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Abstract 

We have experimentally demonstrated structural advantages due to rounded corners of 

rectangular-like cross-section of silicon nanowire (SiNW) field-effect transistors (FETs) on 

on-current (ION), inversion charge density normalized by a peripheral length of channel cross-section 

(Qinv) and effective carrier mobility (eff). The ION was evaluated at the overdrive voltage (VOV) of 

1.0 V, which is the difference between gate voltage (Vg) and the threshold voltage (Vth), and at the 

drain voltage of 1.0 V. The SiNW nFETs have revealed high ION of 1600 A/m of the channel 

width (wNW) of 19 nm and height (hNW) of 12 nm with the gate length (Lg) of 65 nm. We have 

separated the amount of on-current per wire at VOV = 1.0 V to a corner component and a flat surface 

component, and the contribution of the corners was nearly 60 % of the total ION of the SiNW nFET 

with Lg of 65 nm. Higher Qinv at VOV = 1.0 V evaluated by advanced split-CV method was obtained 

with narrower SiNW FET, and it has been revealed the amount of inversion charge near corners 

occupied 50 % of all the amount of inversion charge of the SiNW FET (wNW = 19 nm and 

hNW = 12 nm). We also obtained high eff of the SiNW FETs compared with that of SOI planar 

nFETs. The eff at the corners of SiNW FET has been calculated with the separated amount of 

inversion charge and drain conductance. Higher eff around corners is obtained than the original eff 

of the SiNW nFETs. The higher eff and the large fractions of ION and Qinv around the corners 

indicate that the rounded corners of rectangular-like cross-sections play important roles on the 

enhancement of the electrical performance of the SiNW nFETs. 
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split-CV, inversion charge density, effective carrier mobility. 
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1. Introduction 

Aggressive scaling of the planar metal-oxide-semiconductor field-effect transistors (MOSFET) 

has encountered difficulties with suppression of the short channel effects (SCE), which induces an 

increase in off-state leakage current (IOFF) to degrade the on-current/off-current ratio (ION/IOFF). A 

solution to suppress the SCE is an introduction of three-dimensional channel FETs for enhancement 

of the electrostatic controllability of the channel. Silicon nanowire (SiNW) FETs have the most 

effective channel controllability and nearly ideal off-characteristics have been experimentally 

demonstrated [1]. ION enhancement of the SiNW FET has also been reported [2]. Higher ION with 

lower IOFF is advantageous for realization of a low power supply voltage device and thus a low 

power consumption device application. The ION is mainly attributed to the inversion charge density 

(Q inv) and effective carrier mobility (eff) of the SiNW channel. The eff of SiNW FET has been 

investigated in many institutes [3-5] and mainly focused on the surface orientations of the SiNW 

channel. We focused on structural effects of the SiNW channel on the electrical performance of 

SiNW FETs. In this work we fabricated the SiNW FETs with rectangular-like channel cross-section 

and planar SOI FETs on (100) SOI wafer simultaneously and electrically characterized, especially 

the ION, eff and Qinv. We intensively analyzed structural advantages of rectangular cross-section 

SiNW FET. Experimental results suggested that corners in the rectangular cross-section played 

important roles on the enhancement of the electrical performances of the SiNW nFETs. 

 

2. Device fabrication process 

A (100)-oriented silicon-on-insulator (SOI) wafer was used as a starting material with the SOI 

layer and the buried oxide (BOX) layer thickness of 75 and 50 nm, respectively. The mesa-type Si 

fin with embedded source and drain (S/D) pad region with a silicon nitride hard mask of 50 nm 

formed by the low-pressure chemical vapor deposition on an oxide pad layer of 7 nm atop was 

oxidized in dry oxygen ambient at 1000 oC for 1 hour to form narrow SiNW channel. The silicon 

nitride layer prevents the oxidation and the resultant reduction of the SOI layer thickness of S/D 

region to avoid an unexpected increase in parasitic series resistance (RSD). The sacrificial oxide was 

partially stripped by wet etching process and silicon nitride sidewalls were formed by deposition and 

etch-back process. The residual oxide was completely stripped, and the SiO2 gate oxide with a 

thickness (Tox) of 3 nm and a non-doped poly-silicon film of 75 nm was deposited, which resulted in 

a trigate-like gate semi-around structure [6]. After gate ion implantation process (phosphorus for 

nFETs and boron for pFETs), silicon dioxide hard mask deposited by chemical-vapor deposition 

with tetraethoxysiliane (TEOS) of 30 nm was formed. Dry ArF lithography process and dry etching 



process with TEOS hard mask was used to form gate electrode. After the poly-Si gate electrode 

formation, the 1
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st spacer formation and the ion implantation were performed (arsenic (15 keV) for 

the SiNW nFET with the channel width wNW of 9 nm, and phosphorus (5 keV) for the SiNW nFETs 

with wNW of 19, 28, and 39 nm and the planar SOI nFETs, and boron (4 keV) for pFETs) at the dose 

of 1×1015 cm-2. The 2nd spacer formation and the deep S/D ion implantation were performed (arsenic 

(20 keV) for the SiNW nFET with the channel width wNW of 9 nm, and phosphorus (5 keV) for the 

SiNW nFETs with wNW of 19, 28, and 39 nm and the planar SOI nFETs, and boron (4 keV) for 

pFETs) at the dose of 5×1015 cm-2. After a spike rapid thermal annealing process for an activation of 

the implanted dopants, a self-align nickel silicidation process was performed. An excessive 

silicidation of SiNW channel was not observed due to optimized process conditions [7, 8]. Post 

metallization dielectric with the thickness of 470 nm was deposited and finally the wafer was 

sintered in forming gas ambience. The schematic process flow is shown in figure 1. A review 

scanning electron microscope (SEM) image of the SiNW FETs with the gate length Lg of 65 nm and 

cross-sectional transmission electron microscope (TEM) images of SiNW channels are shown in 

figure 2. As the SiNW channel was formed by thermal oxidation in high-temperature, the corners 

have rounded shape [9]. The radius of corners (Wc) of sample A and B is 4 nm, whereas 6.5 nm of 

sample C based on the TEM images. The channel height (hNW) and width (wNW) in cross-section are 

summarized in the inset in the figure 2. 

 

3. Results 

3.1 Dc-characteristics of SiNW FETs 

Typical output and transfer characteristics of the SiNW FETs (wNW=19 nm and hNW=12 nm) with 

the Lg of 65 nm and the Tox of 3 nm are shown in figure 3. A well-behaved transistor operation was 

confirmed for the both SiNW nFETs and pFETs. The on-current per wire of the SiNW nFET 

(wNW=19 nm and hNW=12 nm) was as high as 60 A, whereas 22A of the SiNW pFETs of the same 

size was obtained. Although the SiNW FETs have corners in the rectangular-like cross-sectional 

shape, no kink was observed in the transfer characteristics, which might be due to low-doped SiNW 

channel [10]. Large on-off current ratio (Ion/Ioff) of >106 with the drain induced barrier lowering 

(DIBL) and the subthreshold swing (S.S.) of 62 mV/V and 70 mV/dec., for the SiNW nFETs have 

been obtained. We can observe saturation region clearly in output characteristics of nFETs, which 

suggests low RSD. Sufficiently low S. S. indicates that interfacial state density (Dit) of SiNW FET 

with rectangular-like cross-section is negligible. 

 

3.2 On-current of SiNW FETs 

On-currents normalized by a peripheral length, which is a total length of top and side channels of 

SiNW cross-section, (ION) of SiNW nFETs with the gate length from 500 to 65 nm were measured 



and summarized in the figure 4(a). The on-current per wire was extracted at the overdrive voltage 
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OV =1.0 V, which is a difference of a gate voltage (Vg) and a threshold voltage (Vth), and drain 

voltage |Vd|=1.0 V. As the wNW increases on-current per wire was also increased. After 

normalization of on-current per wire by the peripheral length of channel, the largest ION of the 

narrowest SiNW nFET (wNW=19 nm and hNW=12 nm) was obtained. Among these, SiNW nFETs 

(wNW=19 nm and hNW=12 nm) showed excellent high ION of 1600 A/m. The ION of SiNW pFETs 

with the gate length from 500 to 65 nm are also shown in figure 4(b). The structural advantages of 

SiNW nFETs on the ION drivability is summarized in figure 5. Higher ION was obtained with smaller 

wNW in each gate length and exceeds the ION of planar SOI nFETs, which suggests that the smaller 

wNW is advantageous to ION drivability between the wNW of 19 and 3

ION/IOFF characteristics of SiNW nFETs are shown in figure 6. The IOFF was defined as the drain 

current normalized by the peripheral length of SiNW channel at the Vg-Vth of -0.3 V and drain 

voltage (Vd) of 1.0 V. The SiNW nFET with narrower wNW demonstrates superior ION/IOFF 

characteristics, especially significantly improved ION/IOFF in short Lg region due to electrostatic 

controllability of the narrow SiNW channel. 

Parasitic series resistance of source/drain (RSD) of SiNW FETs tends to become larger than that 

of planar devices [11], which degrade the ION. The RSD of SiNW FETs was evaluated applying a 

Chern’s channel-resistance method (CRM) [12] to the SiNW FETs with the three different mask gate 

length (Lmask) of 550, 450, and 350 nm. We plotted the total resistance (Rtot) at the effective gate 

length of each device. Then, we fitted a straight line to Rtot of the SiNW FETs with different gate 

length using least square method. Finally we obtained RSD at the intercept of the y-axis. Extracted 

RSD was summarized in figure 7. The RSD of nFETs correspond to only 10 % of the total resistance 

(Rtot) for the SiNW nFET with the Lg of 65 nm, owing to the process optimization for S/D formation. 

It is worth noting that arsenic implantation instead of phosphorus results in about 10 times higher 

RSD, presumably due to the damages in the S/D region as well a the difference in the Ni silicide 

formation [13, 14]. On the other hand, the RSD of pFETs are much higher than that of nFETs. One 

reason of relatively low ION compared with that of the SiNW nFETs in the previous section is the 

large RSD of the SiNW pFETs. A difference of the Lmask and actual gate length (L) of SiNW pFETs 

obtained during the analysis using CRM was larger than L of the SiNW nFETs. We speculate the 

difference of L between the SiNW nFETs and the SiNW pFETs might suggest the difference of the 

dopant diffusion process into the SiNW channel between phosphorus and boron. The redistribution 

of boron during Ni silicidation process was also reported [15] and more process optimization is 

necessary for the SiNW pFETs. 

 

3.3 On-current separation into a corner component and a flat surface component 

In the previous section, the structural advantages of wNW on the ION of the SiNW FET was 



investigated. The advantages could be explained by the effects of corners in the rectangular-like 

cross-section. In this section, we attempt to separate on-current of corner component (I
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corner) and 

on-current along flat surface (Iflat) of the SiNW nFETs for the determination of contributions of the 

corners in figure 8. The on-current along flat surface Iflat and the on-current of the corner component 

Icorner were calculated as follows. First we subtracted the on-current per wire of the SiNW FET with 

smaller wNW from an on-current per wire of the SiNW FET with larger wNW. Then we normalized 

the difference of the on-current per wire with the difference of wNW between each SiNW FET. We 

obtained the normalized on-current along flat surface of (i) 1069, (ii) 932, and (iii) 994 A/m using 

the SiNW nFET with wNW of (i) 19 and 28 nm, (ii) 28 and 39 nm, and (iii) 19 and 39 nm. The 

averaged normalized on-current along flat surface was 998 A/m. Next, we calculated the 

on-current along flat surface Iflat. We assumed that the normalized on-current of side-surface is the 

same as that of the top-surface. The peripheral length of upper corners were measured based on 

cross-sectional TEM images and the rest of the peripheral length was that of the flat surface as 

mentioned in section 2. We multiplied the normalized on-current of the flat surface by the peripheral 

length of the flat surface and obtained the on-current along flat surface Iflat. The rest is the on current 

of corner component Icorner. Separated Icorner and Iflat is summarized in figure 9 and about 60 % of 

the ION of the SiNW FET (wNW=19 nm and hNW=12 nm) was attributed to the corn

 

3.4 Inversion charge of SiNW FETs at the on-state 

Inversion charge density (Q inv) and effective carrier mobility (eff) was experimentally extracted 

by advanced split-CV technique [16] applied to multi-channel SiNW FETs with a number of 

64 wires to facilitate the measurement accuracy. The amount of inversion charge (Q) of SiNW 

channel was calculated as 

   dVCCQ gcgc 21  

, where Cgc1 is the gate-to-channel capacitance (Cgc) of multi-channel SiNW (MSiNW) FET with 

larger Lmask and Cgc2 is the Cgc of the MSiNW FET with smaller Lmask. The inversion charge density 

Qinv at Vg-Vth=1.0 V for nFETs and Qinv at Vg-Vth=-1.0 V for pFETs were obtained, which is shown 

in figure 10 (a). As the cross-sectional dimension increased, the amount of inversion charge 

increased. After normalization by unit channel area, largest Q inv was achieved with the SiNW FETs 

with the smallest wNW. The increase of inversion charge density was observed for both p-type and 

n-type SiNW FETs, which is shown in figure 10 (b). The solid line in figure 10 (b) is calculated 

Qinv on assumptions below

For an investigation of contributions of corners to the total amount of inversion charge, the 

amount of inversion charge was separated to the component of corners and that of flat surface. It was 

assumed that (i) inversion charge density of the flat surface is the same as that of planar SOI FETs 



and that (ii) the peripheral length of upper corners was measured with cross-sectional TEM image as 

in the section 3.3. The amount of inversion charge at the corner (Q
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corner) and the amount of inversion 

charge along flat surface (Qflat) are shown in figure 11. As the wNW decrease fraction of the amount 

of inversion charge around corners increase. The solid line in figure 10 (b) was the calculated 

inversion charge density Qinv on the assumptions as follows: (i) the inversion charge at the corners 

was 4.9×10-15 C with the Wc of 4 nm, which was the average of the corner component of inversion 

charge shown in figure 11 (ii) the Qinv of flat surface is the same as that of SOI planar nFETs. The 

Qinv of the sample C is out of the line, which suggests the Wc of sample C is larger than 4 nm, which 

agrees with the Wc obtained by the cross-sectional TEM image in figure 2 (b). 

 

3.5 Effective carrier mobility evaluation of the SiNW FETs 

The eff of SiNW FETs was obtained using the advanced split-CV method [16] and results were 

calculated using the equations 

Q

gL d
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


2
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where L is the difference of mask gate length (Lmask) between two transistors used for measurement. 

gd is the difference of the drain conductance, which is written as 
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 comparable with that of planar SOI pFETs and shows a 209 

ttle degradation of eff as wNW decrease.  210 

211 

4. 212 

, where gd1 is the drain conductance of the SiNW FET with larger Lg and gd2 is the drain 

conductance of the smaller Lg. The results are shown in figure 12. Higher eff of SiNW nFET than 

planar SOI nFETs were obtained from the middle-field to the high-field region, which is one reason 

of the high ION of SiNW nFETs. The higher eff of SiNW nFETs than that of planar SOI nFETs 

suggests higher eff could be obtained around corners. For an extraction of eff at the corners and 

that along the flat surface of the channel, gd was also separated to the corner component and that 

along flat surface on the same assumption as in the extraction process of the inversion charge at the 

corners and that of the flat surface. Finally eff at Vg-Vth = 1.0 V around corners and along the flat 

surface of channel were calculated, which are shown in figure 13. The eff around corners saturates 

as the wWN increase toward 28 nm. Higher eff at corners of nFETs than that of fla

ained. 

Theeff of pFETs were also extracted using the advanced split-CV method and shown in 

figure 12 (b). eff of the SiNW FETs were

li

 

Discussion 



We obtained large ION of the SiNW nFETs due to the increase in the Qinv, the enhancement of eff 

and the reduced R
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iNW nFET with wNW =9 nm and hNW=10 nm. 243 
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SD. Although the increase in the Qinv is observed for both nFETs and pFETs, the 

enhancement effect in the eff was observed only for nFETs. The comparable eff of SiNW pFETs 

with that of planar SOI pFETs is one reason of relatively low ION of the pFETs. The extracted eff 

around the corners of the SiNW nFETs are enormously large, which coincides with the experimental 

results of [17]. The channel surface orientation of corners is composed of various surface crystal 

orientations, which seems to degrade the surface carrier mobility of the corners [18]. However, the 

carrier mobility around corners obtained in this work is very large and even surpasses (100)-surface 

universal mobility [19]. The enhanced eff around the corners might be due to volume inversion 

around corners. Our two-dimensional device simulation using almost the same structure as that in 

this work (wNW=19 nm, hNW=12 nm and wNW=28 nm, hNW=12 nm) resulted in 2.5 times as high 

inversion charge density around the corners, the peak density of which is 5.3×1019 cm-3, as that along 

flat surface at the on-state. The high inversion charge density supports the existence of volume 

inversion around the corners. The eff enhancement due to the volume inversion has been reported 

[20, 21]. The effective carrier mobility eff of nearly 550 cm2/Vs was obtained in the double gate 

mode at inversion carrier density of 1012 cm-2 for [20]. The extracted eff of corners with the wNW of 

19 nm is comparable with the reported experimental results. The discussion above indicates that eff 

in SiNW channel is not only governed by channel surface orientation, but especially structural 

advantage of corners of rectangular cross-sec

f for the SiNW pFETs seem not to exist.  

As a large amount of inversion charge and superior effective electron mobility was obtained 

around corners of rectangular cross-section, one might expect that larger ION can be obtained with 

smaller wNW of SiNW nFETs as an extrapolation in figure 5 toward lower wNW. However we can 

observe that eff at the corners of SiNW FET degrades as the wWN decrease in figure 13. This result 

suggests that eff degrades as the distance between each corner decreases, which is equal to a 

decrease of wNW. Therefore we speculate that the ION of the SiNW nFET does not monotonically 

increase as the wNW decrease. Optimized dimensions of cross-section should be studied for an 

enhancement of the ION with structural advantages of the SiNW nFET with the rectangular-like 

cross-section. We speculate an optimized cross-sectional dimension is near wWN=19 nm and 

hNW=12 nm due to comparable Qinv at Vg-Vth=1.0 

S

 

Conclusion 

We have investigated the structural advantage of rectangular cross-section on electrical 

performances, especially the ION, Qinv and eff of the SiNW nFETs. It is confirmed that the corners 

in rectangular-like cross-section play important roles on the achievement of the Ion as high as 



1600 A/m of the SiNW nFET (wNW=19 nm and hNW=12 nm) thanks to the increase of the Qinv 

and the significant enhancement of the 
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eff around corners. This result suggests that current 

conduction is not only governed by channel surface orientation but by cross-sectional shape of 

channel. For pFETs, the increase of the Qinv has been observed. However the enhancement of eff is 

not observed. By narrowing the SiNW channels, eff of corners tend to degrade, although the eff of 

the corners of narrower SiNW FET was higher than that 
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Figure 1. A schematic process flow of the gate semi-around SiNW FETs. The gate semi-around 321 

322 

NW channels and 323 

324 

The transfer and (b) output characteristics of the SiNW FETs (wNW=19 nm and 325 

326 

ependence on gate length (Lg) and channel width (wNW) of the SiNW FETs and 327 

328 

Ts with rectangular-like cross-section over planar 329 

330 

s of the SiNW nFETs (wNW=19, 28, and 39 nm, hNW=12 nm) with 331 

332 

stance (Rtot) of SiNW nFETs and pFETs with the different Lg. Intercepts on 333 

334 

335 

 flat surface. Wc is assumed to be 4 nm considering cross-sectional TEM images in 336 

337 

t of the corner component and the flat surface component of the SiNW 338 

339 

340 

341 

 342 

343 

nd along the flat surface (Qflat) of 344 

345 

l SiNW (a) nFETs and (b) pFETs in this 346 

347 

. Separated eff of corners and that of flat surface of the SiNW nFETs (wNW=9, 19 and 348 

28 nm). 349 

SiNW FET was fabricated with conventional CMOS process facilities. 

Figure 2. (a) A review SEM image and (b) cross-sectional TEM images of the Si

the cross-sectional dimensions. A cross-section of planar SOI FETs is also shown. 

Figure 3. (a) 

hNW=12 nm). 

Figure 4. The ION d

planar SOI FETs. 

Figure 5. Structural advantages of the SiNW nFE

SOI nFETs, which increase as the wNW decrease. 

Figure 6. ION/IOFF characteristic

the gate length from 65 to 500 nm. 

Figure 7. Total resi

y-axis are extracted RSD. 

Figure 8. Assumptions for calculation and extraction of ION, Qinv, and eff of the fraction of corners 

and those of

figure 2(b). 

Figure 9. Extracted on-curren

nFETs with the Lg of 65 nm. 

Figure 10. (a) The amount of inversion charge and (b) the inversion charge density of the SiNW 

FETs and planar SOI FETs (solid for pFETs and open for nFETs). The solid line in (b) is calculated 

on the assumptions: (i) the amount of inversion charge at the rounded corners is 4.9×10-15 C with the

radius (Wc) of 4 nm (ii) the inversion charge density along flat surface is 9.7×10-21 C/cm2. 

Figure 11. The amount of inversion charge at the corners (Qcorner) a

the SiNW nFETs with the channel width wNW of 9, 19, and 28 nm. 

Figure 12. Effective carrier mobility of the multi-channe

work extracted using the advanced split-CV method [16]. 

Figure 13
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Figure 11.
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