
INTRODUCTION 

Oxygen metabolism is essential for living tissue function, 

and without oxygen, human cells cannot survive. For suc-

cessful oxygen transport, sufficient oxygenated blood should 

first be generated, usually from the cardiopulmonary sys-

tem, and this oxygenated blood should be transported to the 

tissues and, finally, cells. Microcirculation is the circulation 

within the microvessels (diameter, <  20 μm) and the final 

step of oxygen transport to the cell level [1]. 

Inappropriate oxygen delivery and tissue ischemia are fre-

quent in critically ill patients, including surgical patients [2–

4]. Tissues may recover from ischemia or progress to local-
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Throughout the long history of surgery, there has been great advancement in the hemody-
namic management of surgical patients. Traditionally, hemodynamic management has fo-
cused on macrocirculatory monitoring and intervention to maintain appropriate oxygen deliv-
ery. However, even after optimization of macro-hemodynamic parameters, microcirculatory 
dysfunction, which is related to higher postoperative complications, occurs in some patients. 
Although the clinical significance of microcirculatory dysfunction has been well reported, lit-
tle is known about interventions to recover microcirculation and prevent microcirculatory 
dysfunction. This may be at least partly caused by the fact that the feasibility of monitoring 
tools to evaluate microcirculation is still insufficient for use in routine clinical practice. How-
ever, considering recent advancements in these research fields, with more popular use of 
microcirculation monitoring and more clinical trials, clinicians may better understand and 
manage microcirculation in surgical patients in the future. In this review, we describe cur-
rently available methods for microcirculatory evaluation. The current knowledge on the clini-
cal relevance of microcirculatory alterations has been summarized based on previous stud-
ies in various clinical settings. In the latter part, pharmacological and clinical interventions to 
improve or restore microcirculation are also presented. 

Keywords: Hemodynamic monitoring; Intensive care; Microcirculation; Perioperative care; 
Surgery.

ized necrosis. However, tissue ischemia or cell death itself 

may aggravate inflammatory reactions and result in necro-

sis, thus entering a vicious cycle. Therefore, appropriate oxy-

gen transport to tissues is the primary goal for the hemody-

namic management of surgical patients. 

Traditionally, hemodynamic monitoring and interven-

tions have focused on macrocirculatory parameters, such as 

cardiac output and blood pressure [5]. However, even with 

appropriate macrocirculatory parameters, such as sufficient 

cardiac output and blood pressure, a sufficient amount of 

oxygen may not reach the tissue and cells with microcircula-

tory dysfunction [6]. Thus, even if appropriate macrocircula-

tory parameters are achieved, some patients may experience 
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various ischemic complications, including mortality [7,8].  

Considering the lack of monitoring tools and understand-

ing of microcirculation during routine clinical practice, our 

intervention to augment macrocirculatory parameters may 

not be helpful for microcirculation but rather may impair 

microcirculation and aggravate tissue ischemia [9].   

EVALUATION OF MICROCIRCULATION 

As the hemodynamic measurement of macrocirculatory 

parameters, such as blood pressure and cardiac output, is 

significant during traditional hemodynamic management, it 

is of particular importance to establish validated, reliable, 

and practical measurement methods for microcirculation. 

While abundant knowledge and experience have been col-

lated regarding the measurement of macrocirculatory pa-

rameters (e.g., cardiac output and blood pressure) [5], the 

microcirculatory assessment has not yet been standardized 

sufficiently to be incorporated into routine clinical practice 

[10]. Despite this limitation, several noninvasive or minimal-

ly invasive tools for microcirculatory evaluation have been 

developed and are readily available. 

Sublingual microscopy 

Microcirculation is generally defined as a complex network 

of microvessels (usually with a diameter of <  20 μm) consist-

ing of capillaries, arterioles, and venules [11]. Sublingual mi-

croscopy enables direct inspection and evaluation of the mi-

crovascular network at the bedside [12]. Another notable 

strength of sublingual microscopy is its noninvasiveness [12]. 

Since the introduction of handheld vital microscopes 

(HVMs) in the late 1990s [13], three techniques for sublin-

gual microscopy have been established [14]. First-generation 

HVMs use an orthogonal polarized spectral imaging tech-

nique where cross-polarized green light is emitted to visual-

ize microvasculature and not transilluminate the tissue sur-

face [15]. However, there are several weaknesses in orthogo-

nal polarized spectral imaging HVMs, such as bulkiness and 

the requirement for high-powered light sources, which limit 

their application [13]. Second-generation HVMs have been 

developed to overcome these limitations. These devices ad-

opted a sidestream dark-field imaging technique [16]. The 

most recently developed devices, third-generation HVMs, 

use an incident dark-field imaging technique and further 

improve the image quality of microcirculation [17]. Current-

ly, second- and third-generation HVMs are commercially 

available. 

HVMs usually contain a ring of stroboscopic light-emitting 

diodes. Light with a wavelength of 530 nm is absorbed by 

hemoglobin, thereby helping visualize the microvascular 

flow of red blood cells (Fig. 1). Microcirculatory images can 

be obtained by directly applying an HVM to the mucosal 

membrane in various regions. Several previous studies on 

microcirculation have predominantly focused on the sublin-

gual mucosa, which is the most commonly selected region 

for HVMs (Fig. 1) [18]. Studies have also evaluated microcir-

culation in various organs, such as the lungs [19], liver [20], 

and brain [21]. However, contrary to the sublingual mucosa, 

such organs are not always accessible for measurement in 

most clinical scenarios, except in the surgical setting. 

Images obtained using an HVM can be analyzed with (a) 

Fig. 1. Direct inspection of microcirculation and video acquisition from the sublingual mucosa (A); images are stored in a computer, which 
is connected to a handheld vital microscope (B).
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bedside visual assessment [22], (b) the aid of offline software 

[23], or (c) online automatic software [24,25]. From images 

obtained using a HVM, two physiological components can 

be analyzed: convective and diffusive oxygen transport [18]. 

While the convective property of microcirculation describes 

the flow of red blood cells in microvessels, the diffusive 

property refers to the density of perfused microvessels. For 

the qualification or quantification of these two microcircula-

tory components, several microcirculatory parameters were 

recommended in an expert consensus meeting [26]. An up-

date of the expert consensus meeting was published recently 

[18]. The microcirculatory parameters recommended by the 

expert consensus are listed and described in Table 1. 

However, the application of sublingual microscopy in dai-

ly clinical settings outside the research area is currently not 

recommended [18,27], although it has provided a better un-

derstanding of microcirculation to researchers and clini-

cians.  

Vascular occlusion test  

During the vascular occlusion test (VOT), a pneumatic 

cuff applied on the upper arm is inflated, and after transient 

ischemia to the arm, it is released [28]. During this proce-

dure, the tissue oxygen saturation sensor on the thenar mus-

cle measures the changes in tissue oxygenation (Fig. 2). 

Thus, microvascular reactivity can be evaluated by analyzing 

changes in tissue saturation [29–31]. Among the VOT pa-

Table 1. Microcirculatory Parameters Recommended by the Expert Consensus

Parameters Definition Notes

Total vessel density (TVD, mm/mm2) Total vessel area per surface area Surrogate for capillary distance (diffusive prop-
erty)

De Backer score (n/mm) The number of vessels crossing a grid (three 
horizontal and vertical equidistance lines 
drawn on the screen) divided by the total 
length of the gridlines

Surrogate for TVD applicable to different vessel 
types

Proportion of perfused vessels (PPV, %) Percentage of perfused vessels per total ves-
sels

Based on binomial determinant of perfusion: 
“flow” or “no-flow” (convective property)

Perfused vessel density (PVD, mm/mm2) TVD ×  PPV Determinant of capillary distance (diffusive 
property) and red blood cell velocity (convec-
tive property)

Microvascular flow index (MFI, arbitrary unit) Grid-based score per quadrant: 0, stop flow; 1, 
intermittent flow; 2, sluggish flow; and 3, nor-
mal flow

Quick, semiquantitative assessment of the red 
blood cell velocity by “eyeballing”

Space–time diagram (STD, mm/s) Measurement of exact red blood cell velocity Determinant of red blood cell velocity (convec-
tive capacity)

Heterogeneity index (HI, arbitrary unit) Coefficient of variation, expressed as (maxi-
mum − minimum value) / average

Determinant of heterogeneity of blood flow

Fig. 2. Vascular occlusion test (A) and a schematic plot of the change in tissue oxygenation (B).
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rameters, the recovery slope has been widely used. The re-

covery slope of the VOT measures the velocity of tissue oxy-

gen saturation change from the nadir value to its baseline 

values and has been reported to be related to clinical out-

comes in patients with severe sepsis and cardiac surgery 

[32]. Previously, we reported that the recovery slope de-

creased during cardiac surgery, and this decrease in recov-

ery slope recovered on the first postoperative day in patients 

without postoperative complications but not in patients with 

postoperative complications [33]. 

Laser Doppler flowmetry 

Microvascular perfusion can be measured not only by 

HVMs but also by laser Doppler flowmetry (LDF; Fig. 3) at 

the bedside [34]. As with HVMs, LDF can be applied to all 

organ surfaces, particularly the skin. The LDF technique 

quantifies backscattered Doppler-shifted light from the tis-

sue during motion [35]. The backscattered light from each 

point of the skin was detected separately, thus generating a 

color-coded two-dimensional image [36,37]. LDF imaging 

has long been used in both clinical and experimental set-

tings [38–41]. 

Unfortunately, LDF does not provide absolute microvas-

cular blood flow values in individual vessels or vascular het-

erogeneity [7,35]. Furthermore, the ability to reflect actual 

microcirculatory alterations, not just changes in regional 

blood flow, is questionable [42]. 

Other methods for microcirculatory evaluation 

The evaluation of microcirculation is also possible using 

near-infrared spectroscopy [31] or with assessment based on 

the tissue partial pressure of carbon dioxide [43,44], gastric 

pH [45], indocyanine green plasma disappearance rate [46], 

or gastric mucosal-arterial pressure gradient of carbon diox-

ide [46]. 

MICROCIRCULATION IN SEPSIS 

Sepsis may be the case in which microcirculation is the 

most widely studied. In patients with sepsis, microcirculato-

ry dysfunction is observed ahead of the macrocirculatory 

abnormality [47–49], which is one of the strongest predictors 

of clinical outcomes. Microcirculatory dysfunction is more 

severe in nonsurvivors [47,50], and there are also differences 

in the recovery of microcirculatory dysfunction based on 

therapeutic interventions between survivors and nonsurvi-

vors [51–53]. 

Twenty years earlier, goal-directed therapy using macro-

circulatory parameters showed strong clinical benefits in 

patients with sepsis [54] and was subsequently recommend-

ed in the guidelines [55]. However, in recent large clinical 

trials using similar protocols with macrocirculatory parame-

ters, clinical benefits have not been observed [56–59]. If the 

optimization of macrocirculation reaches certain target val-

ues, further clinical benefit may not be possible with usual 

goal-directed therapy using macrocirculatory parameters 

without microcirculatory improvement. 

MICROCIRCULATION IN NONCARDIAC 
SURGERY 

In the meta-analysis, microcirculation via sublingual mi-

croscopy was impaired during both cardiac and noncardiac 

surgeries [60]. Several clinical trials have evaluated microcir-

culation without sublingual microscopy using the gastric pH 

[45], LDF technique [61], indocyanine green plasma disap-

pearance rate, and gastric mucosal-arterial pressure gradi-

ent of carbon dioxide [46].  

Among 25 patients undergoing major abdominal surgery, 

those with postoperative complications showed higher mi-

crovascular dysfunction with impaired sublingual microsco-

py parameters [62]. However, there were no differences in 

macrocirculatory parameters, such as cardiac output, blood 

pressure, oxygen delivery, and lactate levels [62]. Among 31 

Fig. 3. A laser Doppler flowmetry device (MoorLDI, Moor 
Instruments Ltd., UK) for microcirculatory evaluation. Visualized 
objects such as the hand or foot is placed under the imager like 
X-ray shooting.
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general or thoracic surgery patients, postoperative microcir-

culation dysfunction 1 h postoperatively via sublingual mi-

croscopy was correlated with blood lactate level elevation 24 

h postoperatively [63]. 

MICROCIRCULATION IN CARDIAC 
SURGERY 

Cardiac surgery is one of the most invasive surgeries that 

induce a strong inflammatory reaction [64–68]. Moreover, 

several cardiopulmonary bypass-related factors may affect 

microcirculation. These include hypothermia [69], non-pul-

satile blood flow [70], vasoactive drugs [71], and hemodilu-

tion [72]. In addition, heart failure and cardiogenic shock are 

related to microcirculation dysfunction [73–75]. Although 

most previous clinical trials enrolled a small number of pa-

tients, a certain degree of microcirculatory dysfunction was 

observed [76–81]. It was also shown that anesthesia itself 

may induce microcirculatory alterations [77–79,81]. In one 

study, which included on-pump and off-pump cardiac sur-

gery and thyroid surgery, perfused small vessel density de-

creased most severely and for the longest duration in on-

pump cardiac surgery and decreased the least and was tran-

sient in thyroid surgery [76]. In another study of cardiac sur-

gery patients, microcirculation was preserved only in those 

undergoing off-pump cardiac surgery [80]. 

RELATIONSHIP BETWEEN 
MICROCIRCULATION AND 

MACROCIRCULATION 

If there is no cardiac output, microcirculation is not ob-

served. Therefore, a 100% dissociation between macrocircu-

lation and microcirculation may not be possible. However, 

in several clinical studies performed under various critical 

clinical situations, microcirculation parameters showed an 

independent pattern from macrocirculatory parameters 

[6,51,82–84]. 

We also previously showed that among cardiac surgery 

patients, those with complications showed lower microcir-

culation function on VOT, but there were no differences in 

the macrocirculatory parameters [33]. 

MICROCIRCULATION AND 
INTERVENTION 

Microcirculation has been observed during various hemo-

dynamic and non-hemodynamic interventions. 

Vasopressor 

Increasing arterial pressure with the use of conventional 

vasopressors is not effective in restoring microcirculation 

but rather may aggravate microcirculation in patients with 

sepsis or animal models [85–87]. Similarly, for cardiac sur-

gery patients undergoing cardiopulmonary bypass, increas-

ing blood pressure from 47 to 68 mmHg with phenylephrine 

resulted in a decrease in small vessel blood flow measured 

using sublingual microscopy [78]. Thus, increasing perfu-

sion pressure with vasopressor use may not improve micro-

circulation but rather impair it; however, at the same time, it 

should be considered that increasing perfusion pressure was 

reported to be beneficial for perfusion of other organs, such 

as the kidney [88]. 

Vasodilator 

Interestingly, in patients with septic shock, local acetyl-

choline application in the sublingual area completely recov-

ered microcirculation dysfunction when examined using 

sublingual microscopy [47]. However, in a randomized trial 

of 70 patients with sepsis, intravenous nitroglycerin did not 

promote microcirculation when examined using sublingual 

microscopy [89]. 

In a study by De Backer et al. [90], the intravenous admin-

istration of dobutamine (5 μg/kg/min) improved sublingual 

microcirculation in patients with septic shock. Interestingly, 

this microcirculatory improvement was independent of 

changes in cardiac output and blood pressure and was close-

ly related to the decrease in lactate concentration. Thus, the 

microcirculatory effect of dobutamine could not be detected 

using conventional macrocirculatory parameters. 

Fluid administration 

In several previous clinical trials with patients with sepsis, 

fluid infusion improved the microvascular flow index when 

measured using sublingual microscopy. In one study, this im-

provement in microcirculation was similar to the effect of pas-

sive leg raising [91]. In another study, fluid resuscitation im-

proved the clinical signs of impaired organ perfusion and mi-

crovascular flow index when measured using sublingual mi-

croscopy for patients with a microvascular flow index of <  2.6. 

However, in patients with baseline microvascular flow index 
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values of >  2.6, there was no improvement in the clinical signs 

of impaired organ perfusion and microvascular flow index 

[92]. In another study on patients with sepsis, fluid adminis-

tration improved microcirculation examined using sublingual 

microscopy only in the early phase of sepsis [93]. 

In a prospective randomized trial with 20 patients with 

sepsis, goal-directed therapy using 6% hydroxyethyl starch 

130/04 showed better microcirculation when examined on 

sublingual microscopy than when using isotonic saline [94]. 

Transfusion 

In several previous studies, red blood cell transfusion im-

proved sublingual microvascular density in patients under-

going cardiac surgery [95,96]. 

Meanwhile, in another study performed in 35 patients 

with sepsis, although sublingual microcirculation remained 

unchanged after transfusion, transfusion improved sublin-

gual microcirculation in a subgroup of patients who had im-

paired microvascular perfusion at baseline [97]. This finding 

indicates that the effect of transfusion varies significantly ac-

cording to the microcirculatory status of each individual pa-

tient; microcirculatory evaluation may help identify patients 

who would benefit from transfusion. 

Hydrocortisone 

In a previous study, intravenous hydrocortisone improved 

microcirculation, as evaluated using sublingual microscopy 

[98]: microcirculatory parameters, such as small vessel den-

sity and proportion of perfused vessels, increased after the 

administration of “stress dose” hydrocortisone (50 mg per 6 

h) in 20 patients with septic shock. 

THE PRESENT AND FUTURE OF 
MICROCIRCULATION 

Until now, there has been no reliable and practical inter-

vention that can improve or prevent microcirculatory dys-

function. Most previous studies on interventions to improve 

microcirculation were small, single-center studies showing 

inconsistent results [99–105]. Traditional hemodynamic in-

terventions to improve macrocirculation may not improve 

and may even impair microcirculation. It is possible that 

some interventions can improve microcirculation. 

Even if we establish an intervention that may improve mi-

crocirculation, there is one more point to consider. Although 

the relationship between microcirculatory dysfunction and 

poor clinical outcome has been well proven in various clini-

cal situations [106–108], it does not necessarily mean that 

the recovery of microcirculatory dysfunction will improve 

the clinical outcome. 

It could be said that there is a long way to go in this re-

search field. However, considering that a substantial number 

of patients with microvascular dysfunction experience mor-

bidity and mortality even after the optimization of mac-

ro-hemodynamic parameters, establishing an intervention 

to improve microcirculation will have great clinical impact 

on critical and perioperative medicine.  

CONCLUSIONS 

Traditionally, the hemodynamic management of surgical 

patients has mainly focused on macrocirculatory parame-

ters, such as cardiac output and blood pressure. However, 

microcirculatory dysfunction occurs frequently in surgical 

patients, and both macrocirculation and microcirculation 

are essential for successful oxygen transport to tissues. Thus, 

even after achieving sufficient adequate macrocirculatory 

parameters does not necessarily guarantee for sufficient mi-

crocirculatory dysfunction, which is also important to opti-

mize postoperative outcomes. This is still related to postop-

erative complications. However, unlike traditional macrocir-

culatory hemodynamic management, there is a lack of re-

search on microcirculatory hemodynamic management, 

and little is known about how to improve microcirculation. 

Therefore, future research should focus on effective inter-

ventions to recover microcirculation. To determine these in-

terventions, we require a more standardized and practical 

monitoring tool to evaluate microcirculation in the clinical 

field. 
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