biomarker Technologies Co. Ltd., Beijing, China), and used for 16S 
rRNA gene analysis for microbiota profiling with barcoded amplicons 
from the V3–V4 region of the 16S rRNA gene as described previously 
(Park et al., 2020; Wang et al., 2021). The V3-V4 region of the 16S 
rRNA gene was amplified by PCR using the primer pair 338F (forward, 
5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (reverse, 
5′-GGACTACHVGGGTWTCTAAT-3′). The purified amplicons were 
pooled and sequenced by the Illumina Novaseq 6000 system (Illumina, 
San Diego, United  States) according to the standard protocols by 
BioCloud biotechnology company (Shanghai, China). Raw reads were 
generated and analyzed using the BioCloud platform1. The raw 
sequence data were deposited to the National Center for Biotechnology 
Information with the following accession number: PRJNA892456. The 
alpha diversity and beta diversity analyses were performed based on 
OTU clustering. In addition, the changes in gut microbiota at the 
phylum level were analyzed as our described previously (Li et al., 2023).

2.9. Statistical analysis

Data from these experiments were presented as mean ± standard 
deviation (SD). Data were analyzed with the GraphPad Prism software 
version 9.0 (San Diego, CA, United States). The statistical analysis 
(unpaired parametric t-test) was performed. A probability (P) value 
less than 0.05 indicates statistical significance.

3. Results

3.1. Body weight and serum lipid levels

A Comparison of rat body weight in each group is shown in 
Figure 1A. At the beginning of the experiment (weeks 1–4), there was 
no significant difference in the body weight between different groups 

1 http://en.biocloud.net/

TABLE 1 Real-time quantitative PCR primers used in analyses of liver 
tissues.

Target gene Primer Sequences (5 → 3)

TLR4 Forward GATTGCTCAGACATGGCAGTTTC

Reverse CACTCGAGGTAGGTGTTTCTGCTAA

MyD88 Forward AGGAGGACTGCCAGAAATACATAC

Reverse GATGCCTCCCAGTTCCTTTG

NF-κB Forward AGGAAGGCAAAGCGAATCCA

Reverse TCAGAACCAAGAAGGACGCC

GAPDH Forward GAAGGTCGGTGTGAACGGATTTG

Reverse CATGTAGACCATGTAGTTGAGGTCA
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(p > 0.05). The body weight of rats changed significantly after 
5–8 weeks of treatment under different intervention conditions. After 
8 weeks of feeding, the body weight in rats of the HFD group was 
significantly higher than that of the CON group (p < 0.005, Figure 1B). 
The body weight of rats in the HFDLP1 and HFDLP2 groups was 
significantly lower than the HFD group (p < 0.01). Meanwhile, the 
body weight gain in the HFDLP1 and HFDLP2 groups was 
significantly lower than in the HFD group (p < 0.05, Figure 1C). In 
addition, the levels of serum TC and TG in rats of the HFD group 
increased significantly compared with the normal group (p < 0.001, 
Figures 1D,E). Compared with the HFD group, serum TC and TG in 
rats in the HFDLP1 group were significantly reduced (p < 0.05), the 
levels of serum TC in rats of the HFDLP2 group were significantly 
reduced (p < 0.01), and TG of rats in the HFDLP2 group were also 
significantly reduced (p < 0.01). These results indicate that 

supplementation of L. plantarum ATCC14917 could regulate the body 
weight gain and serum lipid levels of rats induced by HFD.

3.2. Pathological analysis

The effects of L. plantarum ATCC14917 on the pathological 
changes of the liver were shown in Figure 2. The results of HE staining 
showed that the liver tissue of the CON group had no obvious 
pathological changes. In contrast, the liver tissue of the HFD group 
showed classical pathophysiological characteristics of hepatic steatosis. 
Hepatocytes were swollen and sparsely arranged, with many lipid 
droplet vacuoles in the cytoplasm, nuclei moved to the edge, and 
inflammatory cells were infiltrated in some areas of the tissue in 
HFD-fed rats. Meanwhile, the results of Oil Red O staining revealed 
marked lipid droplet deposition. Compared with the HFD group, the 

FIGURE 1

Effects of Lactobacillus plantarum ATCC14917 on body weight and lipid metabolism in rats. (A) The body weight changes in rats for 8 consecutive 
weeks; (B) the body weight of rats after 8 weeks of feeding; (C) the body weight gain of rats after 8 weeks of feeding; (D) the serum TC; (E) the serum 
TG. Data are presented as means ± SD (n = 8) and analyzed using the t-tests. ##p < 0.01 and ###p < 0.005 compared with the CON group. *p < 0.05, 
**p < 0.01, ***p < 0.005 compared with the HFD group. △△p < 0.01 compared with the HFDLP1 group.
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pathological changes in the liver tissue of the HFDLP1 and HFDLP2 
groups were alleviated. Especially, the results of Oil Red O staining 
and Picrosirius red staining proved that high-dose supplementation 
with L. plantarum ATCC14917 reduced liver lipid accumulation and 
fibrosis in HFD-fed rats.

3.3. Serum biochemical parameters and 
oxidative stress levels

The levels of ALT, AST, SOD, GSH-PX, and MDA in serum or 
liver were measured to evaluate the effect of L. plantarum ATCC14917 
on liver function and oxidative stress. As shown in Figure 3, the levels 
of serum ALT and AST in the HFD group were significantly higher 
than those in the CON group (p < 0.01). In addition, the levels of 
serum AST and ALT in the HFDLP1 and HFDLP2 groups were 
significantly lower than that in the HFD group (p < 0.05). These results 
suggested that L. plantarum ATCC14917 could improve liver injury. 
Furthermore, the results showed that the activity of SOD and the 
content of GSH-Px in the liver were decreased with HFD, but 
supplementation with L. plantarum ATCC14917 significantly 
increased these levels (p < 0.05). In contrast, the content of MDA 
significantly increased in the HFD group compared with the CON 
group. Meanwhile, the supplementation with L. plantarum 
ATCC14917 effectively inhibited the upregulation of MDA content in 
the liver compared to the HFD group.

3.4. The levels of inflammatory cytokines 
and representative expression of TLR4/
NF-κB signaling pathway

Accumulating evidence suggested that HFD could increase LPS 
concentration in serum, which plays an important role in NAFLD 
progression. Therefore, we examined the level of LPS in serum with 
chromogenic end-point TAL assay. As shown in Figure 4A, serum LPS 
in the HFD group was significantly higher than that in the CON group 
(p < 0.05). Interestingly, the level of serum LPS in the HFDLP1 and 
HFDLP2 groups were both significantly lower than that in the HFD 
group (p < 0.05). To further explore the effect of L. plantarum ATCC14917 
on inflammation in rats, we evaluated the changes in the content levels 
of IL-1β, IL-6, and TNF-α in the serum. As shown in Figures 4B–D, 
compared with the CON group, the levels of IL-1β, IL-6, and TNF-α in 
the HFD group were significantly increased (p < 0.01). With L. plantarum 
ATCC14917 intervention, the levels of these inflammatory cytokines 
were significantly reversed in the HFDLP1 and HFDLP2 groups, and no 
obvious difference was found compared with the CON group.

To further explore the effect of L. plantarum ATCC14917 on the 
TLR4/NF-κB signaling pathway, we assessed the mRNA expression 
levels of TLR4, MyD88, and NF-κB in the liver. The results were listed 
in Figures  4E–G. Compared with the CON group, the mRNA 
expression levels of TLR4, MyD88, and NF-κB were significantly 
increased in the liver of the rats in the HFD group (p < 0.01). Besides, 
the mRNA expression levels of TLR4, MyD88, and NF-κB in the 

FIGURE 2

Effects of Lactobacillus plantarum ATCC14917 on liver injury, hepatic steatosis, and fibrosis in rats. (A) The HE staining of liver tissue sections; (B) the Oil 
red O staining of liver tissue sections; (C) the Picrosirius red staining of liver tissue sections. n = 5, at 200× magnifications.
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HFDLP1 and HFDLP2 groups showed significant downregulation in 
the liver compared to the HFD group (p < 0.05).

3.5. Gut microbiota diversity and 
compositions

To assess the beneficial effects on the gut microbiota of 
L. plantarum ATCC14917 supplementation, we measured the changes 
in gut microbiota by 16S rRNA gene sequencing. The alpha diversity 
and beta diversity analysis results of the cecal microbiota are shown in 
Figure 5. HFD induced a decrease in the species richness and diversity 
of gut microbiota compared with the CON group (p > 0.05). 
Noteworthily, supplementation of L. plantarum ATCC14917 increased 
the observed species richness (Chao1 and ACE) of gut microbiota 
compared with the HFD group (p < 0.05). Meanwhile, species diversity 
(Shannon) of gut microbiota also increased (p < 0.05) in the HFDLP1 
and HFDLP2 groups. In addition, the results of the PCoA plot and 
UPGMA showed that the gut bacteria compositions of the HFDLP1 
and HFDLP2 groups were distinctly separated from the HFD group 
(Figures 5E,F).

The changes in the microbiome composition between different 
treatment groups were apparent. As shown in Figure 6, the phylum-
level taxonomic composition analysis showed that Firmicutes and 
Bacteroidota were the predominant bacterial phyla. HFD increased 
the relative abundances of Firmicutes and decreased the relative 
abundances of the Bacteroidota compared with the CON group 
(p < 0.01). In addition, the ratio of Firmicutes to Bacteroidetes (F/B) 
was up-regulated by HFD (p < 0.01). It was of interest that the ratios 
of F/B in the HFDLP1 and HFDLP2 groups were lower compared to 
the HFD group (p < 0.05). These results on the ratios of F/B were 

consistent with previous reports (Leung et al., 2016; Magne et al., 
2020; Zhao et  al., 2021; Di Ciaula et  al., 2022), indicating that 
supplementation of L. plantarum ATCC14917 can reverse the 
changes in the structure of the gut microbiota induced by the HFD 
(Hassan et  al., 2020). Specifically, the relative abundance of 
Lactobacillus in the HFDLP1 and HFDLP2 groups was higher than 
that in the HFD group.

4. Discussion

NAFLD is one of the most common clinical liver diseases in 
recent years, which can progress to liver fibrosis and cirrhosis, even 
liver cancer, and increase the risk of diabetes and cardiovascular 
disease (Sheka et al., 2020). Many clinical studies have underlined the 
link between NAFLD and atherosclerosis (Li et al., 2021; Tang et al., 
2022). Patients with atherosclerosis are often accompanied by NAFLD 
(Stols-Goncalves et  al., 2019). Our previous experiments have 
discovered that L. plantarum ATCC14917 supplementation could 
decrease the progression of atherosclerotic lesion formation (Hassan 
et  al., 2020). Therefore, the objective of the present study is to 
investigate the role of supplementation of L. plantarum ATCC14917 
on the NAFLD rats induced by HFD. The results showed that 
supplementation with low-dose and high-dose of L. plantarum 
ATCC14917 both alleviated the body weight gain, hepatic steatosis, 
and serum lipid metabolism in HFD-fed rats. Moreover, 
supplementation of L. plantarum ATCC 14917 decreased TC, TG, 
ALT, and AST levels in serum, and improved HFD-associated 
inflammation. These data revealed that L. plantarum ATCC14917 
could drastically alleviate HFD-induced obesity and liver lipid 
deposition. In addition, the result of L. plantarum ATCC14917 

FIGURE 3

Effects of Lactobacillus plantarum ATCC14917 on serum biochemical parameters and oxidative stress levels. (A) The serum ALT; (B) the serum AST; 
(C) the serum LDL-C; (D) the liver SOD; (E) the liver GSH-PX; (F) the liver MDA. Data are presented as means ± SD (n = 8) and analyzed using the t-tests. 
##p < 0.01 and ###p < 0.005 compared with the CON group. *p < 0.05, **p < 0.01, ***p < 0.005 compared with the HFD group. △△p < 0.01 and △△△p < 0.005 
compared with the HFDLP1 group.
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supplementation on liver oxidative stress in HFD-fed rats was also 
consistent with previous report (Hassan et al., 2020). The L. plantarum 
ATCC14917 intervention increased the activity of SOD and the 
content of GSH-Px in the liver and inhibited the upregulation of MDA 
content in the liver of HFD-fed rats.

Previous studies have found that innate immunity plays an 
important role in the pathogenesis of NAFLD, including promoting 
and regulating key processes in the occurrence and development of 
NAFLD. Numerous studies have investigated the association between 
the LPS-TLR4-NF-κB signaling pathway with the pathogenesis of 
NAFLD (Bao et al., 2020). LPS plays a key role in gut microbiota 
changes, inflammation, and metabolic disorders (Carpino et al., 2020). 
Animal studies have shown that dysregulation of the gut microbiota 
caused by obesity impairs the integrity of the gut barrier, causing the 
release of LPS from intestinal gram-negative bacteria and subsequent 
LPS into mesenteric veins, triggering obesity-associated chronic 
inflammation by activating the TLR4/NF-κB signaling pathway (Wu 
et al., 2019; Guo et al., 2021; Xia et al., 2022). In our present study, 
we found that L. plantarum ATCC 14917 can significantly reduce the 
levels of LPS and inflammatory cytokines (IL-1β, IL-6, and TNF-α) in 
the serum of NAFLD rats, and downregulate the mRNA expression 
levels of TLR4, MyD88, and NF-κB in the liver. These results revealed 

that L. plantarum ATCC14917 could alleviate HFD-induced 
inflammation through the LPS-TLR4-NF-κB signaling pathway. 
Therefore, we  hypothesized that L. plantarum ATCC14917 
intervention may improve the inflammatory dysfunction of HFD-fed 
rats through the “gut-liver axis” pathway.

Studies have shown that there is a close link between the 
inflammatory response and the gut microbiota (Jiang et al., 2020; Li 
et al., 2022; Zhang et al., 2022). Altered gut microbiota can mitigate or 
promote inflammatory processes (Jiang et al., 2020; Pan et al., 2022). 
The inflammatory response and altered autoimmune status caused by 
gut microbiota play an important role in NAFLD pathogenesis. The 
gut microbiota affects the pathogenesis of NAFLD mainly through the 
following ways, including affecting intestinal permeability, energy 
absorption, sugar, and lipid and bile acid metabolism, regulating the 
expression of genes related to its related signaling pathways, and 
participating in the regulation of host immunity (Ji et al., 2019; Behary 
et al., 2021). In the intestine of rats on a normal diet, Firmicutes and 
Bacteroidetes are the dominant phyla (Gómez-Zorita et al., 2019). The 
HFD-fed changed the gut microbiota diversity and compositions in 
rats, especially reducing the abundance of Bacteroidetes and increasing 
the abundance of Firmicutes. The results of this study were consistent 
with the above study (Hassan et al., 2020), L. plantarum ATCC14917 

FIGURE 4

Effects of L. plantarum ATCC14917 on the levels of LPS and inflammatory cytokines in serum, and representative expression of TLR4/NF-κB signaling 
pathway in the liver. (A) serum LPS; (B) serum IL-1β; (C) serum IL-6; (D) serum TNF-α; (E) the mRNA expression levels of TLR4; (F) the mRNA expression 
levels of MyD88; (G) the mRNA expression levels of NF-κB. Data are presented as means ± SD (n = 8) and analyzed using the t-tests. ##p < 0.01 and 
###p < 0.005 compared with the CON group. *p < 0.05, **p < 0.01, ***p < 0.005 compared with the HFD group; △△p < 0.01 compared with the HFDLP1 group.
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FIGURE 5

The alpha diversity and beta diversity analysis of the gut microbiota. (A) Simpson index; (B) Chao1 index; (C) Shannon index; (D) ACE index; (E) Principal 
co-ordinates analysis (PCoA); (F) Unweighted Pair-group Method with Arithmetic Means (UPGMA) analysis. Data are presented as means ± SD (n = 5) and 
analyzed using the t-tests. *p < 0.05 and **p < 0.01 compared with the other group.

FIGURE 6

The changes in the microbiome composition. (A) The taxonomic composition distribution of relative abundance at the phylum level; (B) differences in 
the relative abundance of Firmicutes; (C) differences in the relative abundance of Bacteroidota; (D) differences in the ratios of Firmicutes to 
Bacteroidetes (F/B); (E) differences in the relative abundance of Lactobacillus at the genus level. Data are presented as means ± SD (n = 5) and analyzed 
using the t-tests. ##p < 0.01 compared with the CON group. *p < 0.05 and **p < 0.01 compared with the HFD group. △p < 0.05 compared with the HFDLP1 
group.
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can reverse the changes in the structure of the gut microbiota induced 
by the HFD, notably the major bacterial phylum. In recent years, many 
studies have shown that probiotics can regulate intestinal flora to 
prevent intestinal flora imbalance, improve intestinal barrier function, 
reduce oxidative stress and inflammation, and improve lipid 
metabolism and NAFLD (Cao et al., 2022; Hu et al., 2022; Arellano-
García et al., 2023; Shin et al., 2023; Wang et al., 2023; Zhao et al., 
2023). In addition, there are several studies on the effects of different 
probiotics on improving NAFLD in clinical trials (Arellano-García 
et  al., 2022; Noormohammadi et  al., 2023; Zhou et  al., 2023). 
Probiotic/synbiotic supplementation have a good regulating effect on 
liver function.

5. Conclusion

In summary, L. plantarum ATCC14917 can mitigate NAFLD from 
lipid deposition, oxidative stress, the HFD-associated inflammation, 
and partly modulated the gut microbial composition and structure in 
rats, suggesting it may be an alternative therapy for the intervention 
of NAFLD.
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