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Objectives: To establish an individualized nomogram to predict the probability of
drug-induced liver injury (DILI) in tuberculosis patients receiving anti-tuberculosis
treatment.

Methods: The clinical information of patients admitted to a tertiary hospital
between January 2010 and December 2022 was retrospectively reviewed from
the clinical records. Patients with baseline liver diseases (hepatis B or C infection
and fatty liver) or taking liver protective drugswere excluded. Themaximum values
in liver function test within 180 days after anti-tuberculosis treatment were
collected to determine the occurrence of DILI. The candidate variables used
for establishing prediction model in this study were the last results within the
30 days before the treatment onset. The final variables were included after
univariate and multivariate logistic regression analyses and applied to establish
the nomogram model. The discrimination power and prediction accuracy of the
prediction model were assessed using the area under the receiver operating
characteristic (AUC) curve and a calibration chart. The clinical effectiveness was
assessed via decision curve analysis (DCA). The establishedmodel was validated in
two validation groups.

Results: A total of 1979 patients with 25 variables were enrolled in this study, and
the incidence of DILI was 4.2% (n = 83). The patients with complete variables were
divided into training group (n = 1,121), validation group I (n = 492) and validation
group II (n = 264). Five variables were independent factors for DILI and included in
the final predictionmodel presented as nomogram: age (odds ratio [OR] 1.022, p=
0.023), total bilirubin ≥17.1 μmol/L (OR 11.714, p < 0.001), uric acid (OR 0.977, p =
0.047), neutrophil count (OR 2.145, 0.013) and alcohol consumption (OR 3.209,
p = 0.002). The AUCs of the prediction model in the training group, validation
group I and validation group II were 0.833, 0.668, and 0.753, respectively. The
p-values of calibration charts in the three groups were 0.800, 0.996, and 0.853.
The DCA curves of the prediction model were above the two extreme curves.

Conclusion: The nomogram model in this study could effectively predict the DILI
risk among patients under anti-tuberculosis drug treatment.
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Introduction

Mycobacterium tuberculosis (MTB) is the pathogen that causes
tuberculosis (TB) in humans and constitutes a great threat to global
public health. The World Health Organization (WHO) reported
that approximately 10.6 million people fell ill due to TB in
2021 worldwide, and this number is 4.4% higher than that in
2020 (Global tuberculosis report 2021, 2021; Global tuberculosis
report 2022, 2022). Although the success rates of TB treatments can
be as high as 86%, TB-caused mortality ranked second after COVID-
19–caused mortality among infection-caused deaths (Global
tuberculosis report 2022, 2022). Once the diagnosis of TB is
confirmed based on clinical manifestations, radiological
examination, and laboratory tests, a long course of antibiotic
treatment is needed to control the growth of MTB. However,
combined drug treatment is often accompanied by adverse
effects, among which drug-induced liver injury (DILI) and
gastrointestinal syndromes are the two most common events
(Zhang et al., 2015; El Hamdouni et al., 2020; Wang et al.,
2022a). Adverse effects frequently cause patients to abort the
treatment, which might cause treatment failure, induced drug
resistance, and transmission of the infection. Thus, it is essential
to identify biomarkers for predicting DILI in patients with TB.

Several studies on the possible risk factors for DILI in patients
with TB have suggested complex mechanisms underlying DILI
(Medina-Caliz et al., 2016; Ashby et al., 2021). In fact,
combinatorial drug regimens containing various antibiotics are
always prescribed to patients with TB, but the potential
association between DILI and such combinatorial regimens
has not been explored (Sterling et al., 2011; Ahmad et al.,
2018; Lan et al., 2020; Xu et al., 2022). Moreover, the hepatic
viral infections, patients’ age, nutritional status, and alcohol-
consumption level of patients, as well as their clinical history of
liver disease may affect liver function (Medina-Caliz et al., 2016;
Sun et al., 2016; Chang et al., 2018; Jiang et al., 2021) and thereby
contribute to DILI occurrence (Yew et al., 2018). In clinical
practice, the patients with high risk of DILI based on the
clinical experiences have been suggested for taking drugs for
prophylaxis, resulting into the fact that patients who are not
under liver protection are largely ignored (Saito et al., 2016; Xu
et al., 2017). Novel urinary (Wang et al., 2022b) or blood (Ho
et al., 2021; Wang et al., 2022c; Deng et al., 2022) biomarkers
identified via high-throughput methods involving mass
spectrometry or sequencing might indicate for potential role
in predicting DILI, but they are far away from clinical practice
due to uncertainty and high cost.

Routine laboratory examinations used in TB diagnosis may
provide us with objective and quantitative parameters that can be
screened for risk factors related to DILI. Prediction model can
facilitate the screening for the significant risk factors in the real
world, which has been found essential in diagnosis, treatment,
and prognosis. Although several risk factors have been found
associated with DILI, there are limited reports on the application
of nomogram to predict DILI-associated risks in a large sample
size (Ashby et al., 2021; Raj Mani et al., 2021; Zhong et al., 2021;
Zhao et al., 2022). Here, a cohort of TB patients spanning 13 years
were retrospectively reviewed, and a nomogram prediction
model was established to evaluate the DILI risk following anti-

TB treatment among patients who were negative for baseline liver
diseases and liver protective drugs.

Materials and methods

Participants inclusion and exclusion

TB patients who met the inclusion criteria were enrolled via
data extraction from clinical record mining database (supported
by Le 9 Co., Ltd.): the patients who were diagnosed with
tuberculosis infection and started their anti-TB drug treatment
between January 2010 and December 2022. The database was
constructed based on the clinical records from patients who were
admitted to Affiliated Dongyang Hospital of Wenzhou Medical
University. Exclusion criteria: the patients who took liver
protective drugs for treatment or prophylaxis based on the
drug usage record; the patients who were accompanied by
HIV infection and liver cancer. The baseline liver diseases
including hepatitis caused by HBV or HCV (by
immunological test) and fatty liver (by radiological
examination) were determined based on the extracted
information from clinical record database.

Definition

The definition criteria list for DILI induced by anti-TB treatment
included (Global tuberculosis report 2022, 2022) a clear history of
taking first-line anti-TB drugs, including isoniazid, rifampicin,
ethambutol and pyrazinamide (Global tuberculosis report 2021,
2021). The peak values in liver function test within 180 days
following the first drug dose met at least one of these followed
terms alanine aminotransferase (ALT) ≥ 3 times the upper limit of
normal range (ULN); total bilirubin ≥2 times ULN; under the
premise of elevated levels of aspartate aminotransferase (AST),
alkaline phosphatase and total bilirubin, at least one ≥2 times
ULN. The alcohol consumption was defined as the patient had
daily intake of alcohol based on self-description after admission.

Screening the variables to establish a
prediction model

All the candidate variables contained clinical and laboratory
indexes, which were the last measured values within 30 days
before drug use. The variables with missing percentages higher
20% were removed, and the enrolled patients with complete data
on the remaining variables were randomly split into training
group and validation group I with a ratio of 7:3 (Figure 1A). The
process for the identification of the variables used in generating
the model was described in Figure 1B. First, univariate analysis
was performed to identify variables significantly related to DILI
(p < 0.05). The linear relationship between the continual
variables and logitp was tested using the Box-Tidwell function.
If, a linear relationship was absent (p < 0.05), and the variable was
converted into categorical variables based on the normal range.
The presence of multicollinearity among the involved variables
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was defined as variance inflation factors (VIFs) larger than 10,
and thus these variables were excluded in further analysis.
Second, multivariate analysis and stepwise regression were
used to identify variables significantly related to DILI. Based
on the finally involved variables, a second validation group
(validation group II) was extracted from the population,
excluding those had been enrolled in training group and
validation group I. The discriminative ability of logistic
regression model was assessed based on the area under the
receiver operating characteristic (ROC) curve (AUC), model
calibration was evaluated using the Hosmer–Lemeshow
statistic (p > 0.05 indicated good agreement between predicted
and real values) and the net benefit in clinical was evaluated by
decision curve analysis (DCA). The prediction power of

established model was further validated in two validation
groups (Figure 1A). Finally, a risk-assessment model for DILI
was developed and displayed as a nomogram graph in the
training group.

Statistical analysis

The SPSS (version 23) and R 4.2.1 software for Windows were
used for statistical analysis. Continuous variables were expressed as
median with the corresponding interquartile range, and were
compared using either Student’s t-test or the Mann–Whitney U
test. Categorical variables were compared using the χ2 test or Fisher’s
exact test. A p-value <0.05 was considered of statistical significance.

FIGURE 1
Study flowchart in the model establishment. (A) patient inclusion and exclusion in the model; (B) variables screening process in the model.
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Results

Characteristics of the study population

A total of 4,715 patients under anti-TB drug treatment were
initially included in this study (Figure 1A). 2,259 patients were
excluded due to missing information on liver function test in our

hospital after receiving treatment (n = 1,653) or before the drug
therapy (n = 606). There were 477 patients owned baseline liver
diseases including hepatis B, hepatis C or fatty liver, then were
removed in further analysis. In the enrolled 1979 patients, 83 (4.2%)
developed DILI within 180 days after treatment. There were
25 variables included in analysis after removing the variables
with missing data higher than 20% (Figure 1B). Then,

TABLE 1 Univariable analysis of DILI related variables in the training groupa.

Variable Total Non-DILI DILI Pb

N = 1,121 N = 1,080 N = 41

Gender, n (%) 0.118

Female 417 (37) 407 (38) 10 (24)

Male 704 (63) 673 (62) 31 (76)

Age 50 (29, 68) 49 (28.75, 68) 62 (52, 76) <0.001

Alcohol consumption, n (%) <0.001
No 961 (86) 936 (87) 25 (61)

Yes 160 (14) 144 (13) 16 (39)

Uric acid (μmol/L) 287 (222, 366) 290 (223, 369) 237 (159, 323) <0.001

Creatinine (μmol/L) 61 (51, 71) 61 (51, 71) 68 (54, 73) 0.073

Total bilirubin (μmol/L) 9.1 (6.9, 12.4) 9 (6.9, 12.1) 17.5 (10.2, 20.8) <0.001

Direct bilirubin (μmol/L) 3.4 (2.5, 4.7) 3.3 (2.5, 4.6) 6.2 (4.1, 9.8) <0.001

Indirect bilirubin (μmol/L) 5.6 (4.2, 7.9) 5.5 (4.2, 7.8) 9 (6.1, 11.9) <0.001

Total bile acid (μmol/L) 3.3 (2, 5.8) 3.3 (2, 5.8) 3.3 (2.1, 6.1) 0.588

Total Protein (g/L) 68.73 ± 7.92 68.94 ± 7.8 63.35 ± 9.28 <0.001

Albumin (g/L) 39 (34.2, 44) 39.2 (34.48, 44.1) 35 (31.7, 39.3) <0.001

Globulin (g/L) 29.2 (25.9, 32.7) 29.3 (26, 32.7) 27.8 (23.5, 31.9) 0.03

Alanine aminotransferase (U/L) 15 (11, 23) 15 (11, 23) 18 (13, 30) 0.029

Aspartate aminotransferase (U/L) 20 (17, 26) 20 (16, 26) 25 (19, 31) 0.003

Alkaline phosphatase (U/L) 77 (62, 96) 77 (62.75, 96) 67 (60, 88) 0.257

White blood cell (x10̂9/L) 6.29 (5.14, 7.65) 6.27 (5.11, 7.62) 7.37 (5.94, 9.7) 0.002

Neutrophil count (x10̂9/L) 4.09 (3.14, 5.37) 4.05 (3.11, 5.32) 4.66 (4.15, 6.95) <0.001

Lymphocyte count (x10̂9/L) 1.43 (1.08, 1.82) 1.44 (1.09, 1.82) 1.18 (0.85, 1.6) 0.009

Monocyte counts (x10̂9/L) 0.47 (0.36, 0.63) 0.47 (0.35, 0.62) 0.57 (0.45, 0.73) 0.001

Eosinophil count (x10̂9/L) 0.12 (0.06, 0.19) 0.12 (0.06, 0.19) 0.09 (0.04, 0.17) 0.077

Basophil count (x10̂9/L) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.02 (0.01, 0.03) 0.789

Hemoglobin (g/L) 129 (114, 142) 129 (115, 142) 120 (101, 135) 0.015

Red blood cell (x10̂12/L) 4.39 (3.94, 4.86) 4.4 (3.97, 4.86) 3.89 (3.52, 4.58) <0.001

Mean corpuscular hemoglobin (pg) 29.5 (28.3, 30.7) 29.5 (28.3, 30.7) 29.9 (28.7, 31.6) 0.101

Mean corpuscular hemoglobin concentration (g/L) 331 (323, 339) 331 (323, 338) 333 (324, 339) 0.46

aContinual variables were displayed as Median (IQR), categorical variables were displayed as number (percentage).
bCategorical variables were compared by Pearson’s Chi-squared test, continual variables were analyzed by Wilcoxon rank sum test.
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1,613 patients with complete variables were divided into training
group (n = 1,121) and validation group I (n = 492), with no
significant differences for the involved variables (Supplementary
Table S1).

Identification of the variables to be included
in the model

Univariate analysis showed that 17 clinical or laboratory
variables were significantly associated with DILI (p < 0.05,
Table 1 and Figure 1B). Gender, creatinine, total bile acid,
alkaline phosphatase, absolute eosinophil count, absolute basophil
count, mean corpuscular hemoglobin and mean corpuscular
hemoglobin concentration were not found significantly associated
with DILI (p > 0.05). Seven variables were converted into categorical
variables, including globulin, indirect bilirubin, total bilirubin, direct
bilirubin, absolute value of monocyte, aspartate aminotransferase
and alanine aminotransferase due to no linearity to logitp
(Figure 1B). Three variables (white blood cell, monocyte counts
and globulin) were excluded because of multi-collinearity. Among
the remaining variables, there was no multi-collinearity
(Supplementary Table S2).

Finally, five parameters (age, alcohol, uric acid, total bilirubin
and neutrophil count) were significantly related to DILI by stepwise
regression (Table 2; Figure 1B). According to odds ratio (OR), the
following four parameters were high-risk factors for DILI in patients
with TB during anti-TB treatments: age (OR 1.022 [1.003–1.042],
p = 0.023), elevated total bilirubin (OR 11.714 [5.837–23.692], p <
0.001), neutrophil count (OR 2.145 [1.078–4.700], p = 0.013), and
alcohol consumption (OR 3.209 [1.520–6.652], p = 0.002).
Conversely, uric acid (OR 0.977 [0.993–1.000], p = 0.047) was
the protective parameter against the development of DILI (Table 2).

Development of a risk-prediction model for
drug-induced liver injury in the training
group

To evaluate the discriminative ability of the logistic regression
model, the final prediction model was constructed in the training
group based on five variables: age, elevated total bilirubin, neutrophil
count, uric acid and alcohol consumption. The AUC of prediction
model was 0.833, with a sensitivity of 0.759 and specificity of 0.805 at

the threshold of 0.030 (Figure 2A). The DCA curve of established
model was far from the two reference curves (Figure 2B). The
calibration curve owned a p-value of 0.800 based on the Hosmer
& Lemeshow test (Figure 2C).

Validation of the risk-prediction model in
external data sets

In the validation group I that owned comparable baseline
variables to training group, this established model showed a
moderate discrimination power (AUC, 0.668, Figure 3A). The
DCA curve in the validation group I was near to the two
reference lines (Figure 3B). For calibration curve, the p-value
based on Hosmer & Lemeshow test was 0.996 (Figure 3C).

Another validation population (validation group II, n = 264) was
extracted from the 1979 patients with complete information on final
five variables after excluding those involved in training group and
validation group I. Fourteen variables showed significant differences
between training group and validation group II (Supplementary
Table S1). The established prediction model in validation group II
owned an AUC of 0.753 (Figure 4A), a DCA curve far from the two
reference lines (Figure 4B) and a p-value of 0.853 in calibration curve
(Figure 4C).

Establishment of a nomogram graph

Based on the established logistic regression model, a nomogram
for presenting the significance of involved variables for predicting
the risk of DILI among the patients was established (Figure 5).
Individual points corresponding to each measured variable could be
obtained by vertically matching them to the top reference point line,
and total point could be calculated by summing all the individual
points. The risk of DILI could be read by vertically matching the
total point to the risk line.

Discussion

DILI in patients receiving anti-TB agents can interrupt the
therapy process, and identification of associated risk factors can
help clinical staff to take preventive measures against it. Here, a
nomogram model was established based on five clinical parameters
(age and levels of total bilirubin, uric acid, neutrophil account, and
alcohol consumption) assessed before the treatment onset. This
model could predict the DILI risk in patients receiving first-line anti-
TB agents who did not take any hepatoprotectants, and has a good
discrimination power.

A 6-month regimen is recommended by WHO composing of
four first-line anti-TB agents (isoniazid, rifampicin, ethambutol, and
pyrazinamide) for patients with TB (W HO, 2022). The regimen
could be modified based on the age of the patient, resulting in a
treatment success rate >85%. However, DILI is a serious side effect
of such regimens, with an incidence rate of 2.0%–28%, and may
largely be due to the pyrazinamide in the regimen (Ghosh et al.,
2021). Among the patients analyzed in this study, 4.3% suffered
from DILI. The incidence of hepatotoxicity in this study might be

TABLE 2 The multiple logistic regression analysis of risk factors for LIDI in the
training group.

Variables Logistic regression

Or (95% CI) P

Age 1.022 (1.003–1.042) 0.023

Alcohol consumption 3.209 (1.520–6.652) 0.002

Uric acid (μmol/L) 0.977 (0.993–1.000) 0.047

Elevated total bilirubin (≥17.1 μmol/L) 11.714 (5.837–23.692) <0.001

Neutrophil count (10̂9/L) 2.145 (1.078–4.700) 0.013
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FIGURE 2
Development of a model to predict DILI in the training group. (A) The ROC curve; (B) Decision curve; (C) Calibration plot.

FIGURE 3
Validation of established model to predict DILI risk in the validation group I (A) ROC curve; (B) Decision curve; (C) Calibration plot.

FIGURE 4
Validation of established model to predict DILI risk in the validation group II. (A) ROC curve; (B) Decision curve; (C) Calibration plot.
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lower than that reported by others, as patients with baseline liver
diseases and receiving liver protective drugs were excluded (Abbara
et al., 2017; Latief et al., 2017; Raj Mani et al., 2021). This study
assessed several possible factors for their ability to predict future
DILI among TB patients negative for liver-related diseases, who
might be easily ignored by doctors. Moreover, hepatoprotectants
were not used in enrolled patients, giving the chance to investigate
the real DILI incidence and related variables (Chen et al., 2022).

In this study, five objective parameters were involved in the
prediction model, and these parameters can be easily obtained in
clinical practice before the anti-tuberculosis treatment. Elevated
levels of total bilirubin might be associated with metabolism
dysfunction in liver, eventually increasing the DILI risk once the
treatment starts. As the sum of indirect bilirubin and direct bilirubin,
the increased total bilirubin might be the results of reduced uptake
ability by the liver and weakened excretion by the kidney. In this
study, the kidney related variable creatinine was comparable
between patients with DILI and without DILI, indicating for key
role of liver dysfunction in elevated total bilirubin instead of kidney
impairment. Though other studies have indicated the significance of
ALT and AST levels for predicting DILI, these two variables were not
the significant factors in this study (Mushiroda et al., 2016; Jiang
et al., 2021). The inconsistency could be partly due to the differences
in patients’ inclusion criteria, as patients with baseline liver diseases
owned higher DILI risks (Jiang et al., 2021). In this study, uric acid
was negatively associated with DILI risk, which could be partly
explained by its anti-oxidant role in plasma (El Ridi and Tallima,
2017). In another way, lower uric acid in plasma might be caused by
impaired reabsorption by kidney, with consequently increased uric
acid in urine from patients with DILI revealed by urine
metabolomics (Wang et al., 2022b). Moreover, neutrophil was
positively associated with the risk of DILI in this study, which is
consistent to the fact that neutrophil is always involved in
inflammation and excessive or dysfunctional neutrophils lead

into tissue damage (Wang and Liu, 2021). The high level of
neutrophil in blood would provide enough source for infiltrating
into liver when accumulative cytotoxic drug metabolites impaired
the hepatocytes, resulting into an increased risk of liver injury (Cho
and Szabo, 2021). Alcohol consumption and age were also found
closely associated with DILI in this study, and these two factors have
been widely reported by others (Abbara et al., 2017; Yew et al., 2018;
Song et al., 2019).

Although several studies on DILI risk factors have been
conducted, these studies involved limited numbers of patients
and mostly focused on screening for risk factors (Lee et al.,
2016; Medina-Caliz et al., 2016; Mushiroda et al., 2016; Raj
Mani et al., 2021). Our nomogram prediction model could
show the exact risk based on five parameters and has a good
predictive ability regarding the ROC value, sensitivity, and
specificity (Zhao et al., 2022). By using the XGBoost algorithm,
Zhong et al. have established a model that can predict DILI with
high accuracy and interpretability. However, their model involves
the accumulative dose of anti-TB agents used during a treatment
course, and this dose cannot be foreseen before starting the
treatment (Zhong et al., 2021). In the validation step, two
groups were enrolled in this study, representing for populations
with comparable baselines and with different baselines,
respectively. The prediction ability of established model in
training model reduced in validate group with comparable
baselines, which might be caused by limited DILI cases in
validation. When validated in group with different baselines,
the model showed increased prediction ability comparing to
group with comparable baselines, suggesting its application
possibility in other population.

There were some limitations in this study. Despite the large sample
size, all the patients were from a single center, and thus the prediction
power of established model need be validated in other regions. The
duration between the treatment onset and DILI occurrence was not

FIGURE 5
Nomogram for predicting DILI in the training group. A patient was given as an example indicated by red dots in figure (81 years old, total bilirubin of
52 μmol/L, uric acid of 159 μmol/L, neutrophil count of 6.41 × 10̂9/L, with alcohol consumption). The total score is 337 points, corresponding to a DILI risk
of 0.63. The variables with symbol * indicated for significance in the model, *p < 0.05, **p < 0.01, ***p < 0.001.
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available from the database. Several parameters were not available for
some of the involved patients due to the retrospective nature of the
study, resulting in the exclusion of more than 50% of the patients. In
addition, the treatment duration and accumulative drug dosage were
not available from the database.

Conclusion

TB patients frequently suffer from DILI after receiving first-line
anti-TB agents, though they were not accompanied by liver-related
diseases before treatment, including HBV infection, fatty liver and
liver cancers. A nomogram model based on five variables before
anti-TB treatment (age, total bilirubin, neutrophil count, alcohol
consumption and uric acid) can predict future DILI with a good
discriminative power. This prediction model based on these easily
accessible parameters can help clinical staff to evaluate the DILI risk
before the treatment and take active intervenes to prevent the
occurrence of DILI in patients with high risk.
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