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The strange quark content of the nucleon hNj�ssjNi is calculated in dynamical lattice QCD employing

the overlap fermion formulation. For this quantity, exact chiral symmetry guaranteed by the Ginsparg-

Wilson relation is crucial to avoid large contamination due to a possible operator mixing with �uuþ �dd.

Gauge configurations are generated with two dynamical flavors on a 163 � 32 lattice at a lattice spacing

a ’ 0:12 fm. We directly calculate the relevant three-point function on the lattice including a disconnected

strange quark loop utilizing the techniques of the all-to-all quark propagator and low-mode averaging. Our

result fTs
¼ mshNj�ssjNi=MN ¼ 0:032ð8Þstatð22Þsys, where ms and MN are strange quark and nucleon

masses, is in good agreement with our previous indirect estimate using the Feynman-Hellmann theorem.

DOI: 10.1103/PhysRevD.83.114506 PACS numbers: 12.38.Gc

I. INTRODUCTION

In the naive quark model, the nucleon consists of three
valence up and down quarks. This picture is made more
precise by taking account of quantum effects based on
quantum chromodynamics (QCD), the fundamental theory
of strong interaction, with which one expects additional
effects due to the gluon and sea quark degrees of freedom.
In fact, in high energy hadron scatterings, these effects are
observed as parton distributions of the gluon and sea
quarks, which can be analyzed using perturbative calcula-
tions of QCD. At low energy, quantitative calculation of
the sea quark effect is far more difficult because of the
nonperturbative nature of QCD. In this work, we consider
the nucleon strange quark content hNj�ssjNi. This matrix
element directly measures the effect of sea quark because
there is no valence strange quark in the nucleon.

The nucleon strange quark content represents the effect
of strange quark on the mass of the nucleon, which is often
parametrized by

fTs
¼ mshNj�ssjNi

MN

; (1)

where ms and MN are the masses of strange quark and
nucleon. �ss is the scalar operator made of strange quark
fields. This parameter is also relevant to the dark matter
searches, as one of the candidates—neutralino in the super-
symmetric models—may interact with the nucleon most
strongly through its strange quark content via the Higgs
boson exchange diagram [1–5]. The magnitude of the
matrix element hNj�ssjNi is therefore directly related to
the sensitivity of the present [6,7] and future experiments.

Another quantity of physical interest is a ratio of strange
quark and light (up and down) quark contents:

y � 2hNj�ssjNi
hNj �uuþ �ddjNi : (2)

The denominator hNj �uuþ �ddjNi corresponds to the nu-
cleon � term, which is relatively well-determined as it is
related to an amplitude of the pion-nucleon scattering. This
is not the case for hNj�ssjNi, for which only lattice QCD
can potentially make a quantitative prediction.
The numerical calculation of the matrix element

hNj�ssjNi on the lattice is not straightforward because it
involves a disconnected quark-loop diagram shown in
Fig. 1. With the conventional method to calculate the quark

FIG. 1. Disconnected three-point function relevant to
hNj�ssjNi. Lines show quark propagators that are dressed by
virtual gluons and sea quarks in QCD. The connected three lines
correspond to the nucleon propagation and the disconnected loop
arises from the strange scalar operator �ss.
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propagator in lattice QCD, the computational cost to obtain
the disconnected quark loop is prohibitively high, as one
has to perform an expensive inversion of the Dirac operator
for sources located at every lattice sites; the computational
cost is then proportional to the lattice volume squared,
ðN3

s Þ2. Furthermore, since the scalar operator �ss may
have nonzero vacuum expectation value (VEV), which is
divergent when ms is finite, one has to subtract this VEV
contribution to extract the physical matrix element
hNj�ssjNi. This requires a large cancellation that induces
a large statistical error.

In this work, we overcome these practical difficulties in
the lattice calculation by using the methods of the low-
mode averaging [8,9] and the all-to-all propagator [10,11].
The all-to-all propagator allows us to calculate the propa-
gation of the quark between arbitrary lattice sites at once,
by introducing a stochastic estimator (for a practical im-
plementation, see below). Although it introduces
additional statistical noise, the low-mode averaging elim-
inates the noise for physically relevant low-lying quark-
mode contributions and improves the statistics by averag-
ing over space-time lattice sites. These techniques are
crucial for the calculation of the disconnected diagram in
lattice QCD.

Another important advantage of this work over the
previous lattice calculations of hNj�ssjNi [12–15] is the
use of a lattice fermion formulation that preserves exact
chiral symmetry at finite lattice spacings. For both sea and
valence quarks we employ the overlap fermion [16,17],
which satisfies the Ginsparg-Wilson relation [18] and thus
has a symmetry under a modified chiral transformation
[19]. This exact chiral symmetry prohibits the operator
mixing under the renormalization between �ss and
�uuþ �dd, where the matrix element of the latter operator
involves the connected diagram contribution. With the
Wilson fermion formulation that has been used in the
previous works, the operator mixing is induced due to
the explicit chiral symmetry breaking on the lattice.
Since the connected diagram contribution of �uuþ �dd is
larger than the disconnected one by an order of magnitude,
this may give rise to a large systematic error unless the
mixing contribution is subtracted nonperturbatively.

In our previous work [20], we used a technique to extract
hNj �uuþ �ddjNi and hNj�ssjNi from the quark mass depen-
dence of the nucleon mass using the Feynman-Hellman
theorem. Since the number of sea quark mass values in the
simulations was limited, the method had an inconsistency
that the disconnected contribution was evaluated at up and
down quark masses, which are different from the physical
strange quark mass. In the present work, this limitation no
longer remains. Although the calculation is done on two-
flavor QCD lattices, which are available from the project of
the dynamical overlap fermion by the JLQCD-TWQCD
Collaboration [21], an extension to the realistic
2þ 1-flavor QCD is straightforward and in fact underway.

This paper is organized as follows. In Sec. II, our simu-
lation setup and the methods of the all-to-all propagator
and the low-mode averaging are described. We investigate
the efficiency of the low-mode averaging by comparing the
statistical error of the nucleon two-point function as pre-
sented in Sec. III. Extraction of the strange quark content
from the disconnected three-point function is discussed in
Sec. IV. Section V is devoted to a discussion of chiral
extrapolation to the physical quark masses. In Sec. VI,
we emphasize an important role of chiral symmetry in
the calculation of the strange quark content. We also
make a comparison with previous works including the
recent results [22,23]. Our conclusions are given in
Sec. VII. A preliminary report of this work is found in [24].

II. SIMULATION DETAILS

A. Simulation setup

On a four-dimensional Euclidean lattice we simulate
QCD with two flavors of degenerate up and down quarks.
As the lattice formulation, we use the Iwasaki gauge action
and the overlap quark action. The overlap-Dirac operator is
given by [16,17]

DðmÞ ¼
�
m0 þm

2

�
þ

�
m0 �m

2

�
�5sgn½HW�; (3)

where HW ¼ �5DWð�m0Þ is the Hermitian Wilson-Dirac
operator andm0 ¼ 1:6 in this study. The mass parameterm
corresponds to the up-down or strange quark mass. We also
introduce an additional Boltzmann factor [25] which does
not change the continuum limit of the theory but substan-
tially reduces the computational cost to calculate sgn½HW�
by prohibiting the exact zero modes and suppressing near-
zero modes of HW . This additional Boltzmann factor in-
duces a side effect that the global topological charge Q
during the hybrid Monte Carlo update is fixed. We simulate
only the trivial topological sector Q ¼ 0 in this study; the
effect of fixing topology is suppressed by an inverse power
of the space-time volume 1=ðN3

sNtÞ [26] and turns out to be
small (typically below a few percent level) in our studies of
meson observables [27–29]. We expect that it is even
smaller for baryons.
Our gauge configurations are generated on a N3

s � Nt ¼
163 � 32 lattice at a gauge coupling � ¼ 2:30 where the
lattice spacing is determined as a ¼ 0:118ð2Þ fm using the
Sommer scale r0 ¼ 0:49 fm as an input. We accumulate
100 independent configurations of two-flavor QCD at three
values of up and down quark masses mud ¼ 0:025, 0.035,
and 0.050, which cover a range of the pion mass
M� ¼ 370–520 MeV. The physical quark masses are fixed
asmud;phys ¼ 0:0034 andms;phys ¼ 0:077 from our analysis

of the pion and kaon masses [28,30]. We refer the readers
to [21] for further details of the configuration generation.
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We take two values of the valence strange quark mass
ms;val ¼ 0:070 and 0.100 close to ms;phys, and calculate

two- and three-point functions

C�
2ptðy; tsrc;�tÞ ¼

1

N3
s

X
x

trs½�hNðx; tsrc þ�tÞ �Nðy; tsrcÞi�;

(4)

C�
3ptðy;tsrc;�t;�tsÞ

¼ 1

N6
s

X
x;z

ftrs½�hNðx; tsrcþ�tÞSlatðz;tsrcþ�tsÞ �Nðy; tsrcÞi�

�hSlatðz; tsrcþ�tsÞi trs½�hNðx; tsrcþ�tÞ �Nðy; tsrcÞi�g;
(5)

where we use the nucleon interpolating field
N ¼ �abcðuTaC�5dbÞuc with the charge conjugation matrix
C ¼ �4�2. The trace ‘‘trs’’ is over spinor index of the
valence nucleon and h� � �i represents a Monte Carlo aver-
age. The scalar operator made of the strange quark field is
given by

Slat ¼ �s

�
1�Dð0Þ

2m0

�
s (6)

on the lattice for the overlap-Dirac operator (3). To obtain
the continuum operator Scontð�Þ at the energy scale �, we
need the renormalization factor ZSð�Þ as Scontð�Þ ¼
ZSð�ÞSlat. The details including possible operator mixing
are discussed in Sec. VI.

We take two choices of the projection operator � ¼
�� ¼ ð1� �4Þ=2, which correspond to the forward and
backward propagating nucleons, respectively. The two-
and three-point functions are averaged over the two
choices of �

C2ptðy; tsrc;�tÞ ¼ 1
2fC�þ

2ptðy; tsrc;�tÞ
þ C��

2ptðy; tsrc; Nt � �tÞg; (7)

C3ptðy; tsrc;�t;�tsÞ ¼ 1
2fC�þ

3ptðy; tsrc;�t;�tsÞ
þ C��

3ptðy; tsrc; Nt � �t; Nt ��tsÞg;
(8)

in order to reduce statistical errors.

B. All-to-all quark propagator

The three-point correlation functionC3pt is calculated by

appropriately connecting the quark propagatorD�1ðx; yÞ as
shown in Fig. 1. The conventional method to calculate the
quark propagator is not suitable to construct the discon-
nected quark loop starting from and ending at arbitrary
lattice sites since the source point y has to be fixed at a
certain lattice site. Indeed, we use the all-to-all quark
propagator technique, which enables propagations from

any lattice site to any site, following the strategy proposed
in [10,11].
It is expected that low-lying eigenmodes of DðmÞ dom-

inantly contribute to the low-energy dynamics of QCD. We
calculate the low-lying eigenvalues and eigenvectors using
the implicitly restarted Lanczos algorithm, from which we
can construct their contribution to the quark propagator
exactly as

ðD�1ðmÞÞlowðx; yÞ ¼
XNe

i¼1

1

�ðiÞðmÞv
ðiÞðxÞvðiÞðyÞy; (9)

where �ðiÞðmÞ and vðiÞðxÞ represent the i-th lowest eigen-
value and its associated eigenvector of DðmÞ, respectively.
Note that the eigenvectors are independent of valence
quark masses. The number of low-lying eigenmodes Ne

we calculated is 100 in this study.
The remaining high-mode contribution is estimated sto-

chastically. We prepare a single Z2 noise vector �ðxÞ for
each configuration and split it into Nd ¼ 3� 4� Nt=2

vectors �ðdÞðxÞ (d ¼ 1; . . . ; Nd), which have nonzero ele-
ments only for a single combination of color and spinor
indices on two consecutive time slices. The high-mode
contribution is then estimated as

ðD�1ðmÞÞhighðx; yÞ ¼
XNd

d¼1

c ðdÞðxÞ�ðdÞðyÞy; (10)

where c ðdÞðxÞ is obtained by solving a linear equation for
each noise vector

DðmÞc ðdÞðxÞ ¼ ð1� P lowÞ�ðdÞðxÞ ðd ¼ 1; . . . ; NdÞ:
(11)

P low is a projector to the subspace spanned by the low-
modes

P lowðx; yÞ ¼
XNe

i¼1

vðiÞðxÞvðiÞðyÞy: (12)

We use this all-to-all propagator, namely, (9) plus (10), to
calculate the disconnected quark loop and the vacuum
expectation value of Slat in C3pt.

C. Low-mode averaging

In principle, we can use the all-to-all propagator to
calculate nucleon correlators, namely, C2pt and the piece

representing the nucleon propagation in C3pt. However,

these quantities decay exponentially as the temporal sepa-
ration�t increases, so that the contributions to the nucleon
correlator from the high-modes (10) are not sufficiently
precise at large �twhen we take only one noise sample for
each configuration.
In this study, we therefore use the low-mode averaging

(LMA) technique proposed in [8,9]. Suppose that we
decompose the conventional quark propagator into its
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low-mode part, which is in the subspace spanned by the
low-modes and the remaining high-mode part. We can then
write C2pt in terms of the following eight contributions:

C2pt ¼ Clll
2pt þ Cllh

2pt þ Clhl
2pt þ Chll

2pt þ Clhh
2pt

þ Chlh
2pt þ Chhl

2pt þ Chhh
2pt : (13)

Here, Clll
2pt is constructed only by the low-mode part of the

quark propagator; Cllh
2pt is the one in which two of the

valence quarks are made of low-modes and the other is
the high-mode part. The other combinations are under-
stood in a similar manner. Since the ensemble average
can be taken for each term of (13), we attempt to reduce
the statistical error for individual contributions.

Relying on the translational invariance, we may replace
Clll
2pt by a more precise estimate by averaging over the

location of the nucleon source point ðy; tsrcÞ. No additional
inversion of the Dirac operator is necessary to take the
average, as we can explicitly use the representation (9)
made of low-mode eigenvectors. This LMA technique is
very effective in reducing the statistical error of C2pt at

large �t when C2pt is well dominated by Clll
2pt.

In this study, we employ LMA to calculate C2pt and the

nucleon piece of C3pt. We also test an extension in which

additional three contributions, Cllh
2pt, Clhl

2pt, and Chll
2pt, are

averaged over the source location by using the all-to-all
propagator. The signal may be improved if the reduction of
the statistical error by the source average outweighs the
induced noise from the high-modes. The result of the test is
shown in the next section.

D. Smeared nucleon operators

SinceC2pt andC3pt decay quickly as a function of�t, we

need to use smeared nucleon operator that suppresses
excited-state contaminations at small �t.

For the (local or smeared) quark field, we consider the
following three choices:

(1) local

qlocðx; tÞ ¼ qðx; tÞ: (14)

(2) exponential smearing

q
exp
smrðx; tÞ ¼

X
r

expð�BjrjÞqðxþ r; tÞ; (15)

where the parameter B is set to 0.350, 0.375, 0.400 at
mud ¼ 0:025, 0.035, 0.050, respectively.

(3) Gaussian smearing

qgsssmrðx; tÞ ¼
X
y

��
1þ !

4N
H

�
N
�
x;y
qðy; tÞ;

Hx;y ¼
X3
i¼1

ð	x;y�î þ 	x;yþîÞ;
(16)

where the parameters ! ¼ 20 and N ¼ 400 are
chosen so that the extent of the smeared operator
is roughly equal to that of (15) with B ¼ 0:400.

Then, the nucleon interpolating fields Nlocðx; tÞ,
Nexp

smrðx; tÞ, Ngss
smrðx; tÞ, are constructed from the correspond-

ing local or smeared quark fields.
When we smear the quark field, we fix the gauge to the

Coulomb gauge. With this choice one can avoid significant
statistical noise coming from the fluctuation of the gauge
link.
The Gaussian smearing is particularly useful for the

sink smearing, since the number of numerical operation
�N � N3

s is smaller than �N6
s for the case of (15).

III. IMPROVING THE NUCLEON
TWO-POINT FUNCTION

Since the disconnected three-point function C3pt is ex-

tremely noisy, it is crucial to reduce the statistical noise and
to extract the signal at relatively small time separations.
We therefore tested various methods to improve the signal
on the nucleon two-point functions C2pt before applying

them to the three-point functions.

A. Low-mode averaging

As mentioned in the previous section, we consider two
options: (i) to average only Clll

2pt over the source locations,

(ii) to average also Cllh
2pt þ Clhl

2pt þ Chll
2pt. The second choice

requires the high-mode of the quark propagator
ðD�1Þhighðx; yÞ, which is calculated stochastically as

in (10).
In Fig. 2 we plot the nucleon effective massMNð�tÞwith

the local source and sink operators at our heaviest quark
massmud ¼ 0:050. The data without LMA (circles) show a
rapidly growing statistical error as �t increases, so that the
error at �t ¼ 10 where the plateau is approximately
reached is already as large as 4%. By averaging over the
source locations for Clll

2pt (squares), the statistical error is

reduced by a factor of about 3. Further improvement of a
factor of 2 is possible if we average over the source points
also for Cllh

2pt þ Clhl
2pt þ Chll

2pt, as shown by triangles.

A similar comparison of MNð�tÞ at mud ¼ 0:050 but
with the exponentially smeared source and a local sink is
shown in Fig. 3. (But LMA is done over a limited number
of the source location Nsrc ¼ Nt � 16. For discussions, see
below.) We observe that LMA for Clll

2pt is efficient when

combined with the smeared source, while the effect of the
extended LMA for Cllh

2pt þ Clhl
2pt þ Chll

2pt is not substantial,

i.e., the reduction of statistical error is only about 30%.
Although the effect of LMA to reduce the statistical

noise is significant, it is also true that it requires substantial
computational effort. If we average over the entire
space-time source points, the computational cost scales
as ðN3

s � NtÞ2, which is prohibitive unless we use the fast
Fourier transform. If we combine LMA with the smeared
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source, another factor of N3
s is necessary, which is not

feasible any more. We therefore consider averaging over
a limited number of source locations. Since the correlators
from different source points are statistically highly corre-
lated, this might not spoil the efficiency of LMA largely.

In Fig. 4, we compare the data ofMNð�tÞ obtained using
LMA with a different number of source points averaged
Nsrc. The plot shows the results of LMA for both Clll

2pt and

Cllh
2pt þ Clhl

2pt þ Chll
2pt with Nsrc ¼ Nt (squares), Nt � 8 (tri-

angles down), and Nt � 16 (triangles up). For Nsrc ¼ Nt,
the spatial location of the source is fixed and the average is
taken over Nt time slices. For Nsrc ¼ Nt � 8, points of
spatial coordinates 0 or Ns=2 in three spatial dimensions

are all averaged; for Nt � 16, we also average over (Ns=4,
Ns=4, Ns=4), (Ns=4, Ns=4, 3Ns=4), (Ns=4, 3Ns=4, 3Ns=4),
and (3Ns=4, 3Ns=4, 3Ns=4) (and all possible permutations)
for each time slice.
From Fig. 4 we observe that the result with Nsrc ¼ Nt is

already very good, while the improvement with Nsrc ¼
Nt � 8 is not substantial. Beyond this number, we do not
gain significant improvement. Note that the maximal num-
ber of points we took Nsrc ¼ Nt � 16 corresponds to the
data shown in Fig. 3 (triangles).
Overall, taking the cost of numerical calculation into

account, the best choice would be Nsrc � Nt � 8; in our
following analysis we choose Nsrc � Nt � 16, which has
been still doable. The advantage of LMA for Clll

2pt is always

clear, while that for Cllh
2pt þ Clhl

2pt þ Chll
2pt depends on the

channel or source operator. Therefore, we average only
Clll
2pt when we use the smeared sink, which is numerically

more costly.

B. Sink smearing

The smearing of the source operator is routinely used in
many lattice calculations. It is designed to deplete the
overlap with excited-state contributions so that the plateau
of the effective mass constructed from the two-point cor-
relator appears earlier in�t. By using the smeared operator
also for the sink we expect that the excited-state contam-
inations are further reduced, but usually the benefit is not
clearly seen mainly because the statistical noise increases
with the smeared sink. Since the numerical cost for the sink
smearing is high in general [� ðN3

s Þ2], it has not been
commonly used.

0 5 10 15
∆t

0.5

0.6

0.7

0.8

0.9

1

1.1

M
N

(∆
t)

w/o LMA
w/   LMA (lll)
w/   LMA (lll+llh+lhl+hll)

m
ud

=0.050  exponential-local

FIG. 3. Effective mass MNð�tÞ from C2pt with an exponen-
tially smeared source at mud ¼ 0:050. The symbols are the same
as in Fig. 2.

0 5 10 15
∆t

0.5

0.6

0.7

0.8

0.9

1

1.1

M
N

(∆
t)

w/o LMA 
w/   LMA (N

src
=N

t
)

w/   LMA (N
src

=N
t
×8)

w/   LMA (N
src

=N
t
×16)

m
ud

=0.050  exponential-local

FIG. 4. Comparison of MNð�tÞ obtained with different num-
bers of source locations for LMA. Circles are those without
LMA. Results averaged over the time slices are shown by
squares. We obtain down- and up-triangles by further averaging
over 8 and 16 spatial sites at each time slice, respectively. In the
plot, Nsrc represents the number of the source locations.

0 5 10 15
∆t

0.5

0.6

0.7

0.8

0.9

1

1.1
M

N
(∆

t)

w/o LMA
w/   LMA (lll)
w/   LMA (lll+llh+lhl+hll)

m
ud

=0.050  local-local

FIG. 2. Effective mass MNð�tÞ from the nucleon two-point
function C2pt at mud ¼ 0:050. The local operator is used for both

source and sink. Circles show the result of the conventional point
source, while squares (triangles) are obtained by averaging the
Clll
2pt (C

lll
2pt þ Cllh

2pt þ Clhl
2pt þ Chll

2pt) contributions. Circles and tri-

angles are slightly shifted in the horizontal direction for clarity.
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The situation may be different for three-point functions,
where an operator is inserted in the middle of the two-point
function. Here the nucleon and its excited states are created
at the smeared source point and propagate until the point of
the operator is reached. Between these two points, the
depletion of the excited states is at work because of
the smeared source. After the insertion of the operator,
the nucleon and its excited states propagate until they are
absorbed by the sink. In this second propagation, the
excited states are not necessarily suppressed, since
the operator insertion may excite the nucleon, i.e.,
hNj�ssjN0i � 0, and the sink operator may have substantial
overlap with the excited state jN0i. This is indeed the case
in our calculation of the three-point function relevant to the
strange quark content, as we will see in the next section.

We therefore utilize the smeared operator also for the
sink. Since the conventional choice qexpsmrðx; tÞ (16) requires
a numerical cost proportional to N3

s for each ðx; tÞ, we use
q
gss
smrðx; tÞ (16), instead. Figure 5 shows MNð�tÞ with this

Gaussian smeared operator for both the source and sink.
Although the statistical signal is worse compared to the
case of the local sink shown in Figs. 3 and 4, we may
improve it using LMA for Clll

2pt as shown in Fig. 5 by

triangles. Further improvement is not expected with the
average over Cllh

2pt þ Clhl
2pt þ Chll

2pt, as in the case of the

smeared source and local sink (Fig. 3).

C. Duplication

Instead, we simply repeat the calculation 4 times by
setting the source at different time slices. Namely, we
calculate the nucleon two-point function locating the
source on the time slices tsrc ¼ 8, 16, and 24, in addition
to the original choice tsrc ¼ 0, and average over these
duplicated correlators. The effect is shown in Fig. 6, where

we observe a reduction of the statistical error by a factor of
2 at large time separations. However, we find that the
further average of the duplicated correlators is not sub-
stantial. This is tested at mud ¼ 0:025 by calculating the
nucleon two-point function locating the source on the
time slices tsrc ¼ 4, 12, 20, and 28 besides tsrc ¼ 0, 8,
16, 24. Therefore, we restrict the number of the duplication
of the nucleon two-point function for other quark masses.
Figure 7 shows the increase of the statistical noise inC2pt

for the case of smeared source and sink. The plot shows the
data at four different quark masses mud ¼ 0:015, 0.025,
0.035, and 0.050. As expected, the noise grows more
rapidly for lighter quarks. Since the plateau in the effective
mass is reached at around �t ¼ 5, we need at least
�t ¼ 10 in the calculation of the three-point functions.
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each time slice.
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At the lightest quark mass mud ¼ 0:015, the error around
�t ¼ 10 is too large (� 10%) to be useful in the analysis of
the disconnected three-point functions. We therefore dis-
card this data point in the analysis of the strange quark
content.

In order to optimize the statistical signal in the calcu-
lation of the disconnected three-point function for a given
amount of computer time, we choose different schemes of
averaging the correlators depending on the source and sink
smearing combinations. These include the choices of the
contributions averaged in LMA (Clll

2pt or Clll
2pt þ Cllh

2pt þ
Clhl
2pt þ Chll

2pt), the number of source points Nsrc averaged

in LMA, as well as the number of the duplications of the
conventional correlators. Our choices in this work are
listed in Table I.

IV. EXTRACTION OF THE STRANGE
QUARK CONTENT

A. Finding a plateau in the three-point function

We extract the strange quark content on the lattice
hNjSlatjNi from a ratio of C3ptð�t;�tsÞ and C2ptð�tÞ

Rð�t;�tsÞ �
C3ptð�t;�tsÞ
C2ptð�tÞ !�t;�ts!1hNjSlatjNi; (17)

where �t is the temporal interval between the nucleon
source and sink. The scalar operator Slat is set on the
time slice apart from the nucleon source by �ts. Note
that C3ptð�t;�tsÞ and C2ptð�tÞ are calculated with LMA.

We suppress the coordinates of the nucleon source location
ðy; tsrcÞ presented in (7) and (8).

In order to extract hNjSlatjNi, we first have to identify a
plateau in the ratio Rð�t;�tsÞ at sufficiently large �t and
�ts. For this purpose, we look at the same ratio but
approximated by taking only the low-mode contribution
in the strange quark loop. Namely, the piece of SlatðzÞ
in (5) is replaced by its low-mode contribution
Tr½ðD�1ðmÞÞlowðz; zÞ�. We expect that the ratio Rð�t;�tsÞ
is dominated by this low-mode contribution, because the
high-mode contribution that leads to the ultraviolet diver-
gence in the continuum limit cancels by the VEV subtrac-
tion in (5). Low-energy physics must be well described by
the low-mode contribution in the strange quark loop. This

approximation is finally removed in our calculation by the
full calculation, but here we consider the approximately
calculated ratio to identify the plateau, where the ground-
state nucleon dominates.
Figure 8 shows the approximated ratio obtained at

mud ¼ 0:050 and ms;val ¼ 0:100 with various combina-

tions of the source and sink smearing. The separation
between the source and sink is fixed to �t ¼ 11, and the
location of the scalar operator �ts is varied. Thus, we
expect a signal around �ts � �t=2. We observe a plateau
between �ts ¼ 3 and 8, when the source and sink opera-
tors are both smeared with the Gaussian smearing (16), as
shown by filled squares. The data with the local source and
sink (open circles) show a slight increase in the same
region but do not reach the value of the plateau for the
smeared source-sink combination.
The data of the smeared source and local sink (open

triangles) show a bump around �ts � 2–6 and decrease
towards �ts ¼ 11, so that the plot looks asymmetric. This
can be explained by an excited-state contamination on the
sink side (�ts ¼ 11) because the sink operator is local.

TABLE I. Choices of the scheme of averaging the nucleon correlator in this work. For
different smearing operators at the source and sink, we list the number of source points Nsrc

averaged in LMA, the contributions to the correlator averaged in LMA (Clll
2pt or C

lll
2pt þ Cllh

2pt þ
Clhl
2pt þ Chll

2pt), and the number of the duplications of the conventional correlators.

Source-sink Nsrc LMAed contribution Duplication

Local-local Nt � Ns Clll
2pt þ Cllh

2pt þ Clhl
2pt þ Chll

2pt 1

Exponential-local Nt � 16 Clll
2pt þ Cllh

2pt þ Clhl
2pt þ Chll

2pt 1

Gaussian-Gaussian Nt � 16 Clll
2pt 4 or 8
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FIG. 8. Ratio Rð�t;�tsÞ with �t ¼ 11 at mud ¼ 0:050 and
ms;val ¼ 0:100. Circles (triangles) are results obtained with the

local (exponentially smeared) source and local sink, whereas
squares are calculated using the Gaussian smeared source and
sink. The vertical lines show the locations of the nucleon
operators. The noisy high-mode contribution to the quark loop
is ignored in this plot.
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Therefore, unlike the case for the two-point function, the
use of the smeared operator for both source and sink is
essential for the three-point function in order to extract the
ground-state signal.

Similar plots are shown for mud ¼ 0:035 and 0.025 in
Fig. 9. We observe similar behavior of the approximated
ratio.

B. Bare results for the strange quark content

The ratio Rð�t;�tsÞ in (17) without the low-mode ap-
proximation is shown in Fig. 10 (filled circles) together
with that of the low-mode approximation (open squares).
Here, the data for �t ¼ 13 are shown. Although the sta-
tistical noise is much larger when the high-mode contribu-
tions are included, the central value is unchanged.

Since the high-mode contributions are calculated with
random noise (10), the larger noise is expected. But, be-
cause the noise given for each time slice is statistically
independent, the correlation among the data points at
different �ts is expected to come mainly from the low
modes, provided that the high-mode contribution to the
ratio is negligible, which is indeed the case within our

statistical accuracy. The statistical error is then effectively
reduced by averaging over different �ts. In Fig. 10, the
result of a constant fit for �ts ¼ ½5; 8� is shown by a
horizontal line together with a band showing the resulting
statistical error. In this case, the statistical error of the fitted
value is about a half of that of each point, because four data
points are averaged. We also checked that the statistical
correlation among the points at different �ts is an order of
magnitude smaller than the variance of each point.
For the final result, we take the full data including the

high modes and fit in the region where the approximated
ratio shows a plateau. To be specific, we fit in the region
�ts ¼ ½5;�t� 5� with �t � 11.
Figures 11–13 show the results of the constant fit for

each �t. We find that the results are stable under the
change of �t. We then fit these results by a constant in
�t ¼ ½11; 15�. The statistical error is estimated using the
jackknife method. The numerical results are listed in
Table II.
In order to estimate the systematic effect due to possible

contamination of the excited states, we also test a fitting
form for Rð�t;�tsÞ taking account of the first excited state:

Rð�t;�tsÞ ¼ c0 � c1e
�ð2M0þ�MÞ�t=2

� coshð�Mð�ts ��t=2ÞÞ; (18)

where the first and second terms represent the contributions
from the ground and first excited states, respectively. �M
is the mass gap between these two states. To make this fit
stable, we carry out a simultaneous fit in terms of �ts and
�t using a slightly wider fit range, �ts ¼ ½4;�t� 4�
and �t � 11. We also use the ground-state mass M0

determined from the nucleon two-point function. The
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FIG. 9. Same as Fig. 8, but for mud ¼ 0:035 (top panel) and
mud ¼ 0:025 (bottom panel).
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FIG. 12. Same as Fig. 11 but at mud ¼ 0:035.
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excited-state contribution represented by the c1 term
turned out to be small: in the maximum case (�t ¼ 11) it
is about 0.04(8) compared to the main contribution
c0 ’ 0:3ð1Þ. For large �t, the excited-state contribution is
more suppressed. This is expected from the small �ts and
�t dependence of the ratio shown in Figs. 10–13. We
therefore use the results in Table II in the following analy-
sis without adding further errors due to the excited states.

V. CHIRAL EXTRAPOLATION TO THE
PHYSICAL POINT

In this section, we discuss on the extrapolation of our
lattice data to the physical quark masses. We have three
data points corresponding to up and down quark masses
mud in the range of M� ¼ 370–520 MeV. For the strange
quark mass we have two data points sandwiching the
physical strange quark mass.

Our data for the matrix element hNjSlatjNi are plotted as
a function ofmud in Fig. 14. We do not observe statistically
significant dependence of hNjSlatjNi on both mud and ms.
By fitting the data linearly in mud and ms as

hNjSlatjNi ¼ c0 þ c1;udmud þ c1;sms;val; (19)

we obtain the numerical results of the fit parameters c0,
c1;ud, and c1;s listed in Table III. We also show the result of

a constant fit including only the c0 term in (19). Both
results are consistent with each other, but the linear ex-
trapolation gives a larger error at the physical point.
Assuming that the quark mass dependence of the nu-

cleon mass is reliably described by the chiral perturbation
theory, we also attempt an extrapolation using the formula
provided by the SUð3Þ heavy baryon chiral perturbation
theory (HBChPT). From the chiral expansion of MN [31]
and the Feynman-Hellmann theorem (31), which will be
discussed in Sec. VI, the quark mass dependence of
hNjSlatjNi up to the next-to-leading order is given by

hNjSlatjNi ¼ �cs � Bf32CNNKMK þ 2CNN�M�g; (20)

where the coefficients CNNK and CNN� are written as

CNNK ¼ 1

8�f2
ð5D2 � 6DFþ 9F2Þ

3
; (21)

CNN� ¼ 1

8�f2
ðD� 3FÞ2

6
: (22)

The axial couplings F and D are phenomenologically well
determined and we fix them as D ¼ 0:81 and F ¼ 0:47
[32]. For the pseudoscalar meson masses MK and M�, we

use the Gell-Mann, Oakes, and Renner (GMOR) relations
M2

K ¼ Bðmud þmsÞ and M2
� ¼ 2Bðmud þ 2msÞ=3, which

are valid at the leading order of the quark masses. We fix
the low-energy constants f and B to the values obtained in
our study of the pion mass and decay constant [28]. Note
that the contributions of the decuplet baryons are ignored
in this analysis.
As one can see from Fig. 15, this function does not

describe the numerical data; the value of 
2 per degree
of freedom (d.o.f.) is unacceptable (� 20). The main rea-
son is that there is no free parameter to control the quark
mass dependence, i.e., the coefficients of MK and M� in

(20) are completely determined phenomenologically. In
other words, if we leave f as a free parameter for instance,
the resulting value is unreasonably large.
If we add a higher order analytic term as

hNjSlatjNi ¼ �cs � Bf32CNNKMK þ 2CNN�M�g þ c2M
2
K;

(23)

TABLE II. Strange quark content hNjSlatjNi calculated on the
lattice at each quark mass. The fit range of �t is also listed.

mud Fit range of �t ms;val ¼ 0:070 ms;val ¼ 0:100

0.050 [11,15] 0.345(89) 0.286(83)

0.035 [11,15] 0.089(100) 0.070(96)

0.025 [11,15] 0.351(128) 0.303(126)
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FIG. 14. The dependence of hNjSlatjNi on the up and down
quark mass mud (given in the lattice unit). Open circles and
triangles are the data at each mud and ms ¼ 0:070 (circles) and
0.100 (triangles). The data linearly interpolated to the physical
strange quark mass ms;phys is shown by filled diamonds. Dashed

and solid lines show the fit curve at ms;phys obtained from the

constant and linear extrapolations.

TABLE III. Numerical results of chiral extrapolation. We also
list hNjSlatjNi extrapolated to the physical point.


2=d:o:f: d.o.f. c0 c1;ud c1;s hNjSlatjNi
constant 1.63 5 0.24(6) � � � � � � 0.24(6)

linear 2.39 3 0.22(24) 3.5(5.7) �1:44ð52Þ 0.12(22)
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the fit becomes reasonable as shown in Fig. 16, for which

2=d:o:f: is acceptable (� 1:9). Fit parameters obtained
with (20) and (23) are summarized in Table IV. The result-
ing fit parameters suggest that the chiral expansion does
not converge well. In fact, if we look at the individual
contributions to hNjSlatjNi from each term in (23), all of
them are an order of magnitude larger than the data them-
selves, and the final result is obtained by a large
cancellation.

Because of this poor convergence of the chiral expan-
sion, we use the result of the HBChPT analysis only to
estimate the systematic uncertainty. Namely, we take the
result from the constant fit as a central value of hNjSlatjNi
at the physical quark masses. The systematic error due to
the chiral extrapolation is estimated by a difference from
the results of the linear (19) and HBChPT fits (23). Then,
we obtain hNjSlatjNi ¼ 0:24ð6Þð16Þ at the physical quark

masses. The first and second errors represent the statistical
and systematic ones.
Using the experimental value ofMN , this is converted to

the strange quark mass contribution toMN defined in (1) as

fTs
¼ 0:032ð8Þð22Þ: (24)

Since the combination msS
lat is invariant under renormal-

ization, no renormalization factor is required to obtain
(24).
The y parameter (2) is defined as a ratio of the strange

and ud quark contents. We obtain

y ¼ 0:050ð12Þð34Þ; (25)

where we use an estimate hNj �uuþ �ddjNi ¼ 9:40ð41Þ for
the denominator, which is taken from our study of the
nucleon sigma term [20].
A simple order counting suggests that the discretization

effect is Oðða�Þ2Þ � 9% when we take �� 500 MeV.
Other systematic errors including those of finite volume
effects would not be significant, given that the statistical
and systematic errors in (24) and (25) are so large
(� 70%).

VI. COMPARISON WITH PREVIOUS LATTICE
CALCULATIONS

In this section, we emphasize an important role played
by the exact chiral symmetry in the calculation of the
strange quark content. Then we compare our result with
the previous calculations.

A. Renormalization issue of the operator �ss

First, let us consider the renormalization of the �ss op-
erator in the flavor SUð3Þ symmetric limit for simplicity.
Using the flavor triplet quark field c , the �ss operator can be
written in terms of flavor-singlet and octet operators as

ð �ssÞphys ¼ 1
3fð �c c Þphys � ffiffiffi

3
p ð �c�8c Þphysg; (26)

where �8 is a Gell-Mann matrix. Note that, in this section,
we put the superscript ‘‘phys’’ on the renormalized quan-
tities defined in the continuum theory to distinguish them
from bare operators, which is in our case defined on the
lattice.
In general, the singlet and octet operators may be re-

normalized differently

ð �c c Þphys ¼ Z0ð �c c Þ; (27)
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FIG. 15. The chiral fit of hNjSlatjNi based on the next-to-
leading order HBChPT (20). Solid and dashed lines show the
fits at ms;val ¼ 0:070 and 0.100.
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FIG. 16. The chiral fit using (23) with a higher order term.

TABLE IV. Numerical results of chiral fits using the SUð3Þ
HBChPT formulas, i.e., (20) and (23).


2=d:o:f: d.o.f �cs c2 hNjSlatjNi
Equation (20) 19.5 5 5.48(6) � � � 1.24(6)

Equation (23) 1.88 4 2.82(23) 21.2(1.8) 0.28(10)
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ð �c�8c Þphys ¼ Z8ð �c�8c Þ; (28)

with different renormalization factors Z0 and Z8. Here, we
assume that the chiral symmetry is preserved in the renor-
malization scheme used to calculate (27) and (28).
Otherwise, there is a mixing with lower dimensional op-
erators for the flavor-singlet operator (27), as discussed
below. The operator ð�ssÞphys is then expressed in terms of
bare operators as

ð �ssÞphys ¼ 1
3fðZ0 þ 2Z8Þð�ssÞ þ ðZ0 � Z8Þð �uuþ �ddÞg;

(29)

which implies that the �ss can mix with �uuþ �dd unless
Z0 ¼ Z8. The difference Z0 � Z8 arises from disconnected
diagrams such as those shown in Fig. 17, which exist only
for the flavor-singlet operator.

When the renormalization scheme respects chiral sym-
metry, the disconnected diagrams vanish in the massless
limit because the quark loop starting from and ending at a
scalar operator �ss ¼ �sLsR þ �sRsL has to change the chi-
rality in the loop while the change of chirality does not
occur by attaching any number of gluon lines to the quark
loop. It means that Z0 ¼ Z8 is satisfied for mass indepen-
dent renormalization schemes, as far as theymaintain exact
chiral symmetry. This also applies in the case of the over-
lap fermion formulation on the lattice, as there is an exact
chiral symmetry guaranteed by the Ginsparg-Wilson rela-
tion [18] at finite lattice spacings [19].

Thus, the renormalization of the scalar operator reduces
to a multiplicative renormalization ð �ssÞphysð�Þ ¼
ZSð�ÞSlat with ZS ¼ Z0 ¼ Z8. Here we specify the renor-
malization point � for the renormalized operator ð �ssÞphys.
The value of ZSð�Þ is nonperturbatively calculated in [33]
as ZSð2 GeVÞ ¼ 1:243ð15Þ on our lattice. For the numeri-
cal results of fTs

(24) and y (25) quoted in the previous

section, the renormalization factor is unnecessary, because

they are related to a renormalization invariant operator
ms �ss or a ratio �ss=ð �uuþ �ddÞ.
As it is clear from the above discussion, the explicit

violation of chiral symmetry with the conventional Wilson-
type fermions induces a mixing between the strange and ud
quark contents. In addition, the flavor-singlet scalar opera-
tor mixes with an identity operator, so that (29) is modified
as

ð�ssÞphys ¼ 1

3

�
ðZ0 þ 2Z8Þð�ssÞ þ ðZ0 � Z8Þð �uuþ �ddÞ

þ b0
a3

þ . . .

�
; (30)

where the term b0=a
3 represents the power divergent mix-

ing contribution. This contribution from the identity op-
erator must be subtracted as a part of the vacuum
expectation value of �ss. Because of the cubic divergence,
this results in a large cancellation toward the continuum
limit.
Furthermore, since Z0 � Z8 does not vanish when chiral

symmetry is violated, �ss mixes with �uuþ �dd, which in-
duces a connected diagram contribution in the calculation
of the three-point function. Since the connected diagram is
larger than the disconnected contribution by an order of
magnitude, the whole effect from ðZ0 � Z8Þð �uuþ �ddÞ
could be substantial, even though the difference Z0 � Z8

may be small. This possibility has been neglected in most
of the previous lattice calculations using the Wilson-type
fermions.

B. Direct and indirect calculations

The strange quark content can also be calculated from
the ms dependence ofMN through the Feynman-Hellmann
theorem

hNj�ssjNi ¼ @MN

@ms

: (31)

We refer to this method as the spectrum method in the
following. Exact chiral symmetry plays a crucial role in
this method, too. With the explicit chiral symmetry viola-
tion, masses of sea and valence quarks, mf;sea and mf;val

(where f distinguishes the quark flavors ud and s), depend
on the sea strange quark mass ms;sea. Namely, there is an

additive mass renormalization �m

m
phys
f;sea ¼ Zmðmf;sea þ �mÞ; (32)

mphys
f;val ¼ Zmðmf;val þ �mÞ; (33)

when we relate the bare quark masses on the lattice (mf;sea

and mf;val) to their counterparts (m
phys
f;sea and m

phys
f;val) defined

in some continuum renormalization scheme. Zm is the
multiplicative renormalization factor. With dynamical
Wilson fermions, this additive mass renormalization �m

FIG. 17. The disconnected diagram contributing to the renor-
malization of flavor-singlet scalar operator (cross). At higher
orders, the quark loop and the quark line on the bottom may be
connected by an arbitrary number of gluon propagators. Since
the quark-quark-gluon vertex conserves chirality, the chirality of
the quark propagating in the loop does not change as far as the
regularization respects chiral symmetry.
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is of the cutoff order,�1=a, and its dependence on the sea
quark mass is a quantity of order unity.

Then, we can write the relevant partial derivative
@MN=@ms;sea calculated on the lattice in terms of the

‘‘physical’’ quark mass dependence of MN as

@MN

@ms;sea

¼@m
phys
s;sea

@ms;sea

@MN

@m
phys
s;sea

þ@mphys
ud;sea

@ms;sea

@MN

@m
phys
ud;sea

þ@m
phys
ud;val

@ms;sea

@MN

@m
phys
ud;val

¼Zm

�
hNj�ssjNiphysþ @�m

@ms;sea

�hNj �uuþ �ddþ �ssjNiphys
�
; (34)

where the matrix elements appearing on the right-hand side
are those with the continuum renormalization scheme. The
last term must be subtracted from ð1=ZmÞ@MN=@ms;sea to

obtain the strange quark content. It requires a calculation of
the light quark content hNj �uuþ �ddjNi, which is domi-
nated by the connected diagram, and of the ms;sea depen-

dence of �m, which strongly depends on the details of the
lattice action used in the calculation. In the literature, this
subtraction was considered only in [15], where the sub-
traction induced a rather large statistical error.

One may avoid this problem by differentiating MN in
terms of pion and kaon mass squared,M2

� andM2
K, instead

ofms, assuming the GMOR relationsM2
� ¼ 2Bmud,M

2
K ¼

Bðmud þmsÞ. Since the quark masses appearing in the
right-hand side of the GMOR relations contain the additive
mass renormalization �m, the above subtraction is not
necessary. But the method introduces another uncertainty,
because the GMOR relations are valid only at the leading
order of the quark mass, and the higher order terms are not
negligible in general. This method has been applied in the
analysis of [22].

In Fig. 18 (top panel) we compare our result (25) for the
y parameter plotted by a solid circle with those from
previous studies using the Wilson-type actions [12–15].
Among these, [12,13] are quenched calculations and
[14,15] contain the effects of two dynamical flavors.
Rather large values y ¼ 0:4–0:8 were obtained in the cal-
culations from the nucleon three-point functions [12–14],
for which the above mentioned contamination was not
taken into account and large systematic error is expected.
An exception is the UKQCD’s calculation with the spec-
trum method [15]; the subtraction of the contamination led
to a large uncertainty in y.

In the same figure, we also compare our result (25) with
our previous estimate y ¼ 0:030ð16Þðþ6

�8Þ from the spec-

trum method [20], where the first and second errors are
statistical and systematic, respectively. Because of the
exact chiral symmetry satisfied in both of our calculations,

these two points are free from the contamination and
consistent with each other.
Recently there have been two calculations published

[22,23]. The analysis of Young and Thomas [22] fits the
data from recent calculations of the baryon spectrum done
by the LHPC [34] and PACS-CS [35] Collaborations, and
takes a derivative in terms of M2

� and M2
K. As already

mentioned, the problem of the operator mixing is avoided
in this method and the authors obtained a result consistent
with ours. Toussaint and Freeman [23] uses the data for the
nucleon mass obtained by the MILC Collaboration using
the so-called ‘‘asqtad’’ quark action, which is a variant of
the staggered fermion formulation. They use a clever idea
of extracting the derivative of the nucleon correlator in
terms of the quark mass from the correlation between the
nucleon correlator and the scalar density operator (the
Feynman-Hellmann theorem). Since the staggered fermion
has a remnant chiral symmetry, there is no problem with
the operator mixing. On the other hand, there is a subtlety
due to the artificial fourth root of the fermion determinant
necessary for the staggered fermions, for which the
Feynman-Hellmann theorem is modified. Their result ap-
pears to be slightly higher than ours.

VII. CONCLUSIONS

In this paper we calculate the nucleon strange quark
content on the lattice directly from the nucleon three-point
function in two-flavor QCD. Chiral symmetry is exactly
preserved by employing the overlap fermion formulation

Fukugita et al. (95)

Dong et al. (96)

SESAM (99)

UKQCD (02)"unsubtructed"

UKQCD (02)"subtructed"

JLQCD (08)

This work

0 0.5 1
y-parameter

Young & Thomas (09)

Toussaint & Freeman (09)

FIG. 18. (Top panel) The comparison of the y parameter with
previous studies. The result in this study (25) and our estimate
using the spectrum method [20] are plotted by filled and open
circles. Triangles represent previous direct calculations from the
nucleon three-point functions [12–14]. Squaresare the results of
[15] that used the spectrum method. We plot two results obtained
with and without subtracting the contamination due to the chiral
symmetry breaking. (Bottom panel) Two recent results [22,23]
are plotted. Values are converted to the y parameter using the
quark mass ratio ms=mud ¼ 27:4ð4Þ [37] and the nucleon � term
[20]. The quoted errors are statistical only except for our studies
and the two recent calculations [22,23].
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on the lattice. This is crucial in the calculation of the
strange quark content in order to avoid large contamina-
tions from the operator mixing effects that were missing in
many of the previous calculations.

The lattice calculation of the disconnected diagram is
technically challenging. In this work we attempted various
options of the all-to-all propagator technique and the low-
mode averaging together with the source and sink smear-
ings. By optimizing those, we could finally obtain the
nonzero signal at each quark mass; the value extrapolated
to the physical quark masses is away from zero by 1.5
standard deviation.

The results for fTs
and y are in good agreement with our

previous estimate using the spectrum method [20], and
favor small strange quark content y 	 0:05, which is an
order of magnitude smaller than previous lattice calcula-
tions without respecting chiral symmetry, which we now
believe unreliable.

For more realistic calculations, we must include the
dynamical strange quark in the simulation. Such a calcu-
lation is already underway using both the spectrum and
direct methods [24,36]. It is also interesting to extend this
study to other baryon observables involving disconnected
quark loops, such as the strange quark spin fraction of the
nucleon.
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