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The objective of this study is to access the effect of purple sweet potato leaf (PSPL)
extract on diabetic retinopathy (DR) of streptozotocin (STZ)-induced male
Sprague–Dawley (SD) rats. In this study, rats were injected intraperitoneally
with a single dose of 60mg/kg STZ, and diabetes was confirmed on day 7.
Rats were further divided into a few groups, which were then orally
administered with one of the following treatments: 25 mg/kg of gliclazide
(D25G), 200 mg/kg of PSPL extract (DT 200), and 400mg/kg of PSPL extract
(DT 400). However, the normal control (NS) and control group for diabetic (DNS)
were given normal saline (NS) for 12 weeks. The results show that the treated
group demonstrated a reduction in serum oral glucose tolerance test (OGTT)
levels of DT 200 andDT 400, and an increase in the serum and retinal insulin levels,
and restored oxidative stress markers in serum and retina on week 12. The PSPL
extract exhibited protective effects in maintaining the kidney, liver, retina, and
pancreas architecture in 400mg/kg compared to the 200mg/kg treated group
and D25G, thereby restoring fully transparent lenses in diabetes-induced rats. In
conclusion, 400mg/kg PSPL is the most effective dose for the amelioration of
STZ-induced DR pathology in male SD rats.
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1 Introduction

Diabetic retinopathy (DR) is a clinical pathology that arises due to
diabetic mellitus and uncontrolled hyperglycemic conditions. The
most common clinical signs include visual impairment due to changes
in themicrovascular structure, lesions in the retina due to the presence
of hard or soft exudates, microaneurysms, thickening, and fluid
buildup in the retina (Porwal et al., 2018). DR can be classified
into proliferative and non-proliferative phases. In the proliferative
phase, fragile aberrant vessels start to form, whereas a clear vascular
lesion is visibly designated as vascular tortuosity, microaneurysms, or
retinal hemorrhages in the non-proliferative phase (Rübsam et al.,
2018). According to the prediction by the International Diabetes
Federation, there will be approximately 629 million adults with a
diabetic condition by the year 2045 (Gadekallu et al., 2020), although
the global prevalence rate for DR is about 93 million (Rübsam et al.,
2018). Thus, DR has raised public concern throughout the world.
Early detection is the best preventative measure for an exacerbation of
DR (Gadekallu et al., 2020).

The currently available interventions in treating DR, such as
antivascular endothelial growth factor, panretinal laser
photocoagulation (PRP), vitrectomy, and corticosteroid injections,
are often accompanied by unavoidable side effects. For instance,
although antivascular endothelial growth factor can inhibit the
growth of abnormal blood vessels, it can lead to blurry vision,
photophobia, and floaters (Cox et al., 2021). Meantime, PRP can
induce severe pain, peripheral vision loss, decreased contrast
sensitivity, choroidal effusions, loss of color, and night vision
(Deschler et al., 2014), and vitrectomy can result in iatrogenic
retinal breaks and hemorrhages (Brănişteanuonstanti et al., 2016).
Hence, natural extracts serve as an alternative intervention for
treating and delaying the progression of DR (Taher et al., 2016),
(Das et al., 2021). Several plants are under study with the aim of
providing a wide reach to cater to cases of DR globally. In China,
Chinese herbalmedicine alone or combined with laser therapy has been
further researched to treat DR in clinical settings (Zhang et al., 2018).
For example, purple sweet potato, also known as Ipomoea batatas (I.
batatas), has caught the attention of researchers due to its natural anti-
diabetic properties (Escobar-Puentes et al., 2022). It can be consumed
raw because all its parts comprise nutrition and bioactive compounds.
Essentially, I. batatas are significantly rich in lutein compared to other
commonly available major greens in Asian countries (Alam, 2021).
Lutein is a strong antioxidant and possesses anti-diabetic properties due
to its xenobiotic phytochemical constituents. Some of its genotypes are
associated with nutraceutical value (Escobar-Puentes et al., 2022).
Despite its known functional value, the plant is said to be still under
usage due to a lack of scientific data in the therapeutic field. Thus, this
study was designed to study the effect of PSPL on the amelioration of
DR in streptozotocin (STZ)-induced male Sprague–Dawley (SD) rats.

2 Materials and methods

2.1 Collection and confirmation of plant
species

Fresh purple sweet potato leaves (PSPL) were obtained from a
commercial sweet potato farm located at Sungai Pelek, Sepang,

Selangor, Malaysia. The leaves were cleaned and sent to the
Herbarium Biodiversity Unit, Universiti Putra Malaysia, for
confirmation (voucher code: MFI 0188/20).

2.2 Ethanol extraction of purple sweet
potato leaf

The collected PSPL were cleaned with running tap water to
remove any foreign material. Approximately 20 g of PSPL were
soaked in 200 ml of 80% ethanol in a conical flask. Then, the mixture
was placed in an orbital incubator shaker for 24 h at 150 rpm at
room temperature. After that, the supernatant was collected and
filtered using Whatman N °1 paper. The same process was repeated
three times to obtain maximum yield. All the filtrates from each
extraction were combined and evaporated using a rotary evaporator
at 48°C. The obtained crude extract was then mixed with
maltodextrin in a ratio of 1:1 and oven-dried overnight (Fu et al.,
2016). The final extracted powder was weighed and stored at −20 °C
until further usage.

2.3 Diet-streptozotocin-induced SD diabetic
rat model

Male SD rats weighing 150–200 g were randomly divided into
two groups. One group (n = 10) were fed with a standard rat pellet
comprising 306.2 kcal/100 g with 48.8% carbohydrate, 21% protein,
and 3% fat, whereas another group (n = 40) were fed with a high-fat
diet (HFD) pellet comprising 414 kcal/100 g with 43% carbohydrate,
17% of protein, and 40% fat (Abidin et al., 2021). HFD-fed rats were
further injected intraperitoneally with a single dose of 60 mg/kg STZ
(95% of succession ratio) dissolved in 0.1 mol/L citric acid and
0.1 mol/L sodium citrate with a pH of 4.5. All rats were given free
access to food and water, whereas STZ-injected rats were given a 5%
glucose solution to drink for the next 24 h to counter fatal
hypoglycemia (Ramachandran et al., 2012). Diabetes was
confirmed six days after STZ injection using Glucocard™ 01-mini
(Arkray Factory, Inc., Japan). Fasting blood glucose (FBG)
of ≥11.1 mmol/L was considered in diabetic rats and was selected
for the study (Wang et al., 2018).

2.4 Experimental groups

The control group and successful diabetes-administered model
were treated as follows: normal rats with normal saline (NS), diabetic
rats with normal saline (DNS), diabetic rats with oral administration
of 25 mg/kg of gliclazide (D25G), diabetic rats with oral
administration of 200 mg/kg of PSPL extract (DT 200), and
diabetic rats with oral administration of 400 mg/kg of PSPL extract
(DT 400). All groups received treatment via oral gavage for 12 weeks.
The dose was selected based on the toxicity study byHisamuddin et al.
(2023) on the PSPL extract. Changes in body weight, calorie intake,
and 24 h water intake were recorded weekly. At the end of the
experiment, all rats were euthanized with CO2 overdose; blood was
withdrawn using cardiac puncture; and the retina and pancreas were
isolated, weighed, and stored for further analysis.
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2.5 Glycemic parameter: OGTT and FBG

OGTT was performed on all groups of rats on the 12th week of
treatment. To perform OGTT, all rats fasted overnight for 12 h. The
following day, all rats were challenged with 2 g/kg of glucose
solution via oral gavage. Blood was drawn from the rat’s tail, and
glucose levels were measured at 0, 30, 60, 120, and 240 min using
glucose oxidase–peroxidase reactive strips and a glucometer
(Glucocard™ 01-mini, Arkray Factory, Inc., Japan) (Barik et al.,
2008). The FBG levels were determined on weeks 5, 10, and 12.

2.6 Glycemic parameter: insulin

The DRG Rat Insulin ELISA Kit was used to measure serum and
retinal insulin levels. Blood was collected through cardiac puncture and
centrifuged for 15 min at 25,000 rpm to obtain serum, which was then
used to estimate the serum insulin level (Sayeli and Shenoy, 2021).
Meanwhile, the retina was homogenized in lysis buffer using a sonicator
to obtain the homogenate, which was then incubated for 30 min. The
homogenate was then centrifuged for 10 min at 10,000 rpm, which was
then used to estimate the retinal insulin level (Fort et al., 2011).

2.7 Interleukin- (IL-) 17A measurement

The level of IL-17A in the retina and serum was assessed using a
rat ELISA kit (R&D Systems, Minneapolis, MN, United States) as
directed by the manufacturer (Zhu et al., 2022).

2.8 Antioxidant parameter

Serum and retina ferric-reducing ability of plasma (FRAP),
glutathione (GSH), and total antioxidant capacity (TAC) were
measured according to the protocol described for double-antibody
sandwich enzyme-linked immunosorbent assay ELISA kits (Cayman
Chemical Company, United States) (Agrawal et al., 2012).

2.9 Lenticular clarity

Lenticular clarity was performed by anesthetizing rats with 3%
isoflurane via inhalation. The visual appearance of cataract
formation was viewed under a binocular microscope by
administering mydriatic eye drops to all rats. The severity of
cataract formation was measured according to the grading system
described elsewhere (Chemerovski-Glikman et al., 2018). This was
further validated and approved by certified ophthalmologists with
the evidence of photographs.

2.10 Measurement of retinal thickness

Retinal thickness was measured by dissecting the whole retina in
5% agarose, followed by sectioning at 200 μm using PELCO
easiSlicer™. Sectioning containing nerve head extension up to the
peripheral edge was selected for thickness analysis. Average

thicknesses were determined from the retinal thickness sampled
from 100, 200, 300, 400, and 500 μm from the optic nerve head
(Toh et al., 2019). The thickness of the retinal blood vessel was
measured using fluorescein angiogram negatives and interpreted
through a computerized image analyzer according to the protocol
described elsewhere (Eaton and Hatchell, 1988). The thickness of
the outer nuclear layer was measured at an interval of 480 μm at
eight selected regions. Both superior and inferior hemispheres were
measured (Huang et al., 2004).

2.11 Histopathological analysis

The pancreas was fixed in 10% phosphate buffer formalin and
sectioned, and slides were prepared, followed by staining with H&E
and observation under a microscope with ×200magnification. Then,
the capture photomicrograph was verified by a certified pathologist
from UPM.

2.12 Morphometry

Islet specimens were isolated from the histological section and
used for morphometric analysis. The islet profiles were then
captured using a Leitz DMR microscope. The area of the islet of
Langerhans (µm) and the number of β-cells/islets were calculated as
d = 2

���

ab
√

, where a and b are semidiameters measured at the right
and left angles from each islet profile (Morini et al., 2006).

2.13 Statistical analysis

Statistical analysis was performed using SPSS version 26.0, and
all results were expressed as mean ± standard error of the mean
(SEM) for body weight, food consumption, and calorie intake. A
normality test was run for all data. One-way ANOVA and the post
hoc Tukey test were used to analyze the significant differences
among groups. A probability of p < 0.05 was defined as a
statistically significant result.

3 Results

3.1 Body weight changes and fasting blood
glucose after diabetic induction

Table 1 shows the changes in body weight and FBG after diabetic
induction. The results indicate a significant reduction in the body
weight of DNS after 10 days of successful diabetic induction
compared to the NS group. FBG of DNS is significantly higher
(p < 0.05) than the control group.

3.2 Body weight changes and fasting blood
glucose after treatment

Table 2 presents the changes in body weight and FBG after
treatment with different concentrations of the PSPL extract. The
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body weights of the DNS, DT 200, DT 400, and D25G groups are
significantly lower (p < 0.05) than those of the NS group on week 12.
However, on week 12, there is no significant difference (p > 0.05)
between the DNS, DT 200, DT 400, and D25G groups in body
weight. For the FBG level, there is no significant difference (p > 0.05)
between the NS, DNS, DT 200, DT 400, and D25G groups on week 5.
There is a significant increase (p < 0.05) in the FBG level in the DNS,
DT 200, DT 400, and D25G groups compared to the NS group on
weeks 10 and 12. However, on week 12, there is a significant decrease
(p < 0.05) in the FBG level of the DT 400 group compared to the
DNS group.

3.3 Total calorie and water intake in PSPL-
treated diabetic rats

Table 3 shows the calorie intake and 24 h water intake in
diabetic rats on week 12. The data show a significantly high (p <
0.05) amount of water intake in the DNS, DT 200, DT 400, and
D25G groups compared to the NS group. For total calorie intake,
the DNS group shows significantly high (p < 0.05) calorie intake
compared to the NS group. In contrast, the DT 200, DT 400, and
D25G groups show significantly low (p < 0.05) calorie intake
compared to the DNS group. However, there is no significant
difference (p > 0.05) in calorie intake between the DT 200, DT 400,
D25G, and NS groups.

3.4 Oral glucose tolerance test in PSPL-
treated diabetic rats

Figure 1 shows the OGTT of different concentrations of the
PSPL extract during the 12-week treatment phase. Data indicate that
the OGTT results of the DNS, DT 200, DT 400, and D25G groups
are significantly higher (p < 0.05) than those of the NS
group. Meanwhile, the OGTT results of the DT 200 and DT
400 groups are significantly lower (p < 0.05) than those of DNS.
However, the OGTT results of the D25G and DNS groups are
similar.

3.5 Relative organ weight (ROW) of PSPL-
treated diabetic rats

Table 4 presents the ROW and standardized organ weight (%)
for diabetic-induced rats. Data show no significant difference
(p > 0.05) in the ROW of the retina and kidney between the NS,
DNS, DT 200, DT 400, and D25G groups. The ROW of the DT
200 and D25G groups for the liver is significantly lower (p < 0.05)
than that of the DNS group, whereas the ROW of the pancreas of
the DNS group is significantly lower (p < 0.05) than that of the NS
group. However, there is no significant difference (p > 0.05) in the
ROW of the liver for the DNS, DT 200, DT 400, and D25G groups
compared to the NS group. Furthermore, for ROW of the
pancreas, there is no significant difference (p < 0.05) between
the NS, DT 200, DT 400, and D25G groups. The standardized
organ weight (%) of the retina showed no significant difference
between the NS, DNS, DT 200, DT 400, and D25G groups. The
standardized organ weight (%) of the liver for the DNS, DT 200,
DT 400, and D25G groups is significantly higher (p < 0.05) than
that of the NS group. The organ weight (%) of the kidney of the
DT 400 group is significantly higher (p < 0.05) than that of the NS
group. However, there is no significant difference (p > 0.05) in the
kidneys between the NS, DNS, DT 200, and D25G groups. The
standardized organ weight (%) of the pancreas of the DT
200 group is significantly higher (p < 0.05) than that of the
DNS group. However, there is no significant difference (p > 0.05)
in the pancreas of the DNS, DT 200, DT 400, and D25G groups
compared to the NS group.

TABLE 1 Changes in body weight and FBG in SD rats after diabetic induction.
Different letters indicate significant differences at p < 0.05 among the tested
groups. Values are expressed as mean ± SEM.

Body weight (g)

Normal (NS) Diabetic (DNS)

Day 0 219.50 ± 12.57 225.79 ± 10.72

Day 10 266.17 ± 13.55a 216.36 ± 13.99b

Fasting blood glucose (mmol/L)

Day 0 4.13 ± 0.17 3.79 ± 0.20

Day 10 3.67 ± 0.19a 15.52 ± 0.66b

TABLE 2 Effect of different concentrations of PSPL extracts on body weight and FBG of diabetic rats during the 12-week treatment phase. Different letters indicate
significant differences at p < 0.05 among the tested groups. Values are expressed as mean ± SEM.

Body weight (g)

NS DNS DT 200 DT 400 D25G

Week 12 490.17 ± 29.36a 307.33 ± 54.24b 319.80 ± 57.41b 281.00 ± 75.93b 211.80 ± 46.53b

Fasting blood glucose (mmol/L)

Week 5 4.63 ± 0.57 15.82 ± 2.59 b 15.34 ± 0.65 b 13.94 ± 3.87 b 16.26 ± 2.96 b

Week 10 3.87 ± 0.08a 15.73 ± 1.86b 17.16 ± 1.66b 19.47 ± 0.80b 16.12 ± 2.81b

Week 12 4.83 ± 0.23a 19.25 ± 2.13b 17.82 ± 2.89bc 13.27 ± 0.92c 14.34 ± 0.78bc
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3.6 Blood biochemistry analysis in PSPL-
treated diabetic rats

Table 5 presents data for blood biochemistry analysis of
diabetes-induced rats. There is no significant difference (p >
0.05) in potassium, urea, and creatinine levels between the NS,
DNS, DT 200, DT 400, and D25G groups. The sodium level is
significantly lower (p < 0.05) in the DNS, DT 200, and D25G
groups compared to the NS and DT 400 groups. However, there is

no significant difference (p > 0.05) in the sodium level between the
NS and DT 400 groups. The chloride level is significantly lower
(p < 0.05) in the DT 400 and D25G groups compared to the NS,
DNS, and DT 200 groups. However, there is no significant
difference (p > 0.05) in chloride levels between the NS, DNS,
and DT 200 groups. The liver function test shows no significant
difference (p > 0.05) in the total protein, albumin, globulin,
albumin–globulin ratios, AST, ALT, and GGT levels between
the NS, DNS, DT 200, DT 400, and D25G groups. The ALP
level is significantly increased (p < 0.05) in the DNS and D25G
groups compared to the NS, DT 200, and DT 400 groups. However,
there is no significant difference (p > 0.05) in the ALP level between
the NS, DT 200, and DT 400 groups.

3.7 Serum and retinal insulin levels in PSPL-
treated diabetic rats

Figures 2, 3 show the serum and retinal insulin levels in diabetic
rats of different concentrations of the PSPL extract during the 12-
week treatment phase. The serum insulin of the DNS group is
significantly lower (p < 0.05) than that of the NS, DT 200, DT 400,
and D25G groups. However, there is no significant difference (p >
0.05) in the serum insulin level between the NS, DT 200, DT 400,
and D25G groups. The retinal insulin level of the DNS group is
significantly lower (p < 0.05) than that of the NS, DT 400, and D25G
groups. However, there is no significant difference (p > 0.05) in the
retinal insulin level between the NS, DT 400, and D25G groups.

TABLE 3 Effect of different concentrations of PSPL extracts on fluid and calorie intake of diabetic rats during the 12-week treatment phase. Different letters
indicate significant differences at p < 0.05 among the tested groups. Values are expressed as mean ± SEM.

Fluid intake (ml)

NS DNS DT 200 DT 400 D25G

Week 12 3329.67 ± 172.20a 10658.08 ± 956.27b 8764.78 ± 623.93b 8263.89 ± 342.95b 7630.00 ± 629.66b

Calorie intake (kJ)

Week 12 3329.67 ± 172.20a 10658.08 ± 956.27b 8764.78 ± 623.93b 8263.89 ± 342.95b 7630.00 ± 629.66b

FIGURE 1
Effect of different concentrations of PSPL extract on the plasma
glucose level represented as the area under the curve (AUC) during the
12-week treatment phase. Different letters indicate significant
differences at p < 0.05 among the tested groups.

TABLE 4 Effect of different concentrations of PSPL extracts on ROW and the percentage of organ weight of diabetic rats during the 12-week treatment phase.
Different letters indicate significant differences at p < 0.05 among the tested groups. Values are expressed as mean ± SEM.

NS DNS DT 200 DT 400 D25G

Relative organ weight (g)

Retina 0.38 ± 0.04 0.29 ± 0.01 0.28 ± 0.01 0.30 ± 0.03 0.33 ± 0.03

Liver 13.82 ± 0.93ab 18.17 ± 1.08b 12.88 ± 1.45a 13.19 ± 1.60ab 11.66 ± 0.61a

Kidney 3.33 ± 0.16 3.68 ± 0.23 3.19 ± 0.23 3.07 ± 0.49 2.44 ± 0.17

Pancreas 1.26 ± 0.13a 0.59 ± 0.04b 0.82 ± 0.210ab 0.77 ± 0.13ab 0.66 ± 0.20ab

Percentage per body weight (%)

Retina 0.08 ± 0.01 0.07 ± 0.01 0.11 ± 0.02 0.11 ± 0.03 0.14 ± 0.01

Liver 3.08 ± 0.13a 4.46 ± 0.09b 4.64 ± 0.27b 4.37 ± 0.13b 4.60 ± 0.51b

Kidney 0.74 ± 0.03a 0.90 ± 0.04a 0.09 ± 0.05a 1.00 ± 0.06b 0.95 ± 0.10a

Pancreas 0.28 ± 0.02ab 0.15 ± 0.02b 0.29 ± 0.06a 0.26 ± 0.03ab 0.21 ± 0.03ab
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3.8 IL-17A in the retina and serum

Figures 4, 5 present the effect of different treatments of PSPL extract
on IL-17Aon serumand retina in diabetic-induced rats. Data show that the
level of IL-17A is significantly increased (p < 0.05) in the serum and retina
of theDNSgroup compared to theNS,DT200,DT400, andD25Ggroups.
However, there is no significant difference (p > 0.05) in the IL-17A level in
serum and retina between the NS, DT 200, DT 400, and D25G groups.

3.9 Antioxidant profile of PSPL-treated
diabetic rats

Figures 6–11 present the effect of different treatments of PSPL
extract on TAC, FRAP, and GSH levels on serum and retina in

diabetes-induced rats. Data show that the levels of TAC, GSH, and
FRAP are significantly high (p< 0.05) in the serum and retina of theNS,
DT 200, DT 400, and D25G groups compared to the DNS
group. However, there is no significant difference (p > 0.05) in
TAC, GSH, and FRAP levels in serum and retina between the NS,
DT 200, DT 400, and D25G groups.

3.10 Retinal thickness of PSPL-treated
diabetic rats

Figures 12–14 show the overall thickness of the retina blood vessel,
the thickness of the outer layer of the retina nucleus (OLN), and the overall
thickness of the retina. Data indicate that the retinal blood vessel of the
DNS group is significantly higher (p < 0.05) compared to the NS, DT 200,

TABLE 5 Effect of different concentrations of PSPL extracts on blood biochemistry analysis of diabetic rats during the 12-week treatment phase. The different letter
indicates a significant difference at p < 0.05 among the tested groups. Values are expressed as mean ± SEM.

NS DNS DT 200 DT 400 D25G

Renal function test

Sodium (mmol/L) 147.50 ± 0.56a 141.17 ± 1.08b 140.60 ± 1.17b 142.67 ± 0.76a 140.00 ± 3.42b

Potassium (mmol/L) 7.77 ± 0.45 9.23 ± 0.46 8.80 ± 0.37 7.98 ± 0.15 8.46 ± 0.48

Chloride (mmol/L) 100.83 ± 0.70a 92.83 ± 1.58a 95.80 ± 3.07a 92.33 ± 0.61b 91.25 ± 4.03b

Urea (mmol/L) 6.57 ± 0.52 5.58 ± 0.90 8.43 ± 1.32 8.20 ± 0.32 6.04 ± 1.26

Creatinine (mmol/L) 50.00 ± 3.60 58.67 ± 3.91 52.75 ± 2.95 59.50 ± 2.27 58.20 ± 3.01

Liver function test

Total protein (g/L) 66.83 ± 2.09 68.33 ± 2.74 63.80 ± 1.83 68.17 ± 2.01 64.60 ± 3.50

Albumin (g/L) 38.67 ± 1.37 39.33 ± 1.38 35.40 ± 0.68 37.00 ± 0.69 36.00 ± 1.48

Globulin (g/L) 28.17 ± 0.86 29.00 ± 1.65 28.40 ± 1.36 31.17 ± 1.53 28.60 ± 2.64

Albumin–globulin ratio 1.37 ± 0.03 1.36 ± 0.06 1.26 ± 0.06 1.21 ± 0.04 1.29 ± 0.10

ALP (U/L) 108.17 ± 13.84a 701.75 ± 147.17b 336.00 ± 69.06a 163.00 ± 17.09a 899.75 ± 223.26b

AST (U/L) 120.80 ± 5.63 89.33 ± 10.70 132.20 ± 21.09 131.83 ± 21.10 249.20 ± 92.64

ALT (U/L) 77.00 ± 8.50 139.00 ± 21.65 128.00 ± 22.21 114.50 ± 24.08 313.80 ± 159.39

Gamma-glutamyl transferase (U/L) 2.67 ± 0.56 2.67 ± 0.33 4.25 ± 0.22 4.00 ± 1.15 3.60 ± 0.40

FIGURE 2
Effect of different concentrations of PSPL extracts on the serum
insulin level during the 12-week treatment phase. Different letters
indicate significant differences at p < 0.05 among the tested groups.

FIGURE 3
Effect of different concentrations of PSPL extracts on the retinal
insulin level during the 12-week treatment phase. Different letters
indicate significant differences at p < 0.05 among the tested groups.
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DT400, andD25Ggroups.However, there is no significant difference (p>
0.05) in retinal blood vessel thickness between the NS, DT 200, DT 400,
and D25G groups. Meanwhile, overall retina and OLN thicknesses are
significantly lower (p < 0.05) in the DNS, DT 200, DT 400, and D25G
groups compared to the NS group. However, overall retina thickness and
OLN thickness are significantly greater (p < 0.05) in the DT 200, DT 400,
and D25G groups compared to the DNS group.

3.11 Lenticular clarity of PSPL-treated
diabetic rats

Supplementary Figure S1 represents the effect of different
treatments of PSPL extract on cataract formation in diabetic rats
after the 12-week treatment phase. The control group (NS) shows a

fully transparent lens, whereas the DNS group shows a severe
appearance of lenticular opacification. Meanwhile, in the DT 200, DT
400, and D25G groups, a delayed process of lenticular opacification with
a reduced severity level of cataract is seen. PSPL extract enhances lens
clarity and slows down diabetic-induced cataract formation.

3.12 Histopathological analysis of PSPL-
treated diabetic rats

Supplementary Figure S2 presents the histological section of the
retina and pancreas of diabetic-induced rats. The histological section
of the retina for the DNS group shows the vitreoretinal interface in
the retina and loss of neurons in the GCL, presence of cystoid spaces
in the INL and OPL, hyperreflective foci in the ONL of the retina,

FIGURE 4
Effect of different treatments of PSPL extracts on the IL-17A level
in the retina of diabetes-induced rats after the 12-week treatment
phase. The different letter indicates a significant difference at p <
0.05 among the tested groups.

FIGURE 5
Effect of different treatments of PSPL extracts on the IL-17A level
in the serum of diabetes-induced rats after the 12-week treatment
phase. The different letter indicates a significant difference at p <
0.05 among the tested groups.

FIGURE 6
Effect of different treatments of PSPL extract on the TAC level in
the serum of diabetes-induced rats after the 12-week treatment
phase. The different letter indicates a significant difference at p <
0.05 among the tested groups.

FIGURE 7
Effect of different treatments of PSPL extract on the FRAP level in
the serum of diabetes-induced rats after the 12-week treatment
phase. The different letter indicates a significant difference at p <
0.05 among the tested groups.
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and degeneration and atrophy in the PL and pool of extracellular
fluid at the RPE of the retina. However, the DT 200, DT 400, and
D25G groups show the normal histological section of GCL, IPL,
INL, OPL, ONL, PL, and RPE, identical to the NS group. The
histology of the pancreas shows degeneration and atrophy in the
central region of the islet of Langerhans in the DNS group. Normal
histological structure of islets of Langerhans and acini is observed in
the pancreas of the NS group. Similarly, the histology of the pancreas
of the DT, DT 400, and D25G groups shows the normalization of the
islet of the Langerhans area that is identical to the NS histology.

3.13 Morphometry

Table 6 shows the morphometry analysis of the area of the islet
of Langerhans and the number of β-cells/islets in diabetic rats after
the 12-week treatment phase. Data show that the area of the islet of

Langerhans and the number of β-cells/islets in the DNS group are
significantly lower (p < 0.05) compared to the NS, DT 200, DT 400,
and D25G groups. However, there is no significant difference (p >
0.05) in the area of the islet of Langerhans and the number of β-cells/
islets between the NS, DT 200, DT 400, and D25G groups.

4 Discussion

PSPL is rich in lutein, a strong antioxidant (Cavalier et al., 2019),
possesses a beneficial effect as an anti-inflammatory agent, and can
reverse cataract formation (Buscemi et al., 2018). Thus, it has been
speculated that the lutein compound can prevent and delay the
progression of DR (Sahli et al., 2015). Accordingly, this study was
designed to study the effect of PSPL on the amelioration of DR
pathology in STZ-induced male SD rats. Retroperitoneal injection of
STZ successfully resulted in diabetic induction by day 10, as shown

FIGURE 8
Effect of different treatments of PSPL extract on the GSH level in
the serum of diabetes-induced rats after the 12-week treatment
phase. The different letter indicates a significant difference at p <
0.05 among the tested groups.

FIGURE 9
Effect of different treatments of PSPL extract on the TAC level in
the retina of diabetes-induced rats after the 12-week treatment phase.
The different letter indicates a significant difference at p < 0.05 among
the tested groups.

FIGURE 10
Effect of different treatments of PSPL extract on the FRAP level in
the retina of diabetes-induced rats after the 12-week treatment phase.
The different letter indicates a significant difference at p < 0.05 among
the tested groups.

FIGURE 11
Effect of different treatments of PSPL extract on the GSH level in
the retina of diabetes-induced rats after the 12-week treatment phase.
The different letter indicates a significant difference at p < 0.05 among
the tested groups.
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in Table 1. Drastic weight loss in the DNS group (Skovsø, 2014) and
FBG concentration of >11.1 (Wu et al., 2020) with a single dose of
STZ administration proved the successful establishment of the
diabetic model. Following confirmation of diabetes, the rats were
administrated with different concentrations of the PSPL extract (DT
200 and DT 400) for 12 weeks. During the 12-week follow-up, the
body weight of the DNS group remained low compared to the NS
group, proving the theory that excessive weight loss is common
clinical pathology in diabetic subjects (Galicia-Garcia et al., 2020).
However, a slight increase in body weight in the DT 200 group
showed that the PSPL extract might have little effect on reversing
drastic weight loss in diabetic rats. However, the body weights of the
DT 400 and D25G groups remained lower than the DNS group,
indicating that the PSPL extract did not affect body weight.
Comparably, the PSPL extract did not affect total water and

calorie intake in treated and untreated groups compared to the
NS group. Similarly, the FBG of all treated and untreated groups up
to weeks 5 and 10 remained extravagantly high compared to the NS
group. However, in week 15, the significant reduction in the DT
200 and DT 400 groups showed the ability of lutein-rich PSPL
extract as an anti-hyperglycemic agent. Data are further supported
by Sharavana et al. (2017).

The ROW and percentage per body weight of the liver in the
DNS group are heavier due to the presence of high-level fat
accumulation in the liver, which supports the theory of successful
diabetic induction in rats (Bozzetto et al., 2010), causing the ROW of
the liver to rise. Over time, chronic exposure to fats in the liver will
cause the spillage of fats into the pancreas. Excessive deposition of
fats into the pancreas will hinder the normal function of β-cells (Li
et al., 2020), (Yahya et al., 2013). This is the underlying reason for the
significantly reduced levels of serum and retinal insulin in the DNS
group. Similarly, excessive calorie intake in diabetic subjects will
enhance fat delivery to the islet cells in the pancreas, resulting in
intracellular accumulation of triglycerides in the long term.
Persistent addition of triacylglycerol will stimulate the
intrapancreatic to be replaced by adipocytes (Yu and Wang,
2017), altering the normal insulin secretion of β-cells. In contrast,
a reduced level of insulin production by β-cells will cause the volume
of the pancreas to shrink (Al-Mrabeh et al., 2016). Thus, the ROWof
the pancreas of the DNS group appears significantly low compared
to the NS group. Kidney enlargement is another common
complication of diabetes (Sharavana et al., 2017). Nevertheless, a
modest decrease in kidney size in the DT 200 and DT 400 groups
indicates the protective effects of lutein in maintaining kidney
architecture (Liu et al., 2014). However, the significant reduction
of ROW of the liver in the DT 200, DT 400, and D25G groups could
result from the effect of high lutein concentration in PSPL extract
because lutein can promote fat loss (Hajizadeh-Sharafabad et al.,
2020), thereby reversing the action of insulin insensitivity in the
pancreas. As a result, the ROW of the pancreas in the DT 200, DT
400, and D25G groups is similar to that of the NS group.

FIGURE 12
Effect of different treatments of PSPL extract on the thickness of
blood vessels of diabetes-induced rats after the 12-week treatment
phase. The different letter indicates a significant difference at p <
0.05 among the tested groups.

FIGURE 13
Effect of different treatments of PSPL extract on the overall
thickness of the retina of diabetes-induced rats after the 12-week
treatment phase. The different letter indicates a significant difference
at p < 0.05 among the tested groups.

FIGURE 14
Effect of different treatments of PSPL extract on the outer
nuclear layer (OLN) of diabetes-induced rats after the 12-week
treatment phase. The different letter indicates a significant difference
at p < 0.05 among the tested groups.
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Paradoxically, a rise in serum osmolality (osmotic diuresis) that
eventually results in a reduced sodium level by dilution (Liamis et al.,
2014) is a common feature in diabetes, which may influence the
concentration of the serum chloride level (Kataoka and Yoshida,
2020). A similar value of DT 400 of the sodium level with NS and a
decrease in chloride content in serum prove that lutein can balance
serum electrolytes (Sindhu and Kuttan, 2013) in diabetes-induced
rats. An abnormal increase in ALP is a direct reflection of the
increase in ROW in kidney and kidney dysfunction in diabetics as
amino acids are converted into ketoacids in hyperglycemic
conditions (Zakaria et al., 2019; Konda et al., 2019). In such a
case, lutein content in PSPL suppresses the excessive stimulation of
protein catabolism (Mrowicka et al., 2022) and represses
gluconeogenesis through the Sirtuin 1 pathway (Hwang et al.,
2018; Zang et al., 2018). However, gliclazide is less effective for
treating diabetes complications. Thus, the ALP level remains high
despite treatment in the D25G group (LiverTox, 2018).

Additionally, the hyperglycemic condition in DNS activates a
metabolic pathway involving diacylglycerol, protein kinase C, and
nicotinamide adenine dinucleotide phosphate (NADPH) (Rasheed
et al., 2022). Accordingly, the formation of reactive oxygen species
(ROS) and oxidative stress rises (Müller et al., 2011). Thus, the levels
of FRAP, GSH, and TAC are significantly higher in the retina and
serum of the DNS group than those in the NS group, leading to
microvascular complications, such as the formation of cataracts in
diabetes. This is mainly because the imbalance in oxidative stress
solubilizes the proteins in the lens, increasing the lens opacity (Kaur
et al., 2012). However, the presence of conjugated double bonds and
hydroxyl groups in lutein stimulates the antioxidant defense
mechanism here by hindering the degree of oxygen penetrating
the membranes (Sindhu et al., 2010), thereby reducing and restoring
the levels of FRAP, GSH, and TAC in PSPL-treated groups (DT
200 and DT 400). In addition, diabetes increases the expression of
IL-17A in the retina and serum. IL-17A is a proinflammatory
cytokine of T helper type 17 cells, leading to vascular damage in
the retina by inducing retinal apoptosis (Qiu et al., 2016). IL-17A
promotes retinal inflammation and damage by inducing the
production of proinflammatory cytokines, such as IL-1β, IL-6,
and TNF-α (Byrne et al., 2021), and by increasing oxidative
stress and vascular permeability in the retina (Sigurdardottir
et al., 2019). IL-17A also contributes to the breakdown of the
blood–retinal barrier (BRB), which is a protective barrier that
helps maintain the proper environment for the retina to function
(Zhong and Sun, 2022). In DR, the breakdown of the BRB can lead to
the leakage of fluids and blood into the retina, which can contribute
to retinal damage and vision loss (Rudraraju et al., 2020). Thus, this
hypothesis is proven in this study, where the laboratory analysis
shows that IL-17A is significantly elevated in the DNS group

compared to the NS group. However, the lutein antioxidant acts
as a micronutrient in such conditions by reducing the inflammatory
response (Sindhu et al., 2010), as shown in PSPL-treated groups (DT
200 and DT 400).

In addition, the change in the diameter of the retinal blood
vessel, its overall thickness, and OLN is a key predictor for the
progression of DR, a main complication of diabetes mellitus (Bek,
2017). This is mainly because the accumulation of lactate in the
hyperglycemic condition and retinal hypoxia stimulates the blood
vessel of the retina, which increases the diameter (Klein et al., 2011)
and makes it prone to microvascular damage, probably reducing the
overall thickness of the retina over time and causing severe central
vision loss (Alghadyan, 2011), as shown in the DNS group. Thus,
this altered neuroretinal degeneration further enhances the thinning
of OLN (Ishibashi and Tavakoli, 2020) in the DNS group. In the
bargain, in diabetes, an excess glucose level in aqueous humor
stimulates aldose reductase, a catalyzing enzyme that converts
glucose to sorbitol. However, excessive sorbitol levels cannot
diffuse out of the lens or cell membranes, resulting in the
accumulation of sorbitol in the lens, thereby generating an
osmotic gradient (Srinivasan and Preedy, 2014). As a result of
this unregulated osmotic stress, ROS is formed (Martinière et al.,
2019), and apoptosis is induced in the epithelial cell’s lens (Pollreisz
and Schmidt-Erfurth, 2010), causing water to diffuse into the lens,
leading to cataract formation (Srinivasan and Preedy, 2014).
However, treatments with the lutein-rich PSPL extract (DT
200 and DT 400) and a controlled drug (gliclazide) in this study
decrease the thickness of blood vessels and increase the thickness of
the overall retina and ONL. Furthermore, lutein-rich PSPL
neutralizes ROS and reverses ROS-induced cataract formation in
the lens (Maci and Santos, 2015), as shown in the DT 200 and DT
400 groups.

Therewithal, drastic loss of β-cells directly influences the
decreased level of the area of islets in Langerhans in diabetic
subjects (Yagihashi et al., 2016), as shown in the DNS
group. The hyperglycemic condition hinders the ability of β-cells
to differentiate (Weir et al., 2013), causing trans-differentiation or
de-differentiation of β-cells into α-cells, thereby reducing the
volume of islets (Yagihashi et al., 2016). Anyhow, treatments
with the lutein-rich PSPL extract (DT 200 and DT 400) and a
controlled drug (gliclazide) reverse the loss of β-cells and restore the
volume of islets in Langerhans in diabetic rats, as shown in the
histological section of the pancreas. The presence of vitreoretinal
interface in the retina and loss of neurons in the GCL, cystoid spaces
in the INL and OPL, hyperreflective foci in the ONL of the retina,
degeneration and atrophy in the PL, and pool of extracellular fluid at
the RPE of the retina is another pathological change observed in the
retinal histology section of the DNS group, as shown in Figure 9.

TABLE 6 Effect of different treatments of PSPL extract on the area of the islet of Langerhans and the number of β-cells/islets of diabetes-induced rats after the 12-
week treatment phase. The different letter indicates a significant difference at p < 0.05 among the tested groups. Values are expressed as mean ± SEM.

Islet of Langerhans

NS DNS DT 200 DT 400 D25G

Area of the islet of Langerhans (µm) 2.17 ± 0.23a 0.65 ± 0.07b 1.66 ± 0.31a 1.90 ± 0.31a 1.78 ± 0.16a

Number of β-cells/islets 187.83 ± 23.73a 59.83 ± 6.89b 163.83 ± 22.87a 135.83 ± 20.57a 144.17 ± 19.18a

Frontiers in Pharmacology frontiersin.org10

Hisamuddin et al. 10.3389/fphar.2023.1175907

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1175907


Treatment with the lutein-rich PSPL extract (DT 200 and DT 400)
prevents histological changes in the retina of diabetic-induced rats to
a significant extent, and the retina shows similar histological features
to the NS group, proving that the PSPL extract can ameliorate DR
pathology.

5 Conclusion

In the present study, the lutein-rich PSPL extract ameliorated
DR pathology. The lutein-rich PSPL supplementation restored
the FBG, sodium, chloride, ALP, and insulin levels within the
normal range in diabetes-induced rats. In addition, lutein
exhibited protective effects in maintaining the kidney, liver,
retina, and pancreas architecture in the 400 mg/kg treated
group. Being a strong antioxidant, lutein restored the levels of
FRAP, GSH, and TAC and reduced the level of IL-17A in the
serum and retina of diabetic rats. The overall thicknesses of the
retina, blood vessel, and ONL were reduced to a similar value to
non-diabetic rats in the 400 mg/kg treated group, thereby
restoring fully transparent lenses in diabetes-induced rats. In
conclusion, the current data show that lutein-rich PSPL
supplementation of the 400 mg/kg dosage is an effective dose
for the amelioration of DR in STZ-induced SD rats.

6 Limitations and future directions

Based on the findings of our study, several limitations and
potential future directions can be explored. One potential
direction is to investigate the long-term effects of lutein-rich
PSPL supplementation on DR pathology in diabetic rats. This
could involve extending the treatment period beyond the
12 weeks used in the current study to determine whether the
protective effects of PSPL are sustained over a longer period of
time. Another direction could be to investigate the signaling
pathway underlying the protective effects of PSPL on DR
pathology, focusing on the proteomic expression on the
retina. This might give insight into a more targeted
therapeutic focus in DR. Additionally, future studies could
investigate the safety and efficacy of PSPL extract on humans
with DR. This could involve conducting clinical trials to
determine optimal dosages, assess any potential side effects,
and evaluate the effectiveness of PSPL extract in reducing DR
pathology in human patients. Overall, the findings of this study
suggest that PSPL extract can be a therapeutic agent for DR, and
further research is warranted to fully explore its potential
benefits and mechanisms of action.
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