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Chain elongation is a relevant bioprocess in support of a circular economy as it can
use a variety of organic feedstocks for production of valuable short and medium
chain carboxylates, such as butyrate (C4), caproate (C6), and caprylate (C8).
Alcohols, including the biofuel, butanol (C4), can also be generated in chain
elongation but the bioreactor conditions that favor butanol production are mainly
unknown. In this study we investigated production of butanol (and its precursor
butyrate) during ethanol and acetate chain elongation. We used semi-batch
bioreactors (0.16 L serum bottles) fed with a range of ethanol concentrations
(100–800mM C), a constant concentration of acetate (50 mM C), and an initial
total gas pressure of ~112 kPa. We showed that the butanol concentration was
positively correlated with the ethanol concentration provided (up to 400mM C
ethanol) and to chain elongation activity, which produced H2 and further
increased the total gas pressure. In bioreactors fed with 400mM C ethanol
and 50mM C acetate, a concentration of 114.96 ± 9.26 mM C butanol
(~2.13 g L−1) was achieved after five semi-batch cycles at a total pressure of
~170 kPa and H2 partial pressure of ~67 kPa. Bioreactors with 400mM C
ethanol and 50mM C acetate also yielded a butanol to butyrate molar ratio of
1:1. At the beginning of cycle 8, the total gas pressure was intentionally decreased
to ~112 kPa to test the dependency of butanol production on total pressure andH2

partial pressure. The reduction in total pressure decreased the molar ratio of
butanol to butyrate to 1:2 and jolted H2 production out of an apparent stall.
Clostridium kluyveri (previously shown to produce butyrate and butanol) and
Alistipes (previously linked with butyrate production) were abundant amplicon
sequence variants in the bioreactors during the experimental phases, suggesting
themicrobiomewas resilient against changes in bioreactor conditions. The results
from this study clearly demonstrate the potential of ethanol and acetate-based
chain elongation to yield butanol as a major product. This study also supports the
dependency of butanol production on limiting acetate and on high total gas and
H2 partial pressures.
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1 Introduction

Microbial production of renewable and carbon-neutral
chemicals is an important avenue to reduce carbon output and
support a circular economy. The carboxylate platform, a microbial-
based approach with global traction, can use diverse organic streams
as feedstocks for production of butyrate (C4), caproate (C6), and
caprylate (C8) (Steinbusch et al., 2010; Agler et al., 2011; Spirito
et al., 2014; Roghair et al., 2018; De Groof et al., 2019; Han et al.,
2019). These carboxylates are specialty chemicals for applications
such as animal feed supplements, additives in chemical
manufacturing, and biofuel precursors (Chen et al., 2017; Han
et al., 2019; Wang and Yin, 2022). Chain elongation, the central
metabolic process in the carboxylate platform, uses the reverse β-
oxidation pathway to increase the carbon chain lengths by two
carbons per completed cycle (Spirito et al., 2014; Angenent et al.,
2016). In ethanol and acetate-based chain elongation, bacteria
couple the oxidation of ethanol to the reductive elongation of the
carboxylate. C. kluyveri, a strictly chain-elongating and model
organism, is one of multiple key players in reactor microbiomes
for chain elongation (Barker and Taha, 1942; Seedorf et al., 2008;
Angenent et al., 2016; Candry and Ganigué, 2021).

Alcohols, such as butanol (C4) and hexanol (C6), can also be
generated in ethanol and acetate-based chain elongation (Steinbusch
et al., 2010; de Leeuw et al., 2021; Joshi et al., 2021; Robles et al., 2021;
Huo et al., 2022), but their production is not always measured or
reported. The value of an alcohol typically increases with carbon
chain length (e.g., butanol vs. hexanol) because the higher carbon
content yields the molecule a higher energy content and stability
(Schiel-Bengelsdorf et al., 2013; Fernández-Naveira et al., 2017).
Two pathways have been proposed for butanol production during
chain elongation: (1) hydrogenotrophic carboxylate reduction (e.g.,
butyrate reduction to butanol) (Steinbusch et al., 2008), and (2)
carboxyl-hydroxyl exchange, which couples excessive
(hydrogenogenic) ethanol oxidation with hydrogenotrophic
carboxylate reduction (de Leeuw et al., 2021). Butanol
concentrations produced in chain elongation studies have ranged
from trace concentrations up to 227 mM C (Richter et al., 2016).
Several studies have reported concentrations on the range of
15–60 mM C butanol under a variety of chain elongation
conditions in batch, semi-batch, or continuous bioreactors
(Steinbusch et al., 2008; Ganigué et al., 2016; de Leeuw et al.,
2021; Joshi et al., 2021; Robles et al., 2021; Fernández-Blanco
et al., 2022; Huo et al., 2022; Vees et al., 2022; Bäumler et al.,
2023). However, the conditions under which chain-elongating
microbiomes can be directed to yield butanol as a major product
during ethanol and acetate chain elongation are unknown.

Optimizing bioreactor conditions, identifying key
microorganisms, and broadening the spectrum of possible end-
products, including butanol and longer alcohols, are research
endeavors required to increase the relevance of chain elongation
as a bioprocess for a circular economy (de Leeuw et al., 2019; Han
et al., 2019; Wang and Yin, 2022; Shrestha et al., 2023). Butanol can
be used directly as a fuel or mixed with gasoline (Dekishima et al.,
2011). It is also used as a sustainable solvent, a chemical
intermediate, and it is used in the production of common-use
items, such as cosmetics and pharmaceuticals (Ndaba et al.,
2015). Butanol may also be a desirable H2-releasing substrate in

subsurface bioremediation applications under anoxic conditions.
For example, reductive dehalogenation of chlorinated ethenes
(i.e., tetrachloroethene, trichloroethene, and vinyl chloride) by
Dehalococcoides mccartyi sp. requires H2 as the obligate electron
donor to convert the contaminants to non-toxic ethene (Löffler
et al., 2013; Delgado et al., 2014; Mohana Rangan et al., 2020).
Butanol has been shown to promote the complete reductive
dehalogenation of tetrachloroethene and to enhance
dehalogenation rates when tetrachloroethene was present as a
dense non-aqueous phase liquid (Yu and Semprini, 2009). More
recently, ethanol and acetate chain elongation was shown to support
reductive dehalogenation of trichloroethene directly through
production of H2 during elongation of acetate and indirectly
through fermentation of the chain elongation products, butyrate
and butanol (Robles et al., 2021). Understanding the conditions
under which chain elongation may be steered to produce butanol
and its precursor, butyrate, benefits applications for biochemical
production and bioremediation.

The most studied pathway for bio-butanol production is
acetone-butanol-ethanol (ABE) fermentation. In ABE
fermentation, sugars and starches are converted to
carboxylates (acetate and butyrate) and solvents (acetone,
butanol, and ethanol) (Ndaba et al., 2015). Concentrations on
the order of 539–1,000 mM C butanol (10–20 g L−1) (Xu et al.,
2015; Wechgama et al., 2017) have been achieved via ABE
fermentation with butanol yields ranging from ~0.2 to
0.4 g g−1 glucose (Ndaba et al., 2015; Veza, Muhamad Said and
Latiff, 2021). Butanol production via ABE is influenced by the
medium composition (Al-Shorgani et al., 2018b), carbon source
(Al-Shorgani et al., 2012), temperature (Ramió-Pujol et al.,
2015), concentration of butyrate (Lee et al., 2008), and
pH (Bahl et al., 1982), among other parameters. A limited
number of chain elongation studies have reported that
production of butanol by chain-elongating microbiomes can
be encouraged by combining butyrate with a high H2 partial
pressure (around 150 kPa) (Steinbusch et al., 2008) and by
feeding syngas in bioreactors at an initial pH of around 6
(Ganigué et al., 2016). In anaerobic systems, including ABE
fermentation, the total gas pressure in a bioreactor has also
been shown to influence metabolic shifts from acidogenesis to
solventogenesis (Doremus et al., 1985; Brosseau et al., 1986; Yan
et al., 2017). Nonetheless, the total gas pressure is rarely directly
considered in bioreactor design for chain elongation.

In this study, we investigated production of butanol (and its
precursor butyrate) during ethanol and acetate-based chain
elongation in semi-batch bioreactors (0.16 L serum bottles) fed
with a range of ethanol concentrations (100–800 mM C), a
constant and limiting acetate concentration (50 mM C), and
an initial partial pressure of ~112 kPa. Under conditions of
high total gas pressure and high H2 partial pressure, we found
that increasing the concentration of ethanol was positively
correlated to chain elongation activity and ultimately yielded a
butanol:butyrate molar ratio of 1:1. A butanol concentration of
114.96 ± 9.26 mM C was achieved in this study. The dependency
of butanol production on high total gas pressure and high H2

partial pressure was experimentally verified by releasing gas from
bioreactors. This study is the first to show butanol as a major end-
product of ethanol and acetate chain elongation.
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2 Materials and methods

2.1 Medium composition and microbial
inoculum

Anaerobic mineral medium was prepared as described in Robles
et al. (2021). The medium contained 10 mL of a salt stock solution,
1 mL of a trace element A solution, 1 mL of a trace element B
solution, and 1 mL of a vitamin solution per liter. The solutions were
prepared as described in Löffler et al. (2005) with the modifications
described in Robles et al. (2021). Additionally, the medium was
amended with the reductants Na2S (0.2 mM) and L-cysteine
(0.4 mM), vitamin B12 (0.5 mg L−1) and the buffer, potassium
phosphate (10 mM). The initial pH of the medium was 7.5. The
medium was bottled with UHP N2 in the headspace. Ethanol,
200 proof, molecular biology grade (Sigma Aldrich, St. Louis,
MO, United States) and ReagentPlus sodium acetate trihydrate
(Sigma Aldrich) were used as substrates for the bioreactors.

The inoculum for this study was an enrichment culture from a
soil microcosm. The microcosm contained 10 g soil from Phoenix
Goodyear Airport-North Superfund site. The soil microcosm was
inoculated with 5 mL of a lactate-fermenting and trichloroethene-
dehalogenating culture and 5 mL of an ethanol- and acetate-chain
elongating culture in 90 mL anaerobic medium with 100 mM C
ethanol, 100 mM C acetate, and 2.1 mmol L−1 trichloroethene
(Robles et al., 2021). The enrichment culture from this soil
microcosm converted ethanol and acetate to mainly butyrate
with minimal methane production (≤1.7 mmol L−1 methane
observed during incubation). The soil microcosm enrichment
culture was maintained under these conditions prior to use in
the experiments from this study. The microbial community
composition of the enrichment culture primarily consisted of
members of Clostridiales, Burkholderiales, and Eubacteriales. The
most notable chain elongating microorganism in the culture was
Clostridium kluyveri [100% similar to strain K1, ATCC 8527/DSM
555 using BLAST + consensus taxonomy classifier plugin (Camacho
et al., 2009)].

2.2 Experimental setup

Experiments in triplicate were setup in serum bottles sealed with
rubber stoppers and aluminium crimps. The total volume of the
bottles was 0.16 L (160 mL) with an initial liquid volume of 75 mL.
For brevity, we hereafter refer to the experimental serum bottle
reactors as bioreactors. The bioreactors were provided with the
following initial concentration of substrates: 100 mM C ethanol +
50 mMC acetate, 200 mM C ethanol + 50 mMC acetate, 400 mM C
ethanol + 50 mM C acetate, 800 mM C ethanol + 50 mM C acetate,
and 800 mM C ethanol (Supplementary Table S1). Each bioreactor
received 6 mL of inoculum culture at the start of the experiment. The
bioreactors were operated in semi-batch cycles with draw and fill
performed every 7 days. At the end of each 7-d cycle, one-third of
the bioreactor’s liquid contents (25 mL) was removed and replaced
with fresh medium (25 mL) containing the same initial substrate
concentration as in Supplementary Table S1. The initial total gas
pressure in the bioreactors was set at 110 ± 2 kPa (~1.08 atm) by
injecting UHP N2 gas. The initial pH in the bioreactors was set to

~7.5. During the first seven semi-batch cycles, the bioreactors were
allowed to accumulate H2 in the headspace and thus increasing total
gas pressure. A pseudo steady-state was achieved by semi-batch
cycle 4. The operating phase in semi-batch cycles 4 through 7 is
referred to in the text and figures as “High H2 & total pressure.” At
the beginning of semi-batch cycle 8, the bioreactors were
intentionally perturbed by decreasing the total gas pressure to
~112 kPa (similar to time 0 conditions). The operating phase for
semi-batch cycles 8 through 11 is referred to in text and figures as
“High H2 & low total pressure.” A total of 11 semi-batch cycles were
completed in the study. The condition labelled “100 mM C EtOH +
Acetate” was resupplied with 240 mM C ethanol at the beginning of
cycle 8. An abiotic control with 200 mM C ethanol and 50 mM C
acetate was setup and operated for two cycles. All bioreactors were
incubated at 31°C on a platform shaker set to 150 rpm.

2.3 Chemical analyses

Ethanol, butanol, and hexanol, and acetate, butyrate, caproate,
and caprylate were quantified at the beginning and end of each semi-
batch cycle, except cycles 6 and 10 where samples were not preserved
for analysis. The concentrations of carboxylates and alcohols were
determined using a high-performance liquid chromatograph
(HPLC) equipped with a refractive index detector, a photodiode-
array detector, and an Aminex HPX-87H column (Bio-Rad
Laboratories, Hercules, CA, United States). The HPLC method
and sample preparation were completed as previously described
(Joshi et al., 2021; Miranda et al., 2022). The method was run for a
total of 120 min, with retention times ranging from 15 min for
acetate to 79 min for hexanol. The detection limit of the analytes was
0.02–0.05 mM. Hexanol and caprylate were not detected in samples
from this study. pH measurements were taken using a benchtop
pH meter (Orion 2-star, Thermo Scientific, Waltham, MA,
United States) equipped with an economy series pH electrode.

H2 concentration in the headspace of the bioreactors was
quantified using a gas chromatograph with a thermal
conductivity detector (GC-TCD) (Shimadzu GC-2010, Columbia,
MD, United States) and a fused silica capillary column (Carboxen
1010 PLOT column, Supelco, Bellefonte, PA, United States). The
sampling and GC-TCDmethod details were as previously published
(Robles et al., 2021; Meinel et al., 2022). The calibration range for H2

was 0.013–10.22 mmol L−1 gas. The total gas volume in the
bioreactors was measured with a frictionless syringe (Sigma-
Aldrich) and was converted to a total gas pressure as described
in the Supplementary Material.

2.4 DNA extraction and microbial
community analysis

DNA was extracted from bioreactor samples preserved in
RNAprotect cell reagent (Qiagen, Germantown, MD,
United States) at −80°C at the end of semi-batch cycles 5 (during
“High H2 & total pressure” phase) when butanol concentrations
were highest and 9 (during “High H2 & low total pressure” phase)
when butanol concentrations were lowest. Pellets were pre-treated
with an enzyme lysis buffer containing 20 mM Tris·HCl, 2 mM
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EDTA, 250 μg mL−1 achromopeptidase, and 20 mg mL−1 lysozyme
(Mohana Rangan et al., 2023). After pre-treatment, genomic DNA
was extracted using the Qiagen DNeasy Blood and Tissue kit (MO
BIO Laboratories Inc., Carlsbad, CA, United States) following the
protocol for Gram-positive bacteria.

Microbial community amplicon sequencing was performed on
the Illumina platform with a Miseq instrument (San Diego, CA,
United States) at the ASU Genomics Core Facility, Arizona State
University, Tempe, AZ, United States. Sequencing used the universal
primers 515F and 806R for the V4 hyper-variable region of the 16S
rRNA gene of Bacteria andArchaea (Caporaso et al., 2012). Forward
and reverse reads were processed using the Quantitative Insights
into Microbial Ecology (QIIME 2.0 v. 2022.2) pipeline (Bolyen et al.,
2019). Each sequence was truncated at 232 base pairs using
DADA2 to maintain a quality score of 25 or better and produce
amplicon sequence variants (ASVs). A pretrained Naïve Bayes
classifier referencing the SILVA database (v.138) (Quast et al.,
2012; Bokulich et al., 2018; Robeson et al., 2021) and the q2-
feature-classifier plugin were used to assign taxonomy to
amplicon sequence variants (DeSantis et al., 2006). For alpha
diversity, Pielou’s evenness index was determined from sequences
rarefied to a sampling depth of 16,224 counts. The raw sequences
were submitted to the NCBI Sequence Read Archive and are
available under the project number PRJNA913573 with accession
numbers SRX18767348–SRX18767367.

The 16S rRNA gene of C. kluyveri was quantified in bioreactors
at the end of semi-batch cycles 5 (“High H2 & total pressure”) and 9
(“High H2 & low total pressure”) via quantitative real-time PCR
(qPCR) (Bio-Rad CFX96). The qPCR assays contained the following
per 25 µL reaction: 2 µL DNA, 1.125 μL F′ primer, 1.125 μL R′
primer, 12.5 µL SYBR Green Master Mix (Bio-Rad) and 8.25 µL
RNase-free water (MO Bio Laboratories Inc.). No-template controls
were also included in the qPCR runs. A six-point calibration curve
was created using a gBlock fragment (Integrated DNATechnologies,
Inc., Coralville, IA, United States) as shown in the Supplementary
Material. Triplicate reactions were setup for experimental samples,
no-template controls, and the calibration. To infer concentrations of
C. kluyveri in the bioreactors (in cells mL−1), copies per mL of the
16S rRNA gene were divided by 7, which is the number of 16S rRNA
gene copies in the chromosomal DNA of C. kluyveri (Stoddard et al.,
2014). Additional details about the qPCR analysis are presented in
the Supplementary Material.

2.5 Calculations and statistical analysis

The concentrations of carbon (C)-containing chain elongation
substrates and products were converted to mM carbon (C) by
multiplying the concentration in mM by the corresponding C
atom number in each compound: ethanol, 2; acetate, 2; butanol,
4; butyrate, 4; and caproate, 6. Total gas pressure was determined
using the measured total gas volume and the ideal gas law. The
average and maximum rates of butyrate and butanol production in
units of mmol C L−1 d−1 were calculated using the data from the
“High H2 & total pressure” phase (semi-batch cycles 4–7). Average
ratios of butanol to butyrate (mol:mol) produced were calculated
using data from semi-batch cycles 4–7 (for “High H2 & total
pressure” phase) and 11 (three cycles after pressure was reduced

to ~112 kPa from “HighH2 & low total pressure” phase). A Student’s
t-test was used to evaluate statistical significance of chemical and
microbiological data with a 95% confidence interval (p < 0.05 was
considered statistically significant). Additional details on
calculations are in the Supplementary Material.

3 Results and discussion

3.1 Bioreactors with 400mM C ethanol and
50mM C acetate achieve a 1:1 butanol to
butyrate molar ratio during “High H2 & total
pressure” phase

Semi-batch bioreactors probing the potential of chain
elongation for butanol production were fed with ethanol
(100–800 mM C) and acetate (50 mM C) or ethanol only
(800 mM C) at an initial total gas pressure of ~112 kPa.
Consumption of substrates (Supplementary Figure S1) coupled to
the production of butyrate and butanol was observed in all
bioreactors (Figures 1Ai–Av). In the absence of the inoculum
culture, substrate consumption was not observed (Supplementary
Figure S2). Increasing the ethanol concentration from 100 mM C to
400 mM C while keeping the acetate concentration constant
enhanced chain elongation activity, including butanol production
(Figures 1Ai–Aiii). It has been previously documented that a higher
ethanol concentration and/or a higher molar ratio of ethanol to
acetate can steer chain elongation from mainly butyrate to caproate
and/or caprylate (Steinbusch et al., 2010; Coma et al., 2016; Liu et al.,
2016; Lonkar et al., 2016; Spirito et al., 2018; Joshi et al., 2021). In our
previous work, we showed that soil slurry semi-batch bioreactors fed
with 200 mM C ethanol and 200 mM C acetate produced between
11.41 and 59.89 mM C butanol and 1.10 and 31.77 mM C hexanol
(Joshi et al., 2021). However, butyrate, caproate, and caprylate were
the dominant products (Joshi et al., 2021). In the present study, no
caprylate or hexanol was detected and the caproate concentration
remained low in all bioreactors throughout operation (0.37 ±
0.01–6.48 ± 0.87 mM C caproate, Figures 1Ai–Av). Two
connected reasons likely explain the limited production of
caproate. First, acetate, the electron acceptor in chain elongation,
was limiting in our bioreactors relative to the concentration of
ethanol, the electron donor. Partial ethanol oxidation to acetate and
H2 is the ATP yielding reaction in chain elongation (Seedorf et al.,
2008). Ethanol oxidation would provide a required carboxylate
electron acceptor for chain elongation. However, the high H2

partial pressure in our bioreactors made this reaction unfavorable
after four semi-batch cycles as evident by the plateau in H2

concentration (Figures 1Bii–Biv). Thus, butanol production
became a major pathway through which electrons from H2 could
be consumed in the system.

Butanol production was observed at H2 partial pressures above
~8.16 kPa, while significant butanol production occurred at H2

partial pressures above ~50 kPa (p = 0.0241, Figures 1Bi–Bv).
The highest concentration of butanol achieved in this study was
114.96 ± 9.26 mM C (~2.13 g L−1) in condition “400 mM C EtOH +
Acetate” at the end of semi-batch cycle 5 during the “High H2 & total
pressure” phase (Figure 1Aiii). To the best of our knowledge, this is
the highest reported butanol concentration in an ethanol and
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acetate-based chain elongation study. At the end of semi-batch cycle
5, the bioreactors fed with 400 mM C ethanol reached a H2 partial
pressure of 66.58 ± 3.99 kPa and a total gas pressure of 170.63 ±
14.35 kPa (Figure 1Biii). Steinbusch et al. (2008) documented that
bioreactors with a H2 headspace (150 kPa H2) and 200 mM C
butyrate produced up to 14.64 mM C butanol. Additionally, total
gas pressures between 156 and 184 kPa previously showed selection
for alcohols over carboxylates in methanogenic bioreactors
containing H2 and CO2 in the headspace (Yan et al., 2017).
Findings from our study suggest that H2 partial pressure in
combination with total gas pressure are powerful selection tools
for butanol.

The highest butanol concentrations were achieved under
conditions where H2 production stalled during the “High H2 &
total pressure” phase (Figure 1, cycle 5). Enhanced production of
butanol under this H2 stall phenomenon has been observed in ABE
fermentation (Doremus et al., 1985; Brosseau et al., 1986; Yan et al.,
2017). Stalls in H2 production can be attributed to the influence of
dissolved H2 on NADH2 and H2 supersaturation in the medium,
which can inhibit H2 production via the ferredoxin-linked
hydrogenase (Doremus et al., 1985). Under this scenario,
microorganisms can channel electrons through NADH:ferredoxin
oxidoreductase, reducing butyrate to butanol (Doremus et al., 1985),
supporting the high butanol production observed in our study.

Butanol (and butyrate) production rates in bioreactors increased
with increasing concentration of ethanol up to 400 mM C
(Supplementary Figure S3). The optimal range for ethanol-based
chain elongation using mixed cultures has been reported to be
between 216 and 434 mM C ethanol (5–10 g L−1 ethanol) (Lonkar
et al., 2016). Improved production rates from our bioreactors with

200 and 400 mMC ethanol (+acetate) are in line with these previous
findings. The bioreactors also showed a clear trend with respect to
the molar ratio of butanol to butyrate produced. Specifically, the
butanol:butyrate molar ratio increased from ~1:6 at 100 mM C
ethanol (+acetate) to ~1:1 at 400 mM C ethanol (+acetate) during
the “High H2 & total pressure” phase (Table 1).

Chain elongation activity in bioreactors significantly decreased
when the concentration of ethanol was increased from 400 to
800 mM C (+50 mM C acetate) (p = 0.0002, Figure 1Aiii;
Supplementary Figure S4). The decrease in chain elongation
activity in bottles fed 800 mM C ethanol and 50 mM C acetate
was likely a consequence of ethanol inhibition. Concentrations
between ~600 and 1,720 mM C ethanol (14 and 40 g L−1 ethanol)
have been previously reported as inhibitory in chain elongation
studies (Kucek et al., 2016; Lonkar et al., 2016). Butanol
concentration of ~50 mM C (1 g L−1) have been reported to
inhibit growth of the butanol producer C. carboxidivorans
(Fernández-Naveira et al., 2016). In our mixed culture
bioreactors, ~100 mM C butanol did not appear to have a
prominent inhibitory effect as approximately the same percentage
of substrates went to production of butyrate, butanol, caproate and
H2 in bioreactors with 200 mM C ethanol and 400 mM C ethanol
(Supplementary Figure S4). The absence of added electron acceptor,
acetate, in the “800 mM C EtOH” condition further suppressed
chain elongation activity, in agreement with previous studies
(Spirito et al., 2018; de Leeuw et al., 2021; Joshi et al., 2021).
Thus, the poor chain elongation extent at 800 mM C ethanol
(Figure 1Av) is reflective of ethanol inhibition and acetate limitation.

A general decrease in pH was observed in all ethanol and acetate
bioreactors from the start of incubation (time 0) and by the end of

FIGURE 1
Concentrations of (A) butyrate, caproate, and butanol, (B) total gas pressure and H2 partial pressure (yellow circles on secondary y-axis), and (C)
pH in semi-batch bioreactors. The concentration of acetate in the bioreactors was 50 mMC. The empty symbols for total pressure are measurements at
time 0 and beginning of cycle 8 when total pressure was decreased to ~112 kPa. The filled symbols are measurements at the end of a semi-batch cycle.
The data are averages with standard deviations of triplicate bioreactors. The pH at the start of each cycle is reported in Supplementary Table S1. na =
not analyzed.
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each semi-batch cycle (Figures 1Ci–Cv, pH at the start of cycles in
Supplementary Table S2). The pH range across ethanol and acetate
conditions was 6.09 ± 0.09–7.30 ± 0.04 at the end of semi-batch
cycles (Figures 1Ci–Civ). The lowest pHwas observed in “400 mMC
EtOH + Acetate” bioreactors, where the highest butanol production
occurred (pH ranged from 6.09 ± 0.09 to 6.29 ± 0.11, Figure 1Ciii).
In ABE fermentation, butyrate in combination with mildly acidic
pH (4.5–6.2) is a trigger for butanol production and increases
solvent yields (Matta-El-Ammouri et al., 1987; Tashiro et al.,
2004; Li et al., 2011; Al-Shorgani et al., 2018a). A pH range
between 4.7 and 6.4 has also been found to support alcohol
production in chain elongation systems with C. kluyveri (Ganigué
et al., 2016; Richter et al., 2016). In this study, higher butanol
production was observed at the pH range 6.1–6.3; however, the
pHwas not controlled during the experiment and thus a relationship
between the extent of butanol production and pH could not be
discerned based on the experimental design.

3.2 Perturbations in the total gas pressure
confirm the dependency of butanol
production on gas pressure and
composition

To evaluate the dependency of butanol production on gas
pressure and composition, the total gas pressure was adjusted at
the start of semi-batch cycle 8 by releasing gas from the
bioreactors and resetting the total gas pressure to ~112 kPa
(Figure 1, “High H2 & low total pressure” phase). The
decreases in total gas pressure immediately decreased butanol
production at the end of cycle 8 (Figures 1Aii–Aiv) but butanol
production continued throughout this experimental phase. The
H2 stall observed during the first phase was overcome during the
“High H2 & low total pressure” phase. During the second phase,
H2 partial pressures reached 7.75 ± 1.33–68.19 ± 1.33 kPa and
total gas pressure ranged from 111.71 ± 1.33 to 138.49 ± 1.33 kPa
(Figures 1Bi–Bv). The butanol:butyrate molar ratio was
consistently lower in all conditions during the “High H2 &
low total pressure” phase after the total gas pressure was
decreased (Figures 1Ai–Aiv; Table 1). The lower total gas
pressure observed in “High H2 & low total pressure” phase
and lower butanol:butyrate molar ratios supports previous
findings where total gas pressures between 101 and 124 kPa
previously selected for production of carboxylate and H2 over
alcohols (Yan et al., 2017).

3.3 Butyrate and butanol producing
microbial community showed stability and
resilience during changes in bioreactor
conditions

The microbial community composition was determined to
identify any potential linkage between observed activity,
particularly butanol and butyrate production, during the
“High H2 & total pressure” phase and the “High H2 & low
total pressure” phase. Regardless of the experimental phase,
the most abundant or second most abundant phylum in the
microbial community was Firmicutes (recently renamed
Bacillota) (Supplementary Figure S5). Firmicutes contains the
majority of the identified chain elongating species (Elsden et al.,
1956; Wallace et al., 2004; Seedorf et al., 2008; Angenent et al.,
2016; Zhu et al., 2017; Han et al., 2018; Candry and Ganigué,
2021; Joshi et al., 2021). During the “High H2 & total pressure”
phase, Firmicutes ASVs accounted for 76.2% of the microbial
community in bioreactors fed 400 mM C ethanol and acetate,
which also produced the highest concentration of butanol and
butyrate (Figure 1Aiii; Supplementary Figure S5). ASVs for strict
carboxydotrophic microbes known to produce butanol were not
identified in these bioreactors. Furthermore, methanogenic ASVs
were either not detected in samples or were at ≤ 0.7% of total
sequences, consistent with the characteristics of the inoculum
where methane production was absent or minimal even at a
pH range of 6–7 (Joshi et al., 2021; Robles et al., 2021).

In our study, C. kluyveri ASVs, which classified in
Clostridium sensu stricto 12, were most abundant in
bioreactors fed 200 and 400 mM C ethanol (+acetate) in semi-
batch cycle 5, accounting for ~56% of the total sequences
(Figure 2). In our study, the C. kluyveri ASV showed 100%
sequence match to strain K1 (Barker and Taha, 1942) in a
BLAST consensus sequence search. C. kluyveri produces
carboxylates as the major metabolites. Butanol (Thauer et al.,
1968; Kenealy and Waselefsky, 1985) and propanol (Candry
et al., 2020) have also been reported in pure culture studies
with C. kluyveri. It is possible that C. kluyveri was a major player
in butanol production, although other microorganisms could
have contributed to production of this metabolite.
Quantification of C. kluyveri through qPCR supported its
prominent role in chain elongation (and potentially butanol
production). Specifically, the highest concentration of C.
kluyveri cells (up to 6.71×108 ± 3.61×107 cells mL−1) was
observed during the “High H2 & total pressure” phase at

TABLE 1 Average butanol to butyrate molar ratio in bioreactors during semi-batch cycles 4–7 (“High H2 & total pressure” phase) and cycle 11 (“High H2 & low total
pressure” phase).

Bioreactor label/condition Butanol:butyrate (mol:mol) during experimental phases

High H2 & total pressure High H2 & low total pressure

100 mM C EtOH + Acetate 1:6 1:9

200 mM C EtOH + Acetate 1:3 1:4

400 mM C EtOH + Acetate 1:1 1:2

800 mM C EtOH + Acetate 1:3 1:6
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200 mM C ethanol (Figure 2, cycle 5). A lower concentrations of
C. kluyveri was quantified at 800 mM C ethanol than at
200 mM C ethanol (+acetate), even though the cumulative
concentration of butyrate and butanol were similar in these
conditions (Figures 1Aii, Aiv).

Microbial diversity and richness were not affected by
increasing concentration of ethanol or by the experimental
phase (Supplementary Figure S6, Pielou’s evenness range
0.49–0.67, p = 0.4199), highlighting the overall stability of the
microbiome. A noteworthy trend was observed during “High H2

& low total pressure” where Clostridium sensu stricto 12 ASV
decreased in relative abundance while Alistipes ASV (up to 37%
of the total sequences, Figure 2) and other Rikenellaceae ASVs
from Bacteroidota increased in relative abundance (Figure 2).
Alistipes has been recently linked to butyrate production in
anaerobic digestion of cellulose using anaerobic sludge as
inoculum (Rico et al., 2021). Alistipes ASVs possibly also
contributed to butyrate production in our bioreactors.
Sedimentibacter, Oscillibacter, and Pseudomonas are ASVs
commonly reported to also enrich in chain elongation
bioreactors (Rühl et al., 2009; Candry and Ganigué, 2021;
Joshi et al., 2021). In our study, these ASVs were more
abundant during the “High H2 & low total pressure” phase,
although to a much lower extent than Clostridium sensu
stricto 12 and Alistipes (Figure 2).

4 Conclusion

In this study, we show that selective conditions in bioreactor can
be imposed for a chain-elongating microbiome to yield butanol as a
major product in ethanol and acetate-based chain elongation. The
highest chain elongation activity was observed in bioreactors fed
400 mM C ethanol during the “High H2 & total pressure” phase
where up to 114.95 ± 9.26 mM C butanol (~2.13 g L−1) was

produced. We showed that bioreactors operated under high total
pressure and high H2 partial pressure with limited acetate relative to
ethanol produce butanol instead of the longer carboxylate, caproate.
The individual effect of H2 partial pressure, total gas pressure, and
acetate concentration were not isolated in our work. However,
results from this work clearly support that these parameters can
be applied for selective production of butanol in chain elongation.
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