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Sequential Point Estimation of Location

Parameter in Location-Scale Family of

Non-Regular Distributions

Ken-ichi Koike

Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki, Japan

Abstract: In this paper, we consider sequential estimation of the location pa-

rameter based on the midrange in the presence of unknown scale parameter when

the underlying distribution has a bounded support. The estimation is done under

squared loss plus cost of sampling. Stopping rules based on the range are proposed

and they are shown to be asymptotically efficient. The risks of the sequential pro-

cedures are compared with the Robbins’ sequential estimation procedure based

on the sample mean. The formers are shown to be asymptotically more efficient

than the latter in the sense of the sample size when the density function changes

sharply at the end points of the support. Koike (2007) observed a similar asymp-

totic superiority of the sequential estimation procedure based on the midrange in

the sequential interval estimation procedure under the same condition.

Keywords: Extreme value; Non-regular case; Robbins’ procedure; Sequential

point estimation.

Subject Classifications: 62L12; 62F10.

1. INTRODUCTION

Suppose that X1, X2, . . . are independent and identically distributed (i.i.d.)

with E(X1) = µ and V (X1) = σ2 > 0. We consider the estimation problem

of µ under the squared loss plus cost. If µ is estimated by the sample mean

X̄n =
∑n

i=1 Xi/n, then the risk is given by
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r′n := E(X̄n − µ)2 + dn = σ2/n + dn,

where d(> 0) is the cost per observation. If σ is known, then the risk is

minimized at the integer closest to n′
d := σ/

√
d. For simplicity, we will

assume that n′
d is an integer. Then the minimized risk is r′n′

d
= 2dn′

d =

2
√

dσ. However, unless σ is known, one can not attain this risk with a non-

sequential procedure. For normal random variables, Robbins (1959) proposed

the following stopping rule:

T ′
d :=

{
n ≥ m′

d | n2 ≥ vn/d
} (

vn :=
1

n − 1

n∑
i=1

(Xi − X̄n)2

)
,

where m′
d is the initial sample size. Ghosh and Mukhopadhyay (1979) and

Chow and Yu (1981) showed that, under some conditions, the sequential esti-

mation procedure (T ′
d, X̄T ′

d
) is asymptotically risk efficient, that is, r′T ′

d
/r′n′

d
→

1 as d → 0, without normality assumption. Chow and Martinsek (1982)

showed that (T ′
d, X̄T ′

d
) has bounded regret in the sense (r′T ′

d
−r′

n
(1)
d

)/d = O(1).

For another major reference, see Ghosh et al. (1997).

As a typical non-regular case, some sequential estimation procedures

are obtained for the uniform distribution by Akahira and Koike (2005),

Akahira and Takeuchi (2003), Chaturvedi et al. (2001), Govindarajulu (1997),

Mukhopadhyay et al. (1983), Mukhopadhyay (1987) and Wald (1950) among

others. Basawa et al. (1990) also discusses non-regular cases for the bounded

risk point estimation under a general setting.

In Section 2, we consider sequential estimation of the location parame-

ter based on the midrange in the presence of unknown scale parameter when

the underlying distribution has a bounded support. The estimation is done

under squared loss plus cost of sampling. In Subsection 2.1, we consider the

case when the underlying density function has positive limit values at the

end points of the support. A stopping rule based on the range is proposed

and it is shown to be asymptotically efficient. The risks of the sequential

procedures are compared with the Robbins’ sequential estimation procedure

based on the sample mean. The former is shown to be asymptotically more

efficient than the latter in the sense of the sample size. In Subsection 2.2,

we consider a case when the underlying density function converges to 0 at

the end points of the support. We investigate a sequential estimation proce-

dure based on the range, compare with the Robbins’ sequential estimation

procedure and show an asymptotic superiority of the estimation procedure
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based on the midrange to the Robbins’ procedure when the density function

changes sharply at the end points of the support.

Koike (2007) observed a similar asymptotic superiority of the sequen-

tial estimation procedure based on the midrange in the sequential interval

estimation procedure under the same condition.

2. SEQUENTIAL ESTIMATION PROCEDURES

In this section we consider sequential estimation procedures for two

cases below.

Let Z1, Z2, . . . be a sequence of i.i.d. random variables according to the

density function f0(x − θ) (θ ∈ R1) with respect to the Lebesgue measure.

We assume throughout the paper that f0(x) has a bounded support (−a, a)

(a > 0), i.e., f0(x) > 0 for −a < x < a, and f0(x) = 0 otherwise, and is

twice continuously differentiable in (−a, a). Note that if the support of f0

is (−a, b) (a ̸= b), then the normalized midrange does not converge to θ in

probability as n → ∞.

We consider the following two cases as non-regular distribution.

(A1) f0(x) satisfies lim
x→−a+0

f0(x) = c1(> 0), lim
x→a−0

f0(x) = c2(> 0),

lim
x→−a+0

f ′
0(x) = h1, lim

x→a−0
f ′

0(x) = h2,

where c1, c2, h1 and h2 are some constants.

(A2) f0(x) satisfies

lim
x→−a+0

(x + a)−γf0(x) = g1, lim
x→a−0

(a − x)−γf0(x) = g2,

where γ, g1 and g2 are some positive constants.

In (A2), if the converging order γ’s are different, then the normalized

midrange does not converge to θ in probability as n → ∞. Note that f0(x)

satisfying (A2) converges to 0 with the order of (x + a)γ and |x − a|γ as

x → −a + 0 and x → a − 0, respectively. So, the density changes sharply at

the end points of the support if 0 < γ < 1 and changes smoothly if γ > 1.

These conditions are essentially the same as those in Akahira (1975a, b),

Akahira and Takeuchi (1981, p. 31; 1995, pp. 81, 148) and Koike (2007).

We consider the cases of (A1) and (A2) in Subsections 2.1 and 2.2,

respectively.
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2.1. Estimation Procedure for (A1)

In this subsection we treat the case of (A1). At first, we consider the asymp-

totic distribution of the extreme values in a similar way to Akahira and

Takeuchi (1995) and Koike (2007).

Under (A1), by putting Z(1) := min1≤i≤n Zi, Z(n) := max1≤i≤n Zi, U :=

n(Z(1)+a−θ) and V := n(Z(n)−a−θ), the joint density of (U, V ) is expanded

as

f
(n)
U,V (u, v)

=



exp{−(uc1 − vc2)}

[
c1c2 +

1

n

{
−c1c2 + c1c2

(
2(uc1 − vc2)

−
(

h1u
2

2
− h2v

2

2

)
− 1

2
(uc1 − vc2)

2

)
+ h1uc2 + h2vc1

}]
+o

(
1

n

)
(v < 0 < u),

0 (otherwise)

(2.1)

from Koike (2007).

Now, we consider the location-scale parameter family of distributions

with a bounded support (θ−ξa, θ+ξa). Suppose that X1, X2, . . . is a sequence

of i.i.d. random variables with the density (1/ξ)f0((x − θ)/ξ), where θ ∈ R
and ξ > 0. Put Yi := (Xi−θ)/ξ for each i = 1, 2, . . ., and Y(1) := min1≤i≤n Yi,

Y(n) := max1≤i≤n Yi. Letting S := n(Y(1) + Y(n))/2 and T := n(Y(1) − Y(n) +

2a)/2, we have the asymptotic joint density of (S, T )

fS,T (s, t) =

{
2c1c2 exp{−(c1 − c2)s − (c1 + c2)t} (t > |s|),
0 (otherwise)

from (2.1). The asymptotic density of S is given by

fS(s) =

{
Ke−2c1s (s ≥ 0),

Ke2c2s (s < 0),

where K = 2c1c2/(c1 + c2). So, the asymptotic expectations of S and S2 are

E(S) ≈ K

{∫ ∞

0

se−2c1sds +

∫ 0

−∞
se2c2sds

}
=

c2 − c1

2c1c2

,

E(S2) ≈ K

{∫ ∞

0

s2e−2c1sds +

∫ 0

−∞
s2e2c2sds

}
=

c2
2 − c1c2 + c2

1

2(c1c2)2
. (2.2)
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So, we may assume the following condition.

(B1) There exists a positive constant A satisfying E(S2) → A as n → ∞.

Concerning this assumption, we have the following lemma.

Lemma 2.1. (B1) and E(S4) = O(1) hold under (A1).

Proof. At first, we show (B1). From Fatou’s lemma and (2.2),

lim inf
n→∞

E(S2) ≥ c2
2 − c1c2 + c2

1

2(c1c2)2
.

Since S = n(Y(1) + Y(n))/2 and 0 ≤ E{(Y(1) + Y(n))
2} ≤ 2[E{(Y(1) + a)2} +

E{(Y(n) − a)2}], it suffices to show E{(Y(1) + a)2} = O(n−2) and E{(Y(n) −
a)2} = O(n−2). The density of Y(1) is given by

fY(1)
(x) = n{1 − F (x)}n−1f0(x),

where F is the distribution function of Y1, hence,

E{(Y(1) + a)2} =

(∫ −a+ϵ

−a

+

∫ a

−a+ϵ

)
(x + a)2n{1 − F (x)}n−1f0(x)dx

=: I1 + I2 (say).

Putting y = n(x + a), we have, for a sufficiently small ϵ > 0,

I1 =

∫ nϵ

0

(
n−1y

)2
n

{
1 − F

(
−a + n−1y

)}n−1
f0

(
−a + n−1y

)
n−1dy

=

∫ nϵ

0

n−2y2 exp (−cy)

{
1 − h1

2
y2n−1 + o(n−1)

} {
c + h1n

−1 + o(n−1)
}

dy

=n−2

∫ nϵ

0

y2 exp (−cy)

{
c + n−1

(
−ch1

2
y2 + h1y

)
+ o

(
n−1

)}
dy

≤Cn−2,

where the second equality follows from the expansion of f0(x), and C is some

positive constant. On the other hand, since

I2 =

∫ a

−a+ϵ

(x + a)2n{1 − F (x)}n−1f0(x)dx

≤n{1 − F (−a + ϵ)}n−1

∫ a

−a+ϵ

(x + a)2nf0(x)dx

=n{1 − F (−a + ϵ)}n−1E{(Y1 + a)2} = O(n−2),

we have E{(Y(1) + a)2} = O(n−2).
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In a similar way to the above, we have E{(Y(n) − a)2} = O (n−2), thus

E(S2) = O(1). And we can show E(S4) = O(1) similarly. Therefore we have

the desired result. ¤
If the population distribution is the uniform distribution U(−1, 1), then

the constant A is calculated exactly. In fact, an easy computation yields

E(S2) =
2n2

(n + 1)(n + 2)
→ 2,

E(S4) =
24n4

(n + 1)(n + 2)(n + 3)(n + 4)
→ 24.

If θ is estimated by the midrange Mn = (X(1) + X(n))/2, then the risk

is given by

rn := E(Mn − θ)2 + dn,

where d(> 0) is the cost per observation. From S = n(Mn−θ)/ξ and (A2), rn

is approximated by (Aξ2/n2)+dn, which is minimized at the integer closest to

n = n
(1)
d := (2Aξ2/d)1/3 and the minimized value is r

n
(1)
d

= 3(Aξ2d2)1/3/22/3.

However, unless ξ is known, one can not attain this risk with a non-sequential

procedure. Since the range Rn := X(n) −X(1) converges to 2aξ almost surely

as n → ∞, therefore we consider the following stopping rule:

T
(1)
d := inf

{
n ≥ m

(1)
d | n3 ≥ AR2

n/(2a2d)
}

,

where m
(1)
d is the initial sample size with d−l ≤ m

(1)
d = o(d−1/3) (0 < l < 1/3).

Then we have the following theorem.

Theorem 2.1. Under the conditions (A1) and (B1), as d → 0, we have

(i) T
(1)
d /n

(1)
d

a.s.→ 1, (ii) E
(
T

(1)
d

)
/n

(1)
d →1, (iii) r

T
(1)
d

/r
n

(1)
d

→ 1.

Proof. At first, we note that

m
(1)
d ≤ T

(1)
d ≤ n

(1)
d + 1 with probability 1. (2.3)

In fact, since 0 ≤ Rn ≤ 2aξ with probability 1, it holds 0 ≤ (AR2
n/(2a

2d))
1/3

≤ (2Aξ2/d)
1/3

with probability 1. Hence, n > (AR2
n/(2a2d))

1/3
for n satis-

fying n > (2Aξ2/d)
1/3

. Therefore (2.3) holds. Since T
(1)
d

a.s.→∞ and Rn
a.s.→ 2aξ,

R
T

(1)
d

a.s.→ 2aξ. By the definition of T
(1)
d ,AR2

T
(1)
d

2a2d

1/3

≤ T
(1)
d < m

(1)
d +

AR2

T
(1)
d −1

2a2d

1/3

.
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Dividing this by n
(1)
d , we have (i) as d → 0 since d−l ≤ m

(1)
d = o(d−1/3). To

prove (ii), we have from (i) that

lim inf
d→0

E
(
T

(1)
d /n

(1)
d

)
≥ 1.

by Fatou’s lemma. On the other hand, by (2.3),

E
(
T

(1)
d

)
n

(1)
d

≤ (2Aξ2/d)
1/3

+ 1

(2Aξ2/d)1/3
→ 1 (d → 0),

hence E
(
T

(1)
d

)
/n

(1)
d → 1 as d → 0. So, we have (ii).

To prove (iii), we may assume θ = 0 without loss of generality, since Mn

is location equivariant. Putting Sk,n := (k + n)Mk+n − kMk (k ≥ 0, n ≥ 1),

we have by Minkowski’s inequality, that

0 ≤
(
E|Sk,n|4

)1/4
=

(
E|(k + n)Mk+n − kMk|4

)1/4

≤
(
E|(k + n)Mk+n|4

)1/4
+

(
E|kMk|4

)1/4
= O(1) (2.4)

from Lemma 2.1. Taking η and λ satisfying 0 < λ < (Aξ2)1/3 < η, we have

P
(
(d/2)1/3T

(1)
d ≥ η

)
→ 0 as d → 0 from (i). By (2.4) and Theorem B of

Serfling (1980),

E max
1≤i≤n

|Sk,i|4 = O(1) for k ≥ k0, n ≥ 1. (2.5)

Since T
(1)
d ≥ m

(1)
d with probability 1,

η−2(d/2)2/3E

{(
T

(1)
d M

T
(1)
d

)2

I
(
λ ≤ (d/2)1/3T

(1)
d ≤ η

)}
≤E

(
M2

T
(1)
d

)
≤E

{
M2

T
(1)
d

I
(
T

(1)
d ≤ λ(2/d)1/3

)}
+ λ−2(d/2)2/3E

{(
T

(1)
d M

T
(1)
d

)2

I
(
λ ≤ (d/2)1/3T

(1)
d ≤ η

)}
+ E

{
M2

T
(1)
d

I
(
T

(1)
d ≥ η(2/d)1/3

)}
, (2.6)

where I(A) is the indicator function of an event A. By Schwarz’s inequality

and (2.5),

E
{

M2

T
(1)
d

I
(
T

(1)
d ≥ η(2/d)1/3

)}
≤η−2(d/2)2/3

∞∑
j=0

2−2j

[
E

{
max

2jη(2/d)1/3≤n≤2j+1η(2/d)1/3

|nMn|4
}]1/2
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·
[
P

{
2jη(2/d)1/3 ≤ T

(1)
d ≤ 2j+1η(2/d)1/3

}]1/2

=o

(
d2/3

∞∑
j=0

2−2j2jd−1/3

)
= o

(
d1/3

)
since P

(
T

(1)
d ≥ η(2/d)1/3

)
→ 0 as d → 0. For an ε > 0 satisfying λ3 <

(Aξ2) − ε,

P
{

T
(1)
d ≤ λ(2/d)1/3

}
≤P

{
λ(2/d)1/3 ≥

(
ARn

2a2d

)1/3

for some m
(1)
d ≤ n ≤ λ(2/d)1/3

}

=P

{
λ3 ≥ AR2

n

4a2
for some m

(1)
d ≤ n ≤ λ(2/d)1/3

}
≤P

{
1 −

(
Rn

2aξ

)2

>
ε

Aξ2
for some m

(1)
d ≤ n ≤ λ(2/d)1/3

}

=P

{
0 ≤ Rn

2aξ
<

√
1 − ε

Aξ2
for some m

(1)
d ≤ n ≤ λ(2/d)1/3

}
≤P

(
0 ≤

R
m

(1)
d

2aξ
<

√
1 − ε

Aξ2

)
(by the monotonicity of Rn w.r.t. n)

=O
(
αm

(1)
d

)
, (2.7)

where α ∈ (0, 1) is a constant. (2.7) follows from the estimation of the

probability of the event {Rn ≤ l} (l > 0). In fact, putting R′
n = Z(n) − Z(1),

we have

P (R′
n ≤ l) =P (Z(n) − Z(1) ≤ l) ≤ P

{
{Z(1) ≥ −l/2} ∪ {Z(n) ≤ l/2}

}
≤P{Z(1) ≥ −l/2} + P{Z(n) ≤ l/2}.

Let G be the distribution function of Z1. Since P{Z(1) ≥ −l/2} = {1 −
G(−l/2)}n

= αn
1 (say) and P{Z(n) ≤ l/2} = Gn(l/2) = αn

2 (say), P (R′
n ≤ l) ≤ αn

1 + αn
2 ,

hence (2.7) holds. By Schwarz’s inequality and (2.7),

E
{

M2

T
(1)
d

I(T
(1)
d ≤ λ(2/d)1/3)

}
≤

{
E|M

T
(1)
d
|4

}1/2 [
P

{
T

(1)
d ≤ λ(2/d)1/3

}]1/2

≤
∑

j:2j≥m
(1)
d

2−2j

{
E

(
max

2j≤n≤2j+1
|nMn|4

)}1/2 [
P

{
T

(1)
d ≤ λ(2/d)1/3

}]1/2
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=D
∑

j:2j≥m
(1)
d

2−2j
(
O

(
αm

(1)
d

))1/2

= O
(
m

(1)
d

−1
αm

(1)
d /2

)
,

where D is some constant. On the other hand, since |a2 − b2| ≤ |a − b|2 +

2|b||a − b| for a, b ∈ R,∣∣∣∣E {(
T

(1)
d M

T
(1)
d

)2

I(λ ≤ (d/2)1/3T
(1)
d ≤ η)

}
− E

{(
[λ(2/d)1/3]M[λ(2/d)1/3]

)2
}∣∣∣∣

≤E

{
max

λ(2/d)1/3≤n≤η(2/d)1/3

∣∣∣(nMn)2 −
(
[λ(2/d)1/3]M[λ(2/d)1/3]

)2
∣∣∣}

+ E
[(

[λ(2/d)1/3]M[λ(2/d)1/3]

)2

·
{

I
(
(d/2)1/3T

(1)
d < λ

)
+ I

(
(d/2)1/3T

(1)
d > η

)}]
≤

{
E

(
max

λ(2/d)1/3≤n≤η(2/d)1/3

∣∣nMn − [λ(2/d)1/3]M[λ(2/d)1/3]

∣∣4)}1/2

+ 2
[
E

{(
[λ(2/d)1/3]M[λ(2/d)1/3]

)2
}]1/2

·
{

E

(
max

λ(2/d)1/3≤n≤η(2/d)1/3

∣∣nMn − [λ(2/d)1/3]M[λ(2/d)1/3]

∣∣4)}1/4

+
{

E
∣∣[λ(2/d)1/3]M[λ(2/d)1/3]

∣∣4}2

·
{

P 1/2
(
(d/2)1/3T

(1)
d < λ

)
+ P 1/2

(
(d/2)1/3T

(1)
d > η

)}
from Schwarz’s inequality. Therefore, since E

(
[λ(2/d)1/3]M[λ(2/d)1/3]

)2 ∼ Aξ2

as d → 0, and η and λ can be taken arbitrary close to (Aξ2)1/3,

E
(
θ̂

T
(1)
d

− θ
)2

∼ (Aξ2)1/3(d/2)2/3. (2.8)

By (ii) and (2.8), we have (iii). ¤

Remark 2.1. The above proof of (iii) is basically based on that of Theorem 1

of Lai (1996), which shows that, in a general setting, a sequential estimation

procedure based on a
√

n-consistent estimate is risk-efficient, whereas we

treat a sequential estimation procedure based on an n-consistent estimate.

From Theorem 2.1 and Chow and Yu (1981), as d → 0,

r
T

(1)
d

r′T ′
d

≈ 3(Aξ2d2)1/3/22/3

2
√

dσ
→ 0,
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where σ2 = V (X1). So, the estimation procedure (T
(1)
d ,M

T
(1)
d

) is asymp-

totically better than (T ′
d, X̄T ′

d
). A similar phenomenon that the sequential

interval estimation procedure based on the midrange is asymptotically better

than the sample mean can be found in Koike (2007).

2.2. Estimation Procedure for (A2)

In this subsection, we consider the case of (A2).

By putting U ′ := n1/(γ+1)(Z(1) + a− θ) and V ′ := n1/(γ+1)(Z(n) − a− θ)

with Z(1) = min1≤i≤n Zi and Z(n) = max1≤i≤n Zi, under the condition (A2),

the joint density f
(n)
U ′,V ′(u, v) of (U ′, V ′) satisfies

f
(n)
U ′,V ′(u, v) →

{
g1g2(−uv)γ exp{− g2

γ+1
(−v)γ+1 − g1

γ+1
uγ+1} (v < 0 < u),

0 (otherwise)

as n → ∞ (Koike (2007)).

Suppose that X1, X2, . . . is a sequence of i.i.d. random variables with

the density (1/ξ)f0((x− θ)/ξ), where θ ∈ R and ξ > 0. Put Yi := (Xi − θ)/ξ

for each i = 1, 2, . . ., and Y(1) := min1≤i≤n Yi, Y(n) := max1≤i≤n Yi.

Letting S ′ := n1/(γ+1)(Y(1) + Y(n))/2 and T ′ := n1/(γ+1)(Y(1) − Y(n) +

2a)/2, we have the asymptotic joint density of (S ′, T ′) in a same manner

to Subsection 2.1. So, the asymptotic expectation of S ′2 is E(S ′2) can be

calculated. So, we may assume the following condition.

(B2) There exists a positive constant B satisfying E(S ′2) → B as n → ∞.

Concerning this assumption, we have the following lemma.

Lemma 2.2. (B2) and E(S ′4) = O(1) hold under (A2).

The proof is omitted since it is similar to the one of Lemma 2.1.

Under the condition (B2), as n → ∞,

E
(
n2/(γ+1)M2

n

)
→ Bξ2. (2.9)

If θ is estimated by the midrange Mn = (X(1)+X(n))/2, then the risk is given

by

rn = E(Mn − θ)2 + dn,

where d(> 0) is the cost per observation. From S ′ = n1/(γ+1)(Mn − θ)/ξ and

(2.9), rn is approximated by Bξ2n−2/(γ+1) + dn, which is minimized at the
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integer closest to n = n
(2)
d := {2Bξ2/(d(γ +1))}(γ+1)/(γ+3) and the minimized

value is

r
n

(2)
d

= Bξ2

(
d(γ + 1)

2Bξ2

)2/(γ+3) (
γ + 3

γ + 1

)
.

However, unless ξ is known, one can not attain this risk with a non-sequential

procedure. Since the range Rn = X(n) −X(1) converges to 2aξ almost surely

as n → ∞, therefore we consider the following stopping rule:

T
(2)
d := inf

{
n ≥ m

(2)
d | n(γ+3)/(γ+1) ≥ BR2

n/(2a2d(γ + 1))
}

,

where m
(2)
d is the initial sample size with d−l ≤ m

(2)
d = o(d−(γ+1)/(γ+3)) (0 <

l < (γ + 1)/(γ + 3)). Then we have the following theorem.

Theorem 2.2. Under the conditions (A2) and (B2), as d → 0, we have

(i) T
(2)
d /n

(2)
d

a.s.→ 1, (ii) E
(
T

(2)
d

)
/n

(2)
d →1, (iii) r

T
(2)
d

/r
n

(2)
d

→ 1.

The proof is omitted since it is similar to the one of Theorem 2.1.

From Theorem 2.2 and Chow and Yu (1981), as d → 0,

r
T

(2)
d

r′T ′
d

≈

(
d(γ+1)
2Bξ2

)2/(γ+3) (
1 + 2Bξ2

γ+1

)
2
√

dσ
→


0 (0 < γ < 1),

constant (γ = 1),

∞ (γ > 1),

where σ2 = V (X1). So, the estimation procedure (T
(2)
d ,M

T
(2)
d

) is asymp-

totically better than (T ′
d, X̄T ′

d
) for 0 < γ < 1, and worse for γ > 1. In

other words, (T
(2)
d ,M

T
(2)
d

) is asymptotically superior to (T ′
d, X̄T ′

d
) if the den-

sity changes sharply at the end points of the support. Koike (2007) observed

a similar asymptotic superiority of the sequential estimation procedure based

on the midrange in the sequential interval estimation procedure for θ under

the same assumptions when the density changes steeply at the end points

of the support. Note that similar results for the location family in the non-

sequential case can be found in Akahira (1975a) and Akahira and Takeuchi

(1981, 1995).
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