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Introduction: Brain-Computer Interfaces (BCI) based on Steady-State Visually

Evoked Potentials (SSVEP) have great potential for use in communication

applications because of their relatively simple assembly and in some cases the

possibility of bypassing the time-consuming training stage. However, among

multiple factors, the e�cient performance of this technology is highly dependent

on the stimulation paradigm applied in combination with the SSVEP detection

algorithm employed. This paper proposes the performance assessment of the

classification of target events with respect to non-target events by applying

four types of visual paradigms, rectangular modulated On-O� (OOR), sinusoidal

modulated On-O� (OOS), rectangular modulated Checkerboard (CBR), and

sinusoidal modulated Checkerboard (CBS), with three types of SSVEP detection

methods, Canonical Correlation Analysis (CCA), Filter-Bank CCA (FBCCA), and

Minimum Energy Combination (MEC).

Methods: We set up an experimental protocol in which the four types of visual

stimuli were presented randomly to twenty-seven participants and after acquiring

their electroencephalographic responses to five stimulation frequencies (8.57,

10.909, 15, 20, and 24 Hz), the three detection methods were applied to the

collected data.

Results: The results are conclusive, obtaining the best performance with the

combination of either OOR or OOS visual stimulus and the FBCCA as a detection

method, however, this finding contrasts with the opinion of almost half of the

participants in terms of visual comfort, where the 51.9% of the subjects felt more

comfortable and focused with CBR or CBS stimulation.

Discussion: Finally, the EEG recordings correspond to the SSVEP response of 27

subjects to four visual paradigms when selecting five items on a screen, which is

useful in BCI navigation applications. The dataset is available to anyone interested

in studying and evaluating signal processing and machine-learning algorithms for

SSVEP-BCI systems.
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SSVEP detection method, SSVEP visual paradigm, BCI-user comfort, Brain-Computer
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1. Introduction

The phenomenon of Steady-State Visual Evoked Potentials
(SSVEP) is manifested as electrical brain patterns elicited when
a user focuses his/her attention on a repetitive visual stimulus (a
light source) flickering at frequencies higher than 6 Hz (Faller et al.,
2017). These are periodic oscillations prominently observed in the
occipital and occipito-parietal areas of the cerebral cortex. SSVEP
responses appear as an increase in the amplitude of the signal at the
fundamental frequency and its harmonics for the corresponding
stimulus attended by the user (Antelis et al., 2020). In addition to
the usual clinical purpose of diagnosing visual pathway and brain
mapping impairments, the SSVEP can serve as a basis for Brain-
Computer Interfaces (BCI) applications (Amiri et al., 2013; Chen
et al., 2021).

BCI can be considered systems within the field of biomedical
engineering and neurotechnologies, with the role of restoring
or replacing lost neurological functions (Bockbrader et al.,
2018), control of devices (Velasco-Álvarez et al., 2021) and
establishing communication channels by alternative mechanisms,
applying digital signal processing and machine learning
techniques to electrical brain waves (McFarland et al., 1997).
These technologies use different paradigms that allow them
to infer mental states. The main paradigms we can find are:
P300 (Farwell and Donchin, 1988), motor imagery (Lotze and
Cohen, 2006; Jiang et al., 2020; Pei et al., 2022), and SSVEP
(Volosyak et al., 2009). BCIs based on the SSVEP paradigm
are the most widespread (Singla, 2018) for the sake of high
communication rate, easy system configuration, and less user
training (Gao et al., 2003, 2014; Wang et al., 2008; Chen et al.,
2015b).

Currently, it is still a pending issue to implement SSVEP-
based BCI applications with optimum performance that also
meets the user’s comfort requirements. The reason for this is due
to the multi-factor dependence of SSVEP-based BCI on several
elements to achieve the best execution. In response to this, Li
et al. (2021) identified four ways to optimize BCI systems based
on the SSVEP phenomenon used with spelling function: improving
the classification algorithm, adding a spelling prediction function,
designing better stimulation paradigms, and adding new triggering
methods. The number of target elements, which can be considered
as one of the most sensitive (Gembler et al., 2016) parameters,
have a direct influence on each of the four optimization methods
mentioned. The design of the stimuli, previously noted, is another
key aspect since different associated properties are considered, such
as the frequency at which the stimuli oscillate, the dimensions
of the stimuli, the colors presented, and the type of signal that
controls the stimuli (Cysewska-Sobusiak and Jukiewicz, 2016). In
the study carried out by Siribunyaphat and Punsawad (2022), an
exhaustive analysis of various visual stimulation proposals for BCIs
based on the SSVEP phenomenon was performed. This paper
reported a summary of the state of the art regarding the design of
visual stimuli in SSVEP-based BCI, taking into account parameters
such as the Proposed Method, which was included to evaluate
performance, the Visual Stimulus, the Electrodes Position, and the
Results obtained. All this with the objective of exploring alternative
visual paradigms that would achieve better visual comfort and at
the same time guarantee a good performance of the BCI. SSVEP

detection methods are undoubtedly another aspect to be taken into
account for the proper performance of the BCI.

When the visual paradigm is discussed, the type of signal
that modulates the flicker is rarely considered. Generally the
waveforms used are triangular, sinusoidal, and rectangular, the
latter with different levels of duty cycle. According to relevant
studies (Teng et al., 2011; Chen et al., 2019), modulation of the
stimulus with a rectangular signal leads to better performance
results. The waveform that modulates the luminance of the SSVEP
stimulation signal has been the subject of relatively few studies
compared to other parameters of the visual stimulus, such as the
number of targets or the detection methods. Although the answer
to the fact that there are so few studies addressing the effect on the
performance based on the waveform of the modulating signal may
lie in the minor importance of this aspect, it is pertinent to argue
that the choice of this parameter of the visual stimulus influences
the number of targets to be presented.

Results reported in Li et al. (2021) and Siribunyaphat and
Punsawad (2022) compiles several published studies where the
number of targets, the design of the stimulus, the SSVEP
detection methods, the electrode position, number of subjects,
frequencies of stimuli, and the results obtained are taken
into account. Although the multi-factorial influence of these
parameters is well-known, most studies address their association
with performance individually rather than comprehensively. In
addition, the combination of parameters that makes optimal the
BCI performance is particular to each user, which makes necessary
a previous process of calibration.

Newly implemented SSVEP detection algorithms require
databases to evaluate their effectiveness. Similarly, certain BCI
applications based on the SSVEP paradigm often rely on databases
to estimate their viability (Bian et al., 2022). However, with respect
to other paradigms, such as motor imagery (Pei et al., 2021) and
P300, the SSVEP databases are scarce, as has been reported by Choi
et al. (2019a). In the SSVEP database supplied by İşcan and Nikulin
(2018) a four-class SSVEP-based BCI was assessed under different
perturbations, where the subjects were speaking, thinking, or
listening depending on the given task. Liu et al. (2022) implemented
an SSVEP database targeting the elderly population, this way
providing an opportunity to design BCI systems better suited
for eldercare applications. Zhu et al. (2021) makes an interesting
contribution by proposing an open-access dataset with a large
number of subjects (102) for a wearable SSVEP-based BCI toward
practical applications. This proposal comprehensively compares
the SSVEP data obtained by wireless wet and dry electrodes. A
concise and detailed analysis of the availability of SSVEP databases
and the need for public domain access to them was carried out at
Liu et al. (2020), concluding that there is a demand for more SSVEP
paradigm databases to foster method design and evaluation.

Based on the literature reviewed, we want to answer the
question of whether there is a specific combination of SSVEP’s
visual stimulus scheme with a no-training detection method that
arouses a better performance in terms of Accuracy (ACC) and
Information Transfer Rate (ITR) when classifying target events
with respect to non-target events. According to Li et al. (2021),
no study to date has compared the available paradigms to identify
the one that delivers the best performance because, when the
same methods of SSVEP detection are used, the results obtained
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are inconsistent owing to the different paradigms used, and
thus the influence of the paradigm on the performance of the
SSVEP speller cannot be ignored. We addressed this challenge
by comparing four types of visual paradigms, i.e., rectangular
modulated On-Off (OOR), sinusoidal modulated On-Off (OOS),
rectangular modulated Checkerboard (CBR), and sinusoidal
modulated Checkerboard (CBS), and studied their interaction
with three SSVEP detection methods, i.e., Canonical Correlation
Analysis (CCA), Filter-Bank CCA (FBCCA), andMinimumEnergy
Combination (MEC). We conducted an experiment where we
captured non-invasive electroencephalographic (EEG) signals from
27 participants. These subjects were exposed to the four types of
visual stimuli, distributed in 4 rounds of 10 min, which at the
same time were subdivided into 40 trials of 15 s organized in 5 s
of pre-stimulus, 5 s of stimulation, and 5 s of rest. The acquired
brain signals were processed and transformed to the frequency
domain, where the influence of the type of visual stimulus on the
spectral power was evaluated. At the same time, the three SSVEP
detection methods were applied to the electroencephalographic
dataset, obtaining results in terms of ACC and ITR, where we
analyzed which combination (visual stimulus type and detection
method) achieved the best performance. At the time this research
was conceived, we were unable to find studies that addressed in
an integrated manner the influence of parameters such as the
visual stimulus paradigm and the SSVEP detection method on
the performance when classifying target events with respect to
non-target events.

The novelty of our proposal lies in the integrated analysis of
two aspects that have a direct impact on the performance of SSVEP-
based BCI systems, specifically the visual paradigm applied and the
detection method employed. Finally, another contribution of our
study lies in the electroencephalographic dataset obtained during
the experimental sessions. These training datasets correspond
to the SSVEP response to four visual paradigms in which 27
subjects were shown five flashing elements on an LCD screen. This
provides approximately 1,080 min of EEG. Our database is not
oriented to spelling applications, as is the case with most publicly
available SSVEP databases. It is rather oriented as a complement
for the assessment of SSVEP detection algorithms and navigation
applications although it could have multi-stage communication
applications, where the graphical interface has two or more stages
and the number of targets in each stage is relatively small (Li et al.,
2021).

Our work is structured in a Section 1; a Section 2, where the
experimental protocol is described, and the analyses performed
on the EEG signals are applied; a Section 3, where we report the
results obtained from applying different visual stimuli and SSVEP
detection methods; a Section 4, where the results obtained are
analyzed and contrasted with the literature consulted, and finally, a
Section 5, where the main findings of the research are summarized
and future studies derived from this research are suggested.

2. Methods and materials

2.1. Visual stimulus types

In this work, we consider the on-off and checkerboard patterns
with luminancemodulated by rectangular and sinusoidal functions,

resulting in a total of four types of visual stimuli. The description of
these visual stimuli is as follows:

• On-Off pattern with rectangular modulated signal (OOR). The
luminance in this type of visual stimulus switches suddenly
and repeatedly with each rising and falling edge following
a rectangular function. High and low states of the function
indicate that the visual stimulus is fully on and fully off,
respectively, therefore, there are no intermediate intensities
for the visual stimulus.

• On-Off pattern with sinusoidal modulated signal (OOS). In
this case, the luminance of the visual stimulus gradually turns
on and off according to a sine function. Crests and valleys
represent the visual stimulus fully on and fully off, respectively,
while the rest of the sinusoidal shape represents intermediate
intensities of the visual stimulus.

• Checkerboard pattern with rectangular modulated signal

(CBR). This visual stimulus consists of a matrix (usually 8
× 8, but can vary) with squares whose luminance alternates
following a rectangular function. The transition from high to
low (and vice versa) in the rectangular function indicates the
sudden luminance change of the boxes in the visual stimulus.

• Checkerboard pattern with sinusoidal modulated signal

(CBS). In this case, the luminance of the squares in the
matrix gradually varies according to a sinusoidal function.
Crests/valleys represent the visual stimulus with squares
fully on/off and the rest of the sinusoidal shape represents
intermediate color intensities of the visual stimulus.

We choose the on-off and checkerboard patterns because these
two types of stimuli have generally been used to evoke SSVEPs
for a BCI application on computer screens (Zhu et al., 2010),
and the rectangular and sinusoidal modulated signals because
these waveforms are the most employed to control the stimulus
luminance (Cysewska-Sobusiak and Jukiewicz, 2016; Chen et al.,
2019). Note that for the case of visual stimulus based on the
on-off pattern the frequency of the modulating signal represents
the stimulation frequency expected to be observed in the SSVEP
responses. However, for visual stimulus based on the checkerboard
pattern, the stimulation frequency expected to be observed in the
SSVEP responses is twice the frequency of the modulating signal.
This is because the SSVEP is produced at its rate of phase-reversal
or alternation rate (Regan, 1977; Burkitt et al., 2000; Lalor et al.,
2005). As an illustration, Figure 1 depicts how the intensity of
the on-off pattern is modulated by rectangular and sinusoidal
functions. In this work, the colors of the four types of visual
stimulus were black and white with color transitions from black,
in the off-state, to white, in the on-state.

2.2. SSVEP detection methods

The SSVEP detection methods employed have the particularity
that they do not require prior training to be applied to
EEG recordings. To present the technical details, we define a
multidimensional variable X = [xe(t)]Ne×Nt that is representative
of the brain electrical activity captured on the scalp, organized in
segments of Ne electrodes and Nt samples.
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It is assumed at all times that the analyzed signals correspond
to the instances in which the participants were gazing at each
blinking element applied during an experimental session, thus
corresponding to EEG recordings in which the participant focused
on one of the Ntarget visual stimuli that were flickering at a

frequency fi ∈ R; fi :
{

f1, f2, ..., fNtarget

}

. In each of the approaches,

the goal is to estimate which of the targets the participant was
focusing on considering as cues the EEG activity X, the Ntarget

sources of visual stimulation, and the fi stimulation frequencies.

2.2.1. Canonical correlation analysis (CCA)
In the SSVEP CCA method, the idea is to find linear

combinations that maximize the correlation between two vectors:
the EEG signal samples X = [xe(t)]Ne×Nt corresponding to the
moment when the subject is gazing at one of the Ntarget blinking
targets; and a template array of reference sinusoidal signals: Yfi =
[yr(t)]2Nh×Nt for each of the fi stimulation frequencies, where Nh

represents the number of harmonics for a sinusoidal template signal
of frequency fi. Here we define Yfi as:

Yfi (t) =

















sin(2π fit)
cos(2π fit)

...
sin(2πNhfit)
cos(2πNhfit)

















(1)

The linear combinations are defined as p = Xwp and q = Yfiwq

that maximize the so-called canonical correlation ρ between them.
Hence, the weight vectors wp ∈ R

Ne×1 and wq ∈ R
2Nh×1 are found

by solving:

ρ = max
wp ,wq

corr(p, q) (2)

which can be rewritten as the following optimization problem
(Zhang et al., 2014):

ρ = max
wp ,wq

w⊤
p Cpqwq

√

w⊤
p Cppwpw⊤

q Cqqwq

(3)

where Cpq is the cross-covariance matrix and Cpp and Cqq are the
auto-covariance matrices for X and Yfi , respectively. The solution
is obtained by solving a generalized eigenvalue problem (Hardoon
et al., 2004), from which the weight vector wp is an eigenvector
of C−1

pp CpqC
−1
qq Cqp and the weight vector wq is an eigenvector of

C−1
qq CqpC

−1
pp Cpq. The maximum canonical correlation corresponds

to the maximum value of ρ with respect to wq and wp (Hardoon
et al., 2004).

2.2.2. Filter-bank canonical correlation analysis
(FBCCA)

The ability to incorporate harmonic components in frequency
identification methods is an advantage since they provide useful

FIGURE 1

Illustration of how the intensity of the On-O� and Checkerboard patterns are modulated by rectangular and sinusoidal functions. (A) On-O�

paradigm transition, where the square’s luminance alternates with the background controlled by a modulating periodic waveform. (B) Checkerboard

paradigm transition, where the luminance of the square grid array alternates controlled by a modulating periodic waveform. (C) Rectangular

waveform luminance modulation. (D) Sine waveform luminance modulation.
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information for the performance of these procedures. The FBCCA
method is able to extract the discriminative information embedded
in the harmonic components of the SSVEP responses in a more
efficient way. This is achieved by using band-pass filter banks
that decompose the SSVEPs into several sub-band components.
By splitting the original SSVEP response into several signal
versions with different bandwidths, it is ensured that not only the
fundamental frequency component contributes to the detection
process but also its different harmonics. FBCCA method was
proposed to enhance the CCA detection method on SSVEP
phenomenon (Chen et al., 2015a). The algorithm involves three
stages: filter bank analysis; CCA between the SSVEP components
filtered by sub-bands and the reference sinusoidal signals, and
finally; the identification of the target element.

First, a filter bank analysis, with SB band-pass filters, was
applied on the EEG segmentX and from this procedure, SB versions
of the original signal were obtained (Xj, j = 1, 2, ..., SB). In our
study, five Chebyshev band-pass type I Infinite Impulse Response
(IIR) filters were implemented with pass bands ranging from 6−90,
9− 90, 13− 90, 18− 90, and 22− 90 Hz, respectively (Chen et al.,
2015a). CCAwas then applied between the reference signal (Yfi , i =
1, 2, ...,Ntarget) and each Xj sub-band component separately:

ρfi =



























ρ1
fi

ρ2
fi

...

ρ
NSB

fi



























(4)

=













ρ(X⊤
j1
WX(Xj1Yfi ),Y

⊤WY(Xj1Yfi ))

ρ(X⊤
j2
WX(Xj2Yfi ),Y

⊤WY(Xj2Yfi ))
...

ρ(X⊤
jSB
WX(XjSBYfi ),Y

⊤WY(XjSBYfi ))













(5)

Sub-band EEG components were obtained for each frequency
by applying a weighted sum of squares of the previously derived
coefficients:

ρ̃fi =
SB
∑

n=1

w(n) · (ρn
fi
)2 (6)

In Equation (6), n is the sub-band index.
The target frequency is then considered to correspond to the

reference signal yielding the maximal ρ̃fi .
In our proposal, we used the fundamental frequency and three

harmonics of this, for a total of Nh = 4. We chose this number
of harmonics since it was the one that gave the best performance
when testing different values from 1 to 10 with the standard CCA
method, as proposed in Chen et al. (2015a).

2.2.3. Minimum energy combination (MEC)
The Minimum Energy Combination finds spatial filters to

improve EEG responses of the oscillatory components modulated

in one particular control task (Friman et al., 2007). An EEG signal
segment can be modeled as follows:

xe(t) =
Nh
∑

h=1

(ae,hsin(2πhfit)+ be,hcos(2πhfit))+ ηe,fi (t) (7)

here Nh (as in CCA) is the number of harmonics of the model;
ae,h and be,h are multiplicative constants for each channel e and
harmonic h and ηe,fi (t) represents the measured activity that is not
associated with the SSVEPmanifestation. This relationship can also
be expressed in matrix format as follows (Volosyak, 2011):

X = GX
ref

fi
+ ηfi (8)

In Equation (8), G is defined as

G =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1,1 b1,1 ... a1,nh b1,Nh

a2,1 b2,2 ... a2,nh b2,Nh

...
... ...

...
...

aNe ,1 bNe ,1 ... aNe ,Nh
bNe ,Nh

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ne×2Nh

(9)

where Ne represents the number of channels and ηfi =
[

ηe,fi (t)
]

Ne×Nt
.

An optimized approximation of the ηfi matrix can be obtained
from Equation (8)

η∗fi = X− G∗X
ref

fi
(10)

As η∗
fi
represents the interfering and artifact activity captured at

the electrodes, then the objective is to minimize this manifestation.
The MECmethod precisely obtainsNm spatial filters that minimize
the energy of η∗

fi
in such a way that the new channels obtained only

contain information associated with the brain’s electrical activity
resulting from the visual stimulation paradigm applied at a given
frequency fi. The matrix of spatial filtersW is obtained from

W =
[

v1√
λ1

v2√
λ2

...
vNm
√

λNm

]

=
[

w1 w2 ... wNm
]

(11)

where Nm is the number of spatial filters; vi =
{

v1, v2, ..., vNm

}

and
λi =

{

λ1, λ2, ..., λNm

}

are the eigenvectors and their corresponding
eigenvalues for the optimized matrixM defined byM = η∗

f
(η∗

f
)⊤.

Finally, the average power for each target frequency fi is
obtained as

pfi =
1

NmNh

Nm
∑

i=1

2Nh
∑

j=1

Nt
∑

t=1

(

x
ref

j,fi
(t)

Ne
∑

e=1

wi
exe(t)

)

(12)

The biggest estimated power for each target frequency is
considered the detected frequency (Mendoza-Montoya, 2018).

2.3. Experimental protocol

The experiments were carried out in an acoustically isolated
room. Participants were seated in a comfortable chair in front of
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FIGURE 2

Description of the experimental protocol. (A) Sketch of the experimental setup with a participant, the EEG recording system, and the computer

screen with the GUI displaying the five visual stimuli and the instruction box. (B) Configuration of the GUI with the five visual stimuli and their

stimulation frequencies: 8.5714 Hz in the center, 10.9091 Hz in the bottom, 15 Hz in the right, 20 Hz in the top, and 24 Hz in the left square symbol.

a 27-inch Samsung computer screen, model C27RG50FQL, with
1920 × 1080 resolution and 240 Hz refresh rate. A Graphical User
Interface (GUI) was displayed on this screen with five squares
evenly distributed and with an instruction box at the bottom. The
squares, with dimensions of 116× 116 pixels, were used as a visual
stimulus and therefore they flickered at a specific frequency. The
instruction box, with dimensions of 1920 × 116 pixels, was used
to guide the users on the execution of the experiment. Figure 2A
shows a sketch of the experimental setup with a participant, the
EEG recording system, and the computer screen with the GUI.
Figure 2B shows the GUI with the five squares used as a visual
stimulus, their flickering frequencies, and the instruction box.

The flickering of each square was performed at a specific
frequency depending on the refresh rate of the monitor (240
Hz). The square located at the center, bottom, right, top, and left
flickered at a frequency of 8.5714, 10.9091, 15, 20, and 24 Hz,
respectively. These frequencies were selected because they are not
multiples of each other, and they are in the range that has been
commonly used in previous studies to induce SSVEP responses
(Ng et al., 2012; Cysewska-Sobusiak and Jukiewicz, 2016; Chen
et al., 2019). These studies suggest that the stimulation frequencies
that generate the strongest SSVEP responses are in the range of 5
to 25 Hz. As the stimulation frequencies were generated using as
reference the monitor refresh rate, they are indeed 28, 22, 16, 12,
and 10 times slower than the 240Hz, respectively. Note in Figure 2B
that each square contains inside them an arrow, with dimensions of
16 × 9 pixels, pointing up, down, left, and right respectively if the
square is located on the top, bottom, left, and right of the screen,
while the square located on the screen center contains a traffic stop
symbol, with dimensions of 16 × 16 pixels. This is because the
GUI, as one of its applications, has the functionality of a navigation
system (Mendoza-Montoya, 2018).

Experiments were executed in trials where the participant
focused her/his visual attention on one out of the visual stimuli
according to the information shown in the instruction box of the
GUI. The basic timing sequence of a trial is depicted in Figure 3
and consisted of the following five phases:

1. Fixation. A cross symbol is shown during 2s in the information
box, which indicates to be prepared and relaxed. None of the
squares flickers during this phase.

2. Target Presentation. One of the five squares is randomly
highlighted with a blue background and the corresponding
arrow or stop symbol is shown in the information box. This
event last 2s and indicates to the participant the specific visual
stimulus that they have to focus their attention on during the
subsequent Stimulation phase.

3. Preparation. None of the squares is highlighted or shown in the
information box. This last 1s and indicates to be ready for the
upcoming Stimulation phase.

4. Stimulation. All five squares flicker each one at its specific
stimulation frequency. In this phase, participants are requested
to focus their gaze on the square specified in the Target

Presentation phase while ignoring the other visual stimuli. This
visual stimulation last 5s.

5. Rest. None of the stimuli is highlighted and the text Rest

is presented in the information box. This instructed the
participants to rest from the experiment during 5s.

For each participant, experiments were carried out in a single

experimental session consisting of 4 recording runs. In each run,

only one visual stimulus type (either OOR, OOS, CBR, or CBS)

was employed. Moreover, the order of the visual stimulus type was

randomized across runs for each of the participants. A total of
forty trials were recorded per run (which represents ∼10min of
data recording per run), yielding eight trials for each of the five
stimulation frequencies. Figure 4 shows the temporal sequence of a
typical experimental session. To avoid fatigue and reduce tiredness,
participants were allowed to rest between runs for about 2 or 3
min, or longer if needed. During the execution of the experiment,
the participants were duly instructed to avoid moving the body or
head and blinking between the Fixation and the Stimulation phases,
while they were advised to move during the Rest phase if needed. At
the end of the experimental session of a participant, four recording
runs were obtained, one for each type of visual stimulation, and
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FIGURE 3

Temporal sequence of a trial. Each trial consists of five phases: Fixation (2 s), Target Presentation (2 s), Preparation (1 s), Stimulation (∼5 s), and Rest

(∼5 s).

FIGURE 4

Temporal sequence of an experimental session. A session consists of four recording runs, one for each type of visual stimulus. Each run consists of

40 trials, that is, eight trials for each of the five stimulation frequencies.

each run contains forty trials, that is, eight trials for each of the five
stimulation frequencies.

It is important to note that during the stimulation
phase, the squares are the ones that change in

luminance and not the arrows or hexagon symbols
located inside them. These symbols have no
function other than to indicate the direction in BCI
navigation applications.
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2.4. Participants and data acquisition

Twenty-seven (27) participants (12 women and 15 men) were
recruited for this study. The age range was between 18 and
24 years. All volunteers had normal or corrected vision with
glasses. In the recruitment of volunteers, exclusion criteria were
implemented such as having had epileptic episodes, having been
diagnosed with a psychiatric disorder, or subjects with significant
progressive disorders or unstable medical conditions requiring
acute intervention. Participation in the study was voluntary and all
subjects had the opportunity to quit the experiment at any time they
wished. Each volunteer was instructed in detail about the objective
of the study and the procedure to be carried out. All participants
voluntarily signed an informed consent form, which complied with
the standards of the Declaration of Helsinki.

To collect the EEG signals, 8 channels of a g.SCARABEO
Ag/AgCl active electrodes system and a g.USBamp biosignal
amplifier were used. The acquisition of EEG signals was
enhanced through the inoculation of conductive gel on the
active electrodes, attached to a g.GAMMAcap. The previously
described instrumentation comes from the manufacturer g.tec
medical engineering GmbH, Schiedlberg, Austria. According to the
international 10-20 system, the channels used were PO7, PO3, POz,
PO4, PO8, O1, Oz, and O2, in addition to the ground, placed to the
AFz channel, and a reference channel, located in the right ear lobe.
The EEG signals were discretized at a sampling frequency of 256
Hz. A band-pass filter in the interval between 0.5 and 60 Hz and a
Notch filter configured to suppress the presence of the power line
frequency were applied to the sampled recordings.

The interface used in our experiments (Mendoza-Montoya,
2018) allows registering, together with the 8 EEG channels, an
additional channel containing the time markers associated with
each of the five events generated from the computer during the
occurrence of a trial. Thus, for each trial, there are labels indicating
the precise moment when the fixation cross is presented to each
participant, the target to be focused on during the subsequent
stimulation stage, the preparation instant, the stimulation phase,
and the resting phase. The encoding of these time marks is
presented in detail in the description of the database, located at
https://zenodo.org/record/7758425#.ZBvGmnbMLIW.

The user comfort was associated with the performance of the
representative visual stimuli. This was subjectively measured by a
two-question survey applied to each participant at the end of each
experiment. The survey questions were:

• For the four types of stimuli (OOR, OOS, CBR, CBS), was it

possible to distinguish the type of modulation (rectangular from

sinusoidal) on the luminous intensity of the stimulus?

• Which of the four types of visual stimulus best contributed to

keeping vision focused on the screen?

2.5. Frequency analysis

The goal of this analysis was to study the spectral power of
the EEG signals during visual stimulation and no stimulation
at all. To perform this analysis we extracted two different EEG

epochs from each trial: (i) Stimulation epochs comprising EEG
signals of the entire 5 s-long Stimulation phase; and (ii) No-

stimulation epochs comprising EEG signals of the Fixation, Target
Presentation, and Preparation phases, and therefore, having a
duration of 5 s. Figure 5A shows how these two epochs are extracted
from each trial.

This frequency analysis is essential because we expect to find
larger spectral power values in Stimulation than in No-stimulation

EEG response, specifically at the stimulation frequencies and
its harmonics, and to determine which one of the four visual
stimulation types induces the larger spectral power values
during Stimulation.

The Power Spectral Density (PSD) method was used to
compute the spectral power as this is one of the most common and
robust approaches to performing frequency analysis of EEG signals
(Wang et al., 2006; Nakanishi et al., 2018). The PSD was computed
using the Fieldtrip toolbox (Oostenveld et al., 2010) for each of
the trials corresponding to each of the five stimulation frequencies,
both for the Stimulation and No-stimulation conditions. Raw
EEG trials were tapered by a 2-s Hanning window (Proakis and
Manolakis, 2006) with no overlapping. Then, the Fast-Fourier-
Transform (FFT) of the data was taken. This was done for
frequencies between 2 and 50 Hz with steps of 0.5 Hz.

The spectral power of the Stimulation and No-stimulation

conditions were studied for each of the four visual stimulus types
(OOR, OOS, CBR, and CBS) and each of the five stimulation
frequencies (8.5714, 10.9091, 15, 20, and 24 Hz). The non-
parametric paired data statistical test Wilcoxon rank-sum test
was used to determine significant differences between the two
conditions. Statistical analyses were carried out separately for each
channel (8 in total) and frequency (96 in total), resulting in
channel-frequency maps of statistical significance that allow visual
inspection of the channels and frequencies where there are and
there are no significant differences between the two conditions.
These statistical tests were performed at a confidence level of α =
0.01. Bonferroni correction was applied to account for the multiple
comparisons errors (Henry, 2015) due to the number of channels
and frequencies.

Another frequency analysis implemented was the estimation
of the wide-band signal-to-noise ratio (SNR), defined in Equation
(13). This parameter allows us to properly characterize the
broadband noise as well as the contribution of harmonics to the
signals (Liu et al., 2020).

SNR = 10log10

∑k=Nh
k=1 P(k.fi)

∑f=fs/2
f=0 P(f )−

∑k=Nh
k=1 P(k.fi)

(13)

Here Nh represents the number of harmonics (Nh = 4), P(fi)
denotes the power spectrum at each stimulation frequency fi, and
fs/2 is the Nyquist frequency.

2.6. Assessment of SSVEP detection

To carry out this analysis we extracted epochs comprising EEG
signals from 1s before the initiation of the Stimulation phase and up
to the end of this phase. Hence, the duration of the epochs was 6s.
Epochs were time re-referenced to the initiation of the Stimulation
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FIGURE 5

Graphical illustration of the EEG data epochs used for the frequency analysis and for the assessment of SSVEP detection. (A) For the frequency

analysis two 5 s-long epochs were extracted from each trial, No-stimulation epoch (comprising the Fixation, Target Presentation and Preparation

phases) and Stimulation epoch (containing the Stimulation phase). (B) For the assessment of SSVEP detection, one 6 s-long epoch was extracted

from each trial initiating 1 s prior to the onset of the Stimulation phase and finishing at the end of this phase.

FIGURE 6

Illustration of the EEG data windows used to carry out SSVEP detection in a 6 s-long data epoch.

phase, that is, t = 0 and t = 5s represent the initiation and the end
of the visual stimulation, respectively, while there is no stimulation
during−1 ≤ t < 0s. Figure 5B illustrates how an epoch is extracted
from a trial to perform SSVEP detection.

Given an EEG data epoch, the detection of the stimulation
frequency was carried out using sliding EEG data windows of
length Twin seconds in steps of Tshift seconds. Figure 6 illustrates
the process employed to detect the stimulation frequency in an
epoch. This procedure was chosen because it allows calculating
the stimulation frequency over time as new EEG observations
are available resembling the case of a realistic online situation.
Following previous studies (Chen et al., 2015b; Nakanishi et al.,
2018; Liang et al., 2020), in our analysis we used a time window
of length 1s (Twin = 1s) and steps of 0.05s (Tshift = 0.05s).
We considered other window lengths and steps and these two

values provided better performance in terms of accuracy and
detection time.

The detection of the SSVEP responses was assessed for each
combination of detection methods (CCA, FBCCA, and MEC) with
visual stimulus type (OOR, OOS, CBR, and CBS), in each one of
the stimulation frequencies (8.5714, 10.9091, 15, 20, and 24 Hz).
The following metrics were computed to assess performance in the
detection of the SSVEP responses:

• Detection Accuracy (DA). This metric measures the percentage
of correct detections. For the estimation of DA, the number of
correct detections Ndetects was computed concerning the total
number of trials NTrials according to DA = Ndetects/NTrials.
One DA value was obtained for each stimulation frequency
and visual paradigm.
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• Detection Time (DT). This metric measures the time elapsed
to decide the final stimulation frequency in an epoch as in
the case of a realistic online situation of SSVEP detection.
Therefore, the detection time in an epoch was computed as
the time at which three consecutive windows are associated
with the same stimulation frequency. We decided to use three
consecutive timewindows to choose the stimulation frequency
of an epoch because this allows us to select it as in an online
setup. Finally, the average Detection Time across trials was
calculated, obtaining a value for each stimulation frequency
and visual paradigm.

• Information Transfer Rate (ITR). This metric estimates the
online BCI performance, however, we propose to use this
measure to assess the pseudo-online evaluation of SSVEP
target classification, using as parameters the previously
defined DA, the speed with which a target is correctly chosen
(DT), and the number of targets (Volosyak, 2011). Thus,
the ITR was calculated across-all epochs by the following
equation:

ITR = s

[

log(N)+ DA log(DA)+ (1− DA) log(
1− DA

N − 1
)

]

(14)
where s = 60/DT is the number of commands performed per
minute, N is the number of targets (in our case N = 5) and
DA is the detection accuracy.

Statistical non-parametric Kruskal-Wallis test was applied to
assess significant differences between distributions of DA, ITR,
and DT respectively, for the four visual paradigms and the three
detection methods and this way obtain the winning combination in
each of the three performance parameters. All statistical tests were
carried out at a confidence level of α = 0.05.

2.7. Dataset description

Each participant performed one session consisting of a 5-
target SSVEP selection task, giving four data files per subject at
the end of each experiment. The four data files are according to
the four stimuli types: OOR, OOS, CBR, and CBS. The raw EEG
signals along with a detailed description of the recorded data are
freely available and can be accessed to an open-access site with
https://zenodo.org/record/7758425#.ZBs5DnbMLIU. The database
for this study is also available on request to the corresponding
author.

3. Results

The results obtained from the analysis of SSVEP signals
are presented below. The main objective was to study the
brain response to different combinations of visual stimuli (On-
Off and Checkerboard) and light pattern modulating waveforms
(sinusoidal and rectangular pulse), and second, to investigate
the effect on the classification accuracy of applying three SSVEP
detection methods (MEC, CCA, and FBCCA) to the EEG signals
obtained after presenting four types of visual paradigm. Finally, we
also assessed the visual comfort of users by applying different visual
paradigms that elicit an SSVEP response.

3.1. User perception

In the user comfort assessment, we found that out of the
27 participants, only 5 stated that they were able to distinguish
the rectangular signal modulation from sinusoidal signal
modulation, for both, On-Off and checkerboard patterns,
thus compiling an 18.5%. Out of the 27 subjects, 51.9%
expressed a predilection for the checkerboard pattern in
terms of comfort and focus, regardless of the modulating
signal shape.

3.2. Frequency analysis

In the results, we initially compare the power response
corresponding to the Stimulation vs. No-Stimulation conditions
for each of the eight channels and the four visual paradigms.
Subsequently, we compared the power of the brain responses
for each of the four visual paradigms applied during the
Stimulation stage. This was done for all participants and the
five stimulation frequencies generated in the GUI. A frequency-
domain analysis of the signals was performed to evaluate which
of the four visual paradigms elicited the strongest SSVEP
response at each of the 5 stimulation frequencies. For this
purpose, the PSD was obtained by calculating the FFT of
each trial to finally obtain the average power characteristic
for each stimulation frequency and each visual paradigm. We
found that the spectral power at the stimulation frequency is
higher in the Stimulation phase than in the No-Stimulation

phase. We also obtained greater power in the brain response
to visual paradigms with On-Off stimulation, regardless of the
modulating waveform of the visual stimulus, for each of the five
stimulation frequencies.

To illustrate each of these results, Figure 7 shows the EEG
average power response for the five stimulation frequencies when
Participant 27 was subjected to the OOR paradigm. Each of the
five stimulation frequencies is represented by a vertical dashed
line of a specific color. Thus, the application of a stimulus at
a frequency of 8.57 Hz is represented in blue, the stimulus at
a frequency of 10.909 Hz is represented in green, the stimulus
at a frequency of 15 Hz is represented in red, the stimulus at
a frequency of 20 Hz is represented in yellow and finally, the
stimulus at a frequency of 24 Hz is represented in gray. The brain
response to the application of the visual OOR paradigm during
the Stimulation stage is represented with the color previously
described corresponding to each stimulation frequency. The
brain response during the No-Stimulation stage is represented in
black. Additionally, we incorporated in the Supplementary material
document the comparison plots of the EEG average power during
the Stimulation vs. No-Stimulation stages for the five stimulation
frequencies applied to one participant (subject 27). In each of the
eight channels, the highest power peaks match the stimulation
frequency represented by a vertical dashed line. Except for the
POz electrode, a difference in amplitude of the peak values in the
occipital channels with respect to the parietal-occipital channels
can also be distinguished. The response of the central channels (POz

and Oz) for this participant, as in most of the subjects, is superior
to that of the other channels.
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FIGURE 7

EEG average power response per channel of one participant (subject 27). For each stimulation frequency, the SSVEP responses are presented in

colors corresponding to the Stimulation (blue, green, red, yellow, and gray) and No-Stimulation (black) stages when the visual OOR paradigm is

applied at the following frequencies: 8.57 Hz (dashed blue vertical line), 10.909 Hz (dashed green vertical line), 15 Hz (dashed red vertical line), 20 Hz

(dashed yellow vertical line), and 24 Hz (dashed gray vertical line).

Table 1 shows the average power values across all channels
and subjects and each visual paradigm. For each stimuli frequency
(column) the maximum power values have been shaded for each
of the four visual paradigms applied. These results are across
all participants during the experimental session. For stimulation
frequencies 1 and 4 (8.57 and 20 Hz) a maximum average value was
obtained when applying the OOR paradigm, while for stimulation
frequencies 2, 3, and 5 (10.909, 15, and 24 Hz) the maximum
average power values were obtained when applying the OOS
paradigm. In the column representing the average power across all
stimulation frequencies, the maximum value corresponding to the
OOS visual paradigm is highlighted in gray.

The results of the wide-band SNR estimation are reported
in Table 2. SNR values are presented across participants, trials,
and channels for each of the four visual paradigms and the
five stimulation frequencies. The OOS visual paradigm exhibits
higher values than those of the other paradigms for the five
stimulation frequencies. To better distinguish in the table, the
results corresponding to this type of visual stimulus have been
highlighted with a gray background. On the other hand, the lowest
values are concentrated in the CBR paradigm, except for the value

corresponding to the stimulation frequency of 10,909 Hz (−13.20
dB), associated with the CBS visual paradigm. Another aspect to
note is the decrease in SNR as the stimulation frequency increases
for the four visual paradigms.

3.3. SSVEP detection methods

Figure 8 illustrates the detection accuracy as a function of time
across participants, channels, trials, and stimulation frequencies.
This was obtained for each of the four visual paradigms and the
three detection methods. For the three detection methods, there
is a marked difference between stimulation with OOR and OOS
paradigms concerning CBR and CBS, the former being superior.
Peak performance in all four visual paradigms is achieved after
the first second of visual stimulus application. Additional time-
dependent performances for each stimulation frequency for the
three detection methods are reported in Supplementary Figure 7.

Figure 9 depicts all participant’s representative bar graphs of the
average accuracy when classifying target vs. non-target events with
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TABLE 1 Average power (in µV2/Hz units) across-all participants, trials, and channels for each type of visual stimulus at the five target frequencies (f1 =

8.57 Hz, f2 = 10.909 Hz, f3 = 15 Hz, f4 = 20 Hz, and f5 = 24 Hz).

Stimulus type f1 f2 f3 f4 f5 Across-stimulation frequencies
Power average

OOR 1.48 ± 2.53 1.85± 2.51 1.64± 1.55 1.02 ± 1.17 0.75± 0.69 1.35± 1.69

OOS 1.32± 1.59 2.02 ± 2.88 1.64 ± 1.81 1.02± 1.33 0.92 ± 1.11 1.38 ± 1.74

CBR 1.00± 1.20 0.29± 0.29 0.33± 0.46 0.37± 0.41 0.30± 0.31 0.46± 0.53

CBS 1.01± 1.32 0.33± 0.41 0.34± 0.42 0.36± 0.48 0.32± 0.39 0.47± 0.60

The values per stimulation frequency (columns) that yielded the highest power values for each type of stimulus at each target frequency are highlighted (gray-highlighted values).

TABLE 2 Across subjects, trials, and channels wide-band SNR (in dB units) for each type of visual stimulus and stimulation frequencies, considering Nh =

4, where Nh is the number of harmonics.

f1 f2 f3 f4 f5 Across-stimulation
frequencies SNR

OOR −9.80 −9.60 −10.67 −12.79 −13.80 −11.33

OOS −9.79 −9.36 −10.47 −12.46 −13.08 −11.03

CBR −11.06 −12.88 −15.59 −16.47 −17.38 −14.68

CBS −10.74 −13.20 −15.48 −16.12 −17.15 −14.54

The values per stimulation frequency (columns) that yielded the highest SNR values for each type of stimulus are highlighted (gray-highlighted values).

its corresponding standard deviation at each stimulus frequency
for each visual paradigm and with each SSVEP detection method
applied. The FBCCA detection method combined with the OOR
or OOS visual paradigms outperforms the alternatives involving
the checkerboard paradigm in the five stimulation frequencies
presented to the users. Also, the MEC detection method combined
with the CBR stimulus type yields the worst results in performance
at each of the five frequencies applied. The maximum average
accuracy (88.83%) was obtained with the FBCCA method for the
frequency of 10.909 Hz with the OOS paradigm. The minimum
average accuracy value (9.60%) was obtained with theMECmethod
for the frequency of 24 Hz applying the CBS visual paradigm. This
accuracy rate is below the chance level.

Figure 10 shows the violin plot representation of the
distribution of DA values for each visual paradigm (OOR,
OOS, CBR, and CBS) across trials, channels, and stimulation
frequencies, and for each of the three SSVEP detection methods
(FBCCA, CCA, and MEC). Violin plots allow us to appreciate the
nature of multi-modal distributions of numerical data, providing
information about its dispersion or concentration. Each plot
shows the probability density of the DA values, with the thicker
parts representing regions with more data points. The violin
plots show that the medians corresponding to the OOR and OOS
distributions are larger than the CBR and CBS distributions.
Particularly, the median corresponding to the distribution of
the OOS visual paradigm is the highest in the three SSVEP
detection methods. There is a greater dispersion of the data in
the CBR and CBS distributions for the FBCCA method and in
the OOR and OOS distributions for the MEC method, while for
the CCA method, the distributions corresponding to the four
visual paradigms are more concentrated around their medians.
The results of the Kruskal-Wallis and multiple comparison test

indicated that there were significant differences in DA across the
12 experimental conditions (four visual stimuli paradigms by three
no-training detection methods) for the FBCCA detection method
(Figure 10A). Specifically, there were significant differences in
DA between OOR and CBR; OOR and CBS; OOS and CBR, and
OOS and CBS (p ≤ 0.001). However, there were no significant
differences in DA between OOR and OOS and CBR and CBS.
It is important to note that this pattern of results was consistent
across all three detection methods (FBCCA, CCA, and MEC).
These results suggest that the choice of visual stimuli paradigm
can significantly impact the accuracy of SSVEP detection and
that OOR and OOS paradigms may be more effective than
CBS and CBR independent of the specific detection method
being used.

Table 3 shows the average detection time values for each
stimulation frequency and visual paradigm. The minimum
detection time (0.47 ± 0.40s) was obtained for the frequency
of 8.57Hz with the CBR paradigm in the FBCCA method,
while the maximum value (1.51 ± 1.45s) was found for
the frequency of 20Hz for the CBR paradigm in the MEC
method. Considering the five stimulation frequencies, three of
them (15, 20, and 24 Hz) show the shortest detection time
values when the CCA method was applied with the OOR
and CBS paradigms. The detection times obtained with the
MEC method yielded the slowest response values for the five
stimulation frequencies and the four visual paradigms when
compared to the CCA and FBCCA methods. Finally, the column
representing the detection time across all stimulation frequencies
shows that the lowest value corresponds to the visual OOS
paradigm for the CCA detection method with a value of 0.93 ±
1.08 s. This cell is highlighted in the gray background for
better distinction.
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FIGURE 8

Detection Accuracy (DA) curves vs. time for each visual paradigm across subjects, trials, channels, and stimulation frequency: (A) FBCCA, (B) CCA, (C)

MEC.

The violin plots in Figure 11 illustrate the distributions
corresponding to the detection time (DT) parameter for the four
visual paradigms and the three SSVEP detection methods. Each
graph shows that the medians of each distribution are similar and
that the data distributions are well-concentrated around them. This
is true for all four visual paradigms and all three detection methods.
The results of the Kruskal-Wallis and multiple comparison tests
indicated that there were no significant differences in detection
time (DT) across the twelve experimental conditions (four visual
stimuli paradigms by three no-training detection methods) for the
FBCCA detection method (p > 0.05). This pattern of results was
consistent also for CCA and MEC detection methods.

Finally, the across subjects, channels, and trial results of the
ITR, with its corresponding standard deviation, are presented
(Figure 12) considering the three detectionmethods, the four visual
paradigms, and the five stimulation frequencies. This parameter has
a non-linear proportional dependence on the previously reported
accuracy and is inversely proportional with respect to the detection
time. As in the accuracy results, the FBCCA outperforms the other
SSVEP detection methods, however, it is the CBR visual paradigm
for a frequency of 8.57Hz that provides the maximum overall ITR
value (86.95 bpm), matching the shortest average detection time
(Table 3). For the CBR and CBS visual paradigms at 20 and 24 Hz
frequencies, null ITR values were obtained with the CCA andMEC

methods because the accuracy values were below the chance level
(20%). In the first two stimulation frequencies (8.57 and 10.909
Hz) the ITR is higher for the CBR and CBS paradigms because the
detection time is shorter for these cases while the accuracy values
are approximately the same.

Figure 13 shows the violin plot representation of the
distribution of ITR values for each visual paradigm (OOR,
OOS, CBR, and CBS) across trials, channels, and stimulation
frequencies, and for each of the three SSVEP detection methods
(FBCCA, CCA, and MEC). Each plot shows the probability density
of the ITR values, with the thicker parts representing regions
with more data points. The violin plots show that the median
corresponding to the distribution of the OOS visual paradigm is
the highest in the three SSVEP detection methods, the same as for
the DA parameter. The results of the Kruskal-Wallis and multiple
comparison tests indicated that there were significant differences
in ITR in ten out of the twelve experimental conditions. In the
FBCCA and MEC methods, significant differences were identified
between the OOS paradigm and the two visual stimulus variants
involving the checkerboard pattern (CBR and CBS) respectively.
However, unlike the behavior in estimating detection accuracy,
this performance did not occur in the case of the OOR paradigm
vs. CBR and CBS. In the case of the CCA method (Figure 13B),
of the six possible combination options, no significant differences
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FIGURE 9

Across-all participants average accuracy for each stimulation frequency, stimulation pattern, and SSVEP detection method.

were observed between the medians of distributions belonging
to the same visual pattern, i.e., OOR vs. OOS and CBR vs. CBS,
but differences were observed between OOR vs. CBS, with a
significance level of 0.01, between OOR vs. CBR, OOS vs. CBR
and between OOS vs. CBS, the latter three comparisons with a
significance level of 0.001.

4. Discussion

The influence of different aspects of the visual stimulus (e.g.,
number of targets, stimuli frequency, the dimensions of the stimuli,
stimuli colors, type of signal controlling the stimuli, number of
targets, among others) on the SSVEP response and thus on BCI
performance was previously reported. However, as discussed in
Li et al. (2021), it is not only these parameters that influence
performance but also the visual paradigm employed. It is for this
reason that the objective we pursued with this work was to evaluate
the performance in discriminating target from non-target elements
taking into account four visual paradigms (CBR, CBS, OOS, and

OOR) in conjunction with three SSVEP detection methods (CCA,
FBCCA, and MEC) since, as stated in the same study, the results
are inconsistent when the same SSVEP classification algorithms
are applied but with different visual paradigms, demonstrating
the importance of the latter in the satisfactory performance of
the interface.

According to our findings, brain responses to visual stimuli
showed higher average power peaks in the intervals comprising the
first three stimulus frequencies (8.57, 10.909, and 15Hz). A similar
range of stimulation frequencies has already been successfully
used in other studies such as those conducted by Chen et al.
(2015a) and Liu et al. (2020). To ensure a high number of targets
in such a narrow range of stimulation frequencies, oscillatory
stimuli consisting of combinations of frequencies and phase shifts
could be incorporated, as proposed in Chen et al. (2015a) and
Liu et al. (2020). The strongest brain response to visual stimuli
is achieved when applying On-Off patterns and modulation of
the visual stimulus is performed with a sinusoidal signal or with
a rectangular pulse. The OOR and OOS visual paradigms were
superior to CBR and CBS in power response in each of the
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FIGURE 10

Violin-plot representation of Detection Accuracy (DA) curves for each visual paradigm across trials, channels, and stimulation frequency: (A) FBCCA,

(B) CCA, (C) MEC. Significant di�erences between pairs of groups of visual paradigms are represented with asterisks, such that ***p ≤ 0.001; no

asterisk above the bracket means “not significant”.

TABLE 3 Across-all participants and trials average detection time (in s units) for each type of visual stimulus at the five target frequencies (f1 = 8.57 Hz,

f2 = 10.909 Hz, f3 = 15 Hz, f4 = 20 Hz, and f5 = 24 Hz).

SSVEP detection

method

Stimulus

type
f1 f2 f3 f4 f5

Across-stimulation frequencies

Detection time

FBCCA OOR 0.90± 1.01 1.10± 1.07 0.97± 0.92 0.98± 1.00 1.09± 1.11 1.01± 1.02

OOS 1.00± 0.95 0.99± 1.06 1.00± 1.04 1.02± 1.01 1.02± 1.07 1.01± 1.03

CBR 0.47± 0.40 0.50± 0.44 1.28± 0.96 1.49± 1.26 1.29± 1.20 1.01± 0.85

CBS 1.04± 0.99 0.93± 0.94 0.96± 0.97 1.09± 1.16 1.00± 1.05 1.00± 1.02

OOR 0.79± 0.91 1.02± 1.10 0.86± 1.02 0.93± 1.15 1.08± 1.20 0.94± 1.08

CCA OOS 1.00± 1.08 0.84± 1.06 0.89± 1.05 1.02± 1.13 0.92± 1.10 0.93± 1.08

CBR 0.52± 0.49 0.54± 0.53 1.31± 1.18 1.11± 1.31 1.20± 1.30 0.94± 0.96

CBS 1.00± 1.11 0.87± 1.05 0.97± 1.11 0.92± 1.11 0.92± 1.03 0.94± 1.08

OOR 0.92± 1.04 1.14± 1.18 1.01± 1.08 1.08± 1.24 1.26± 1.35 1.08± 1.32

MEC OOS 1.07± 1.13 1.05± 1.18 1.00± 1.18 1.16± 1.22 1.14± 1.22 1.08± 1.19

CBR 0.49± 0.46 0.51± 0.45 1.46± 1.20 1.51± 1.45 1.45± 1.40 1.08± 0.99

CBS 1.13± 1.19 0.96± 1.06 1.20± 1.25 1.12± 1.23 1.00± 1.17 1.08± 1.18

The values per stimulation frequency (columns) that yielded the lowest detection time values are highlighted (gray-highlighted values).

channels where the signals were recorded, which is consistent
with the results reported in Zerafa et al. (2013), although in this
study, the type of stimulus modulation was not specified and

only a flashing element was presented on the screen. It should
be emphasized that the maximum average power peaks in the
CBR and CBS paradigms were obtained for frequency values
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FIGURE 11

Violin-plot representation of Detection Time (DT) curves for each visual paradigm across trials, channels, and stimulation frequency: (A) FBCCA, (B)

CCA, (C) MEC. Significant di�erences between pairs of groups of visual paradigms are represented such that no asterisk above the bracket means

“not significant.”

corresponding to twice the stimulation frequency f, where f ∈
R; f : {8.57, 10.909, 15, 20, 24}Hz, which is consistent with the effect
produced by the application of the checkerboard pattern. Our
results partially disagree with those obtained in Teng et al. (2011)
and Chen et al. (2019), in which the modulation of a pulsed signal
with 50% duty cycle is superior to the modulation performed
by a sinusoidal signal, although it should be highlighted that in
the former publication the accuracy values associated with the
application of a modulating signal type and not the power values,
were reported. According to our findings, the dominance of one
paradigm over another depends on the stimulation frequency and
the stimulus type. The results also showed us that an association
between the electrical brain response and the type of stimulus can
be established, with a high level of confidence, but not with respect
to the luminance modulating signal, since a pairwise comparison
showed that there are differences between the OOR vs. CBR and
CBS paradigms, that there are also differences between OOS vs.
CBR and CBS, but no differences were found between the OOR
paradigm with respect to OOS and CBS with respect to CBR.
At the same time, this result partially matches with Cysewska-
Sobusiak and Jukiewicz (2016), in which the application of the
sinusoidal signal elicits the most intense brain reaction. However,
three aspects should be noted here: first, the population sample
reported in that study was 8 participants; second, only 2 electrodes

of the international 10-20 system (O1 andO2) were used; and third,
the quantitative parameter used to characterize the brain response
according to the waveform of the stimulus modulating signal was
the Signal-to-Noise Ratio (SNR).

In summary, our results suggest that, in the aspect related to
the visual paradigms, brain responses are more prominent when
subjects are exposed to an On-Off stimulation type combined
with luminance modulation either by sinusoidal or rectangular
signals. The results of the statistical test suggest that, in the visual
paradigm, the visual pattern (pattern reversal checkerboard, on-off)
is the determinant and not the luminance-modulating waveform
(sinusoidal or rectangular) of the visual elements displayed on
the screen.

Considering the SSVEP detection methods, the results,
obtained by applying each of the three proposed methods to the
four types of visual paradigms, showed a superiority of FBCCA over
its other two contenders. This is an expected result, consistent with
that reported by Ruiz-Olaya et al. (2019) and Liu et al. (2020) when
comparing these same three detection methods.

It is noteworthy that as the stimulation frequency increases, the
accuracy and ITR parameters decrease. In particular, the frequency
of 10,909 Hz indicates maximum values of accuracy. This would
be in contradiction with the previous statement since lower values
should then be reported with respect to the frequency of 8.57
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FIGURE 12

Across all participants average ITR for each stimulation frequency, visual paradigm, and SSVEP detection method.

Hz. However, the explanation may be given by the fact that the
stimulation frequency is coincidentally in the center of the alpha
band spectrum. In terms of detection time, the CBR paradigm
shows the lowest overall values for the stimulus frequencies 8.57
and 10.909 Hz in the three detection methods, and then, for the
remaining stimulation frequencies (15, 20, and 24 Hz), the global
maximum values of detection times are reached. We found no
reasonable explanation for this behavior of detection times other
than the influence of artifacts on the EEG data, the presence of
alpha and beta activity, and a greater incidence of harmonics as
the frequency increases. The consequence of this is that the ITR
is maximum for the 8.57 Hz stimulation frequency in each of
the three detection methods for the CBR paradigm because the
detection time is minimal compared to the other visual paradigms
and the accuracy rate is approximately similar. However, for the
10, 909 Hz frequency, the ITR experiences a decrease for the
specific cases in which the MEC and CCA methods are applied in
the CBR paradigm since, although the detection times remain at

the minimum values compared to the ratings associated with the
other visual paradigms, the accuracy decreases and consequently
the ITR decreases. For the frequencies of 15, 20, and 24 Hz the
detection times reach the global maximum values with the CBR
paradigm, and at the same time, with the increase of the stimulation
frequencies, the accuracy decreases (Regan, 1989; Pathiranage et al.,
2018), even below the chance level at 20 and 24 Hz, which is why
the ITR becomes null for the MEC detection method, which also
applies to the CBS paradigm. Based on the results obtained, we
can summarize that the FBCCA method outperforms the other
two detection methods and that the best overall performances are
obtained by combining this SSVEP detectionmethodwith theOOR
or OOS paradigms.

In summary, the results suggest that the choice of visual stimuli
paradigm can significantly impact the accuracy and ITR parameters
of SSVEP detection and that some paradigmsmay bemore effective
than others depending on the specific detectionmethod being used.
Also, the detection time results suggest that the choice of visual
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FIGURE 13

Violin-plot representation of Information Transfer Rate (ITR) curves for each visual paradigm across trials, channels, and stimulation frequency: (A)

FBCCA, (B) CCA, (C) MEC. Significant di�erences between pairs of groups of visual paradigms are represented with asterisks, such that ***p ≤ 0.001;

**p ≤ 0.01; no asterisk above the bracket means “not significant”.

stimuli paradigm may not significantly impact the speed of SSVEP
detection. However, it is important to note that this analysis only
assessed differences in average DT across the different paradigms
and methods. Further analyses or post-hoc tests may be needed to
investigate whether there are more subtle differences in DT that
were not captured by this initial analysis.

Finally, the survey applied to evaluate the participants’ comfort
is not conclusive since the paradigms involving the checkerboard
pattern (CBR and CBS) narrowly outperform those involving
the On-Off type (OOR and OOS). However, the fact that the
checkerboard pattern is preferred by users, to avoid visual fatigue
and improve their focus, is fully in line with previous research
reports mentioned next. The observation that 14 of 27 subjects
selected checkerboard pattern stimulation as promoting greater
visual comfort and focus is consistent with the contrasting
explanations provided in several studies. On one hand, this result
is aligned with previous publications such as in Duszyk et al.
(2014), where it is postulated that visual stimuli that induce
stronger SSVEP responses tend to generate greater visual fatigue
(OOR and OOS). Additionally, Zheng et al. (2020) discusses how
contrast changes in these visual paradigms can be somewhat
intense compared to other visual stimuli such as the checkerboard
pattern, leading to an increased demand for attention, which
in turn derives in the occurrence of visual fatigue. However, as

reported in Zerafa et al. (2013) and Choi et al. (2019b), the
application of the checkerboard pattern elicits greater discomfort
when compared to the On-Off pattern. As a result of these opposing
viewpoints in the literature and the minimal prevalence of one
visual paradigm over the other in our survey results, we reaffirm
that our findings are consistent with this divided opinion on the
subject matter and we suggest expanding the population sample in
future experiments.

To achieve a balance between performance and comfort we
propose the use of the OOS visual paradigm combined with
the FBCCA in future instances, but with the modification that
the applied stimulation frequencies be in the range of 15–24
Hz. This can be achieved by implementing the Joint Frequency-
Phase Modulation (JFPM) method described in Chen et al.
(2015b), thus allowing improved discriminability between SSVEPs
responses over a narrow range of stimulation frequencies. We
consider that the fact that the checkerboard paradigm is more
propitious to achieve better visual focus and comfort, is not a
strong enough argument to propose this visual pattern in future
experiments considering that it outperforms the On-Off paradigm
by only one participant. Another element that supports our
proposal is the weak performance, manifested in accuracy and ITR
values, obtained with this paradigm, mainly for frequencies higher
than 15 Hz.
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5. Conclusions

This study proposes a comprehensive analysis of the effect
generated on the performance of an SSVEP-based BCI by
simultaneously evaluating different visual stimulation paradigms
and detection methods. In summary, and based on the results
obtained, we can formulate the following statements: (i) On
average, the signal-to-noise ratio is higher when an On-Off
standard visual stimuli is modulated by sinusoidal (OOS) or
rectangular (OOR) signals. This is particularly evident in the
occipital channels; (ii) evidence indicates that stimulation with
oscillating patterns modulated by sinusoidal or rectangular signals
and standard scheme (OOS or OOR), when combined with the
FBCCA method, leads to better performance; (iii) results also
suggest that to achieve better performance, the frequencies of the
visual stimuli should be between 8.5 and 15 Hz; (iv) however, this
result is in contrast with the user’s perception of comfort, since,
according to the survey applied, the checkerboard stimulus pattern,
whether modulated by a pulsed or sinusoidal signal (CBR or CBS)
and at high frequencies (> 20 Hz), favors a more pleasant visual
experience and a lower incidence of ocular fatigue.

Our study suggests that there are combinations of visual
paradigms with SSVEP detection methods that yield better
performance in discriminating targets from non-target items with
a pertinent level of confidence.

These results, including the ITR reports, inspire further
research exploring stimulation schemes with mixed visual
paradigms for specific frequencies implemented in the front-end
application. Also, in our study, the superiority of the FBCCA
method over MEC and CCA is evident, and therefore its
comparison with other successful SSVEP detection methods such
as Task-Related Component Analysis (TRCA), under the same
visual stimulation variants, would be appropriate.

We provided a free and open-access database of
electroencephalographic recordings of the response to four visual
paradigms inducing the SSVEP phenomenon. The usefulness of
this dataset is oriented to the implementation of new detection
algorithms based on the SSVEP paradigm, mainly for a reduced
number of elements to be detected, which is common in BCI
applications, for example for navigation or remote control of
mobility systems, such as robots or wheelchairs.
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